
Embedded BIOS
TM
 4.3

The Full-Featured BIOS for Embedded Systems, Handheld,
Mobile, and Consumer Electronics*

OEM Adaptation Guide
with BIOS Interrupt Reference

"The most configurable BIOS available"

*for Source Code Adaptation Kit Users
and Online Adaptation Kit Users

Includes BIOStartTM

This material is provided as a product component for the EMBEDDED BIOS Adaptation
Package. It is licensed material and cannot be redistributed without written permission from
General Software.

To get started immediately, turn to the installation instructions in Chapter 2 of this manual.

General Software, Inc.
Box 2571
Redmond, Washington 98073

Tel: (425) 454-5755
FAX: (425) 454-5744
Web: http://www.gensw.com
Email: support@gensw.com

Copyright (C) 1990-2000 General Software, Inc. All rights reserved.

General Software EMBEDDED BIOS Adaptation Guide

IMPORTANT NOTICES

General Software, the GS logo, EMBEDDED BIOS, Embedded DOS, Embedded LAN, CE Ready, the CE Ready logo, CodeProbe, The
Snooper, EtherProbe, and “The Soul of Your Next Machine” are trademarks or registered trademarks of General Software, Inc.

Please complete and return your Product Registration card immediately. This will help us to notify you of updates, and make you eligible to
receive technical support and access to on-line services.

Important Licensing Information

IMPORTANT -- READ CAREFULLY BEFORE OPENING THIS PACKAGE. BY OPENING THIS SEALED PACKAGE, INSTALLING OR OTHERWISE USING THE
SOFTWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE
AGREEMENT, DO NOT OPEN THE PACKAGE OR USE THIS SOFTWARE AND PROMPTLY RETURN THE UNOPENED SOFTWARE AND ANY ACCOMPANYING
MATERIALS TO GENERAL SOFTWARE FOR A REFUND.

This License Agreement is a legal agreement between you and General Software, Inc. (“General”) for the General software product identified above, which includes the computer software and any
associated media and printed materials or electronic documentation (collectively, the "Software ").

GRANT OF LICENSE. In consideration of the license fees paid to General, and subject to the terms and conditions set forth herein, General hereby grants you a nonexclusive, nontransferable
license (the "Adaptation License") to use the Software and the accompanying documentation solely for your internal use to evaluate and adapt the Software for use in products manufactured by
you. Other than for the purpose of evaluating and adapting the Software for use with your products, you may not reproduce or install copies of the Software. Prior to distributing the Software in
such products or installing the Software in the products for distribution, you must enter into a separate license agreement with General for such installation and distribution and pay the applicable
royalties.

SOURCE CODE. Subject to the terms and conditions set forth herein, General grants you a nonexclusive, nontransferable license to use portions of the source code for the Software for your
internal use only, for the sole purpose of adapting the Software to your products. You will keep the source code under restricted access in a safe and secure place and shall take reasonable
precautions and actions to protect the source code from unauthorized use or disclosure. Such precautions and actions shall be at least as stringent as those you take to protect your own source
code or other confidential information. You will not disclose the source code to any person or entity without the prior written consent of General, except that you may disclose the source code to
your employees on a need-to-know basis, provided such employees are contractually obligated to maintain the confidentiality of the source code. The foregoing obligations will survive any
termination of this Adaptation License.

PROPRIETARY RIGHTS. This Software is licensed to you, not sold, and is protected by copyright laws and international treaty provisions. All title, copyrights and other proprietary rights in
and to the Software, the accompanying printed materials, and any copies thereof are owned by General. No title to the Software or any copy thereof or any associated proprietary rights are
transferred to you by this license.

DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS. You may not copy, use or distribute all or any portion of the Software or the accompanying printed material except as expressly
permitted herein. You may not reverse engineer, decompile, or disassemble the Software, nor may you modify the Software except as necessary to adapt the Software for use with your products.
You may not sell, assign, rent, lease or lend the Software.

TERMINATION. Without prejudice to any other rights or remedies, General may terminate this Adaptation License if you breach any of the terms and conditions of this License Agreement. In
such event, you must destroy and/or erase all copies of the Software and all of its component parts.

SUPPORT. For a period of thirty (30) days from the date you acquired this Software, General will provide, subject to availability, up to 5 hours of telephone support to assist you with questions
regarding the installation and adaptation of the Software. If additional support is desired, a variety of support plans are available from General by entering into a separate support agreement. You
acknowledge that except as may be expressly set forth in a separate written support agreement entered into by the parties, GENERAL MAKES NO WARRANTIES OR REPRESENTATIONS
OF ANY KIND WITH RESPECT TO THE RESULTS OR AVAILABILITY OF SUCH SUPPORT.

DISCLAIMER OF WARRANTY. You acknowledge that the Software and any accompanying materials are being furnished solely for evaluation and adaptation purposes. Therefore, THE
SOFTWARE AND THE ACCOMPANYING MATERIALS ARE BEING PROVIDED "AS IS" AND GENERAL MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO
THE SOFTWARE, EITHER EXPRESS OR IMPLIED, AND THERE IS EXPRESSLY EXCLUDED ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

INDEMNIFICATION. Without limiting the generality of any of the foregoing, you acknowledge that the Software is not designed or intended to be used in connection with any product, the
operation, use or malfunction of which could result in death or serious bodily harm, and you agree to take full responsibility for the use of and results achieved from the incorporation of the
Software into your products. You agree to defend, indemnify and hold harmless General, and its officers, directors, employees and agents, from and against any and all claims, actions,
proceedings, liabilities, costs and expenses (including without limitation reasonable attorneys' fees) arising out of (a) any representation, warranty, act or omission made by you in connection with
your products or the Software, or (b) the use of or inability to use your products or the Software incorporated therein or distributed therewith.

LIMITATION OF LIABILITY. IN NO EVENT SHALL GENERAL BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THIS ADAPTATION LICENSE OR THE USE OF OR INABILITY TO USE THE SOFTWARE,
EVEN IF GENERAL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL GENERAL’S LIABILITY UNDER THIS ADAPTATION
LICENSE OR RELATED TO THE SOFTWARE (WHETHER IN TORT, CONTRACTS OR OTHERWISE) EXCEED THE AMOUNTS PAID TO GENERAL FOR THIS
ADAPTATION LICENSE.

FEDERAL GOVERNMENT ACQUISITION. By accepting delivery of this Software, the Government hereby agrees that this Software qualifies as "commercial computer software" as that
term is used in the acquisition regulation applicable hereto. To the maximum extent possible under federal law, the Government will be bound by the commercial terms and conditions contained in
this license. The following additional statement applies only to procurements governed by DFARS Subpart 227.4 (1988): Restricted Rights - Use, duplication and disclosure by the Government is
subject to restriction as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 (1988).

MISCELLANEOUS. This License Agreement constitutes the entire agreement between you and General regarding the Software. This License Agreement is governed by the laws of the State of
Washington and the United States of America, without reference to its choice of law rules. The provisions of the 1980 U.N. Convention on Contracts for the International Sale of Goods shall not
apply.

Contents EMBEDDED BIOS Adaptation Guide i

General Software EMBEDDED BIOS Adaptation Guide

TABLE OF CONTENTS

INTRODUCTION ... 1

INTRODUCING EMBEDDED BIOS...1
CONFIGURABILITY ...1
EMBEDDED FEATURES ...2
DESKTOP PC FEATURES ..3
SOFTWARE COMPATIBILITY..4
APPLICATIONS FOR EMBEDDED BIOS..4
LOWERED SYSTEM COST WITH EMBEDDED DOS-ROM..5
CHOOSING EMBEDDED DOS-ROM OR EMBEDDED DOS 6-XL ...5
RELATED READING ..6
ABOUT THE EMBEDDED BIOS ADAPTATION KIT ..6
FOR CUSTOMERS WITH VERSION 4.0 OF EMBEDDED BIOS..7
FOR CUSTOMERS WITH VERSIONS OF EMBEDDED BIOS EARLIER THAN 4.08

PART I ... 11

BASIC STEPS FOR BIOS BUILDING .. 11

INSTALLATION .. 15

BACKING-UP YOUR RELEASE DISKS...15
INSTALLING THE CORE EMBEDDED BIOS SOFTWARE..15
INSTALLING ADDITIONAL SUPPORT MODULES..16
ORGANIZATION OF THE SOFTWARE..16

PROJECTS SUBDIRECTORY ..16
SYSTEM SUBDIRECTORY ...17
SYSTEM32 SUBDIRECTORY ...17
INC SUBDIRECTORY ..18
CHIPSETS SUBDIRECTORY...18
CPUS SUBDIRECTORY ...19
BOARDS SUBDIRECTORY ...19
TOOLS SUBDIRECTORY ..19
UTIL SUBDIRECTORY ..20
COW SUBDIRECTORY..20
RESOURCE SUBDIRECTORY ..20

WHAT’S NEXT?...20

KEY EMBEDDED BIOS CONCEPTS ... 23

ii EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

3.1 ARCHITECTURAL OVERVIEW..23
3.1.1 MEMORY MODEL ..24

3.1.1.1 The Interrupt Vector Table...24
3.1.1.2 The BIOS Data Area ..24
3.1.1.3 Free Low RAM ..24
3.1.1.4 The Extended BIOS Data Area ..25
3.1.1.5 Expanded Memory ...25
3.1.1.6 Video ROM Extensions ...25
3.1.1.7 Other ROM Extensions ..25
3.1.1.8 The System ROM...26
3.1.1.9 Extended Memory ..26
3.1.1.10 CMOS Memory..26

3.1.2 INTERRUPT MODEL ...26
3.1.2.1 BIOS Service Interrupts ...28

3.1.2.1.1 INT 10h, Video Services ...28
3.1.2.1.2 INT 11h, Equipment List Service..29
3.1.2.1.3 INT 12h, Low Memory Size Service...29
3.1.2.1.4 INT 13h, Disk Services..30
3.1.2.1.5 INT 14h, Serial Port Services ..32
3.1.2.1.6 INT 15h, General System Services..33
3.1.2.1.7 INT 16h, Keyboard Services ...34
3.1.2.1.8 INT 17h, Parallel Port Services ...35
3.1.2.1.9 INT 18h, Boot Fault Routine ...35
3.1.2.1.10 INT 19h, Bootstrap Routine ..35
3.1.2.1.11 INT 1ah, Time/Date Services ..36

3.1.2.2 Table Pointers...37
3.1.2.2.1 INT 1dh, Video Parameter Table (VPT) ...37
3.1.2.2.2 INT 1eh, Floppy Diskette Parameter Table (DPT)..37
3.1.2.2.3 INT 1fh, Video Graphics Character Table (VGCT)..38
3.1.2.2.4 INT 41h/46h, Fixed Disk Paramter Tables (FDPTs)...39

3.1.2.3 BIOS Upcalls..39
3.1.2.3.1 INT 15h Device Management..39

3.1.2.3.1.1 INT 15h Function 4fh ...40
3.1.2.3.1.2 INT 15h Function 90h...40
3.1.2.3.1.3 INT 15h Function 91h...40
3.1.2.3.1.4 INT 15h Function 85h...41

3.1.2.3.2 INT 1bh Control-Break Signal ..41
3.1.2.3.3 INT 1ch User Timer Interrupt..41
3.1.2.3.4 INT 4ah Real Time Software Interrupt..41

3.1.2.4 CPU Traps/Faults ...42
3.1.2.5 Hardware Interrupts..43

3.3 SETUP SCREENS ..44
3.4 API SERVICE MODULES ..44
3.5 DEVICE SERVICE MODULES ..45
3.6 OTHER MODULES...46
3.7 CPU PERSONALITY MODULES..46
3.8 CHIPSET PERSONALITY MODULES..48
3.9 BOARD PERSONALITY MODULES ..49
3.10 BIOS CONFIGURATION..51

3.10.1 PROJECT FILES ..51

Contents EMBEDDED BIOS Adaptation Guide iii

General Software EMBEDDED BIOS Adaptation Guide

3.10.2 BINARY CONFIGURATION PATCH AREA..52
3.10.3 SYSTEM CONFIGURATION TABLE..52
3.10.4 KEYBOARD SCANCODE TRANSLATION TABLE ...53

3.11 CONSOLE I/O REDIRECTION ...53
3.11.1 VIDEO (INT 10H) REDIRECTION ...53
3.11.2 KEYBOARD (INT 16H) REDIRECTION ...54

3.12 INTEGRATED BIOS DEBUGGER ..54
3.13 MANUFACTURING MODE ...55
3.14 ROM DISK..56
3.15 WATCHDOG TIMER ..56
3.16 POWER MANAGEMENT AND APM ..57
3.17 CACHE MANAGEMENT...57
3.18 PROTECTED MODE SUPPORT ..58

SETTING UP YOUR DEVELOPMENT TOOLS ... 59

4.1 CONFIGURING FOR BORLAND OR MICROSOFT TOOLS..59
4.1.1 OBTAINING BORLAND 32-BIT TOOLS ..59
4.1.2 OBTAINING MICROSOFT 32-BIT TOOLS...60
4.1.3 BUILD CONTROL ENVIRONMENT VARIABLES...60

4.2 STANDARD SYSTEM/TOOLSET ENVIRONMENT VARIABLES ..62
4.3 USING OTHER COMPILERS, ASSEMBLERS, AND LINKERS ..62
4.4 GSMAKE, THE PROGRAM MAINTENANCE UTILITY ..62

4.4.1 STARTING GSMAKE ..63
4.4.2 COMMAND LINE OPTIONS...63
4.4.3 TYPES OF MAKEFILE STATEMENTS..64
4.4.4 INTRINSIC GSMAKE COMMANDS ..65

4.5 GSMERGE, THE MERGE UTILITY ...66
4.5.1 OVERVIEW OF GSMERGE OPERATION..66
4.5.2 IDF FILE SYNTAX..66
4.5.3 IDF KEYWORDS ..67

4.5.3.1 IMAGEDEF Keyword..67
4.5.3.2 AT Keyword...67
4.5.3.3 ALIGN Keyword..68
4.5.3.4 RESERVE and RESERVETO Keywords..68
4.5.3.5 FREE and FREETO Keywords..68
4.5.3.6 SET and SETTO Keywords ...69
4.5.3.7 FROM Keyword...69
4.5.3.8 TO Keyword...69
4.5.3.9 INCLUDEMAP Keyword ..69
4.5.3.10 LOCATEPE Keyword..70
4.5.3.11 LOCATERES Keyword ...70
4.5.3.12 PLACEDIR32 Keyword...70
4.5.3.13 LOAD Keyword ...71
4.5.3.14 COMPRESSTO Keyword..71
4.5.3.15 LOADPE Keyword ..71
4.5.3.16 CONVERTBMP Keyword...72
4.5.3.17 LOADRES Keyword..72
4.5.3.18 INCLUDE Keyword...72

iv EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

4.5.3.19 SETADDRESS Keyword...72
4.5.4 Example IDF File ..74

4.6 DISKIMAG, THE DISK IMAGE GENERATOR...75
4.7 BIOSLOC, THE ROM BIOS EXTENSION LOCATOR ..76
4.8 BIOSSUM, THE ROM BIOS EXTENSION CHECKSUM UTILITY ..77
4.9 BIOSMAP, THE EMBEDDED BIOS MAP FILE ANALYZER ...78
4.10 PERF, THE FILE SYSTEM PERFORMANCE ANALYZER..78

4.10.1 STARTING PERF..78
4.10.2 COMMAND LINE OPTIONS...79
4.10.3 MULTIPLE PASSES ...80
4.10.4 MULTIPLE REPETITIONS PER PASS ..80
4.10.5 SOME EXAMPLES...81

BUILDING EMBEDDED BIOS .. 83

5.1 BUILDING THE SYSTEM BIOS ...83
5.1.1 CONFIGURING BUILD OPTIONS AND PARAMETERS...83
5.1.2 SELECTING THE CPU PERSONALITY MODULE..83
5.1.3 SELECTING THE CHIPSET PERSONALITY MODULE ..84
5.1.4 SELECTING THE BOARD PERSONALITY MODULE..85
5.1.5 TYPE GSMAKE IN DOS OR IN A DOS BOX UNDER WINDOWS...85
5.1.6 INSPECTING THE BINARY 16-BIT SYSTEM BIOS FILE...85
5.1.7 PROGRAMMING A BOOT ROM WITH MYPROJ.ABS ...87
5.1.8 THE 32-BIT BIOS BUILD, AND COMPOSITE BIOS FILES ..87
5.1.9 BOOTING THE SYSTEM ..88

5.2 BUILDING AUXILLIARY COMPONENTS ...88

CONFIGURING THE BIOS WITH BIOSTART ... 91

6.1 OVERVIEW OF BIOSTART ...91
6.2 INSTALLING THE ADAPTATION KIT WITH BIOSTART...93
6.3 CREATING AND EDITING A PROJECT ..93
6.4 CUSTOMIZING A PROJECT ...95
6.5 PRINTING PROJECT CUSTOMIZATION SETTINGS...97
6.6 SAVING THE PROJECT AND SETTINGS...97
6.7 BUILDING THE PROJECT ..98
6.8 PATCHING BINARY SYSTEM BIOS FILES ...98
6.9 UPGRADING BIOSTART ...99

BIOS BUILD OPTIONS .. 101

7.1 OPTIONS FOUND IN OPTIONS.INC ...102
7.1.1 BIOS_MAJOR_VERSION CONSTANT..102
7.1.2 BIOS_MINOR_VERSION CONSTANT ..102
7.1.3 OPTION_BIOS_KBSIZE OPTION..102
7.1.4 OPTION_SUPPORT_PCODE OPTION..103
7.1.5 OPTION_SUPPORT_SETUP OPTION...104

Contents EMBEDDED BIOS Adaptation Guide v

General Software EMBEDDED BIOS Adaptation Guide

7.1.6 OPTION_SUPPORT_CONFIGBOX OPTION..105
7.1.7 OPTION_SUPPORT_POSTCODES OPTION ..105
7.1.8 OPTION_SUPPORT_POSTCODES_COM OPTION ...106
7.1.9 OPTION_SUPPORT_MFGCODES OPTION ...106
7.1.10 OPTION_SUPPORT_POSTMSGS OPTION ..107
7.1.11 OPTION_SUPPORT_POWERON_DELAY OPTION..107
7.1.12 OPTION_SUPPORT_DEBUGGER OPTION ...108
7.1.13 OPTION_SUPPORT_SHADOW OPTION ...109
7.1.14 OPTION_SUPPORT_CACHE OPTION ...110
7.1.15 OPTION_SUPPORT_8250 OPTION...110
7.1.16 OPTION_SUPPORT_8254 OPTION...111
7.1.17 OPTION_SUPPORT_8255 OPTION...112
7.1.18 OPTION_SUPPORT_PORT_B OPTION ..112
7.1.19 OPTION_SUPPORT_8259 OPTION...113
7.1.20 OPTION_SUPPORT_8259_2 OPTION...114
7.1.21 OPTION_SUPPORT_8237 OPTION...115
7.1.22 OPTION_SUPPORT_8237_2 OPTION...115
7.1.23 OPTION_SUPPORT_8042 OPTION...116
7.1.24 OPTION_SUPPORT_CMOS OPTION..117
7.1.25 OPTION_SUPPORT_NPX OPTION...121
7.1.26 OPTION_SUPPORT_V25 OPTION ..121
7.1.27 OPTION_SUPPORT_XT_NMI OPTION..122
7.1.28 OPTION_SUPPORT_VIDEO OPTION...122
7.1.29 OPTION_SUPPORT_KEYBOARD OPTION...124
7.1.30 OPTION_SUPPORT_TESTBASEMEM OPTION..126
7.1.31 OPTION_SUPPORT_PAGEREG OPTION...126
7.1.32 OPTION_SUPPORT_XTEXPANSION OPTION ...126
7.1.33 OPTION_SUPPORT_SCT OPTION..127
7.1.34 OPTION_SUPPORT_PROTECT_MODE OPTION ...127
7.1.35 OPTION_SUPPORT_SERIAL OPTION ...130
7.1.36 OPTION_SUPPORT_PARALLEL OPTION...132
7.1.37 OPTION_SUPPORT_ROM_EXTENSIONS OPTION ...132
7.1.38 OPTION_SUPPORT_VIDEO_BOARDS OPTION ..133
7.1.39 OPTION_SUPPORT_SOUND OPTION ...134
7.1.40 OPTION_SUPPORT_DEVICECALLS OPTION..136
7.1.41 OPTION_SUPPORT_TIMEBIOS OPTION ..136
7.1.42 OPTION_SUPPORT_APM OPTION ..137
7.1.43 OPTION_SUPPORT_POWERMAN OPTION..138
7.1.44 OPTION_SUPPORT_PCI OPTION...139
7.1.45 OPTION_SUPPORT_PCI_POSTMSGS OPTION ..140
7.1.46 OPTION_SUPPORT_MCA OPTION..140
7.1.47 OPTION_SUPPORT_PS2MOUSE OPTION...140
7.1.48 OPTION_SUPPORT_WATCHDOG OPTION..141
7.1.49 OPTION_SUPPORT_SOFT_ERR OPTION ...142
7.1.50 OPTION_SUPPORT_MINI_DOS OPTION ..143
7.1.51 OPTION_SUPPORT_EXHMEMTEST OPTION..143
7.1.52 OPTION_SUPPORT_KNOWN_ENTRYPOINTS OPTION ..145
7.1.53 OPTION_SUPPORT_IBM_COMPAT OPTION...145
7.1.54 OPTION_SUPPORT_MFGMODE OPTION...145
7.1.55 OPTION_SUPPORT_PARITY OPTION...147

vi EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

7.1.56 OPTION_SUPPORT_PASSWORD OPTION ...147
7.1.57 OPTION_SUPPORT_DEMO OPTION ...148
7.1.58 OPTION_SUPPORT_DEMO_MSG OPTION...148
7.1.59 OPTION_SUPPORT_ATA OPTION...149
7.1.60 OPTION_SUPPORT_CON_REDIRECTOR OPTION..149
7.1.61 OPTION_SUPPORT_MCL OPTION ..150
7.1.62 OPTION_SUPPORT_DISKIO OPTION..150
7.1.63 OPTION_SUPPORT_WINCE OPTION..151
7.1.64 OPTION_SUPPORT_BOOT_FAR OPTION ..151
7.1.65 OPTION_SUPPORT_BIOS32 OPTION..152
7.1.66 OPTION_SUPPORT_SPLASHSCR OPTION...152
7.1.67 OPTION_SUPPORT_EXTRES OPTION..153
7.1.68 OPTION_SUPPORT_INT13_EXTENSIONS OPTION..153
7.1.69 OPTION_SETUP_CUSTOM OPTION..153
7.1.70 OPTION_SETUP_DEMO OPTION...154
7.1.71 OPTION_SETUP_PASSWORD OPTION...154
7.1.72 OPTION_SETUP_DIAGNOSTICS OPTION..155
7.1.73 OPTION_SETUP_DEBUGGER OPTION...155
7.1.74 OPTION_SETUP_IDE OPTION..156
7.1.75 OPTION_SETUP_SHADOW OPTION...156
7.1.76 OPTION_SETUP_PWR_FEATURES OPTION ...156
7.1.77 OPTION_SETUP_PWR_TIMEOUTS OPTION ...157
7.1.78 OPTION_SETUP_MFGMODE OPTION..158
7.1.79 OPTION_SETUP_RAMDISK OPTION..158
7.1.80 OPTION_SETUP_RFDDISK OPTION ...158
7.1.81 OPTION_SETUP_SHAD_C000 OPTION...159
7.1.82 OPTION_SETUP_SHAD_C400 OPTION...159
7.1.83 OPTION_SETUP_SHAD_C800 OPTION...160
7.1.84 OPTION_SETUP_SHAD_CC00 OPTION ..160
7.1.85 OPTION_SETUP_SHAD_D000 OPTION...161
7.1.86 OPTION_SETUP_SHAD_D400 OPTION...161
7.1.87 OPTION_SETUP_SHAD_D800 OPTION...162
7.1.88 OPTION_SETUP_SHAD_DC00 OPTION..162
7.1.89 OPTION_SETUP_SHAD_E000 OPTION ...163
7.1.90 OPTION_SETUP_SHAD_E400 OPTION ...163
7.1.91 OPTION_SETUP_SHAD_E800 OPTION ...164
7.1.92 OPTION_SETUP_SHAD_EC00 OPTION ..164
7.1.93 OPTION_SETUP_SHAD_F000 OPTION ...165
7.1.94 OPTION_REFRESH_8237 OPTION ...165
7.1.95 OPTION_REFRESH_CHIPSET OPTION...166
7.1.96 OPTION_REFRESH_CPU OPTION ...167
7.1.97 OPTION_REFRESH_BOARD OPTION ...168
7.1.98 OPTION_REFRESH_CHARGE OPTION...168
7.1.99 OPTION_DMA_8237 OPTION ...169
7.1.100 OPTION_DMA_CPU OPTION ...169
7.1.101 OPTION_DMA_BOARD OPTION ...170
7.1.102 OPTION_INT_8259 OPTION..170
7.1.103 OPTION_INT_CPU OPTION ..171
7.1.104 OPTION_INT_BOARD OPTION..171
7.1.105 OPTION_TIMER_8254 OPTION ..172

Contents EMBEDDED BIOS Adaptation Guide vii

General Software EMBEDDED BIOS Adaptation Guide

7.1.106 OPTION_TIMER_CPU OPTION ..172
7.1.107 OPTION_TIMER_BOARD OPTION ..172
7.1.108 OPTION_SOUND_8254_8255 OPTION...173
7.1.109 OPTION_SOUND_CPU OPTION ...173
7.1.110 OPTION_SOUND_BOARD OPTION...174
7.1.111 OPTION_WATCHDOG_CHIPSET OPTION ...174
7.1.112 OPTION_WATCHDOG_CPU OPTION ...174
7.1.113 OPTION_WATCHDOG_BOARD OPTION ...175
7.1.114 OPTION_WATCHDOG_TIMER_KICK OPTION ...175
7.1.115 OPTION_CACHE_CPU OPTION ...176
7.1.116 OPTION_CACHE_CHIPSET OPTION...176
7.1.117 OPTION_CACHE_BOARD OPTION ...177
7.1.118 OPTION_SPEED_CPU OPTION...177
7.1.119 OPTION_SPEED_CHIPSET OPTION ..177
7.1.120 OPTION_SPEED_BOARD OPTION ..178
7.1.121 OPTION_A20_8042 OPTION..178
7.1.122 OPTION_A20_CHIPSET OPTION ...179
7.1.123 OPTION_A20_CPU OPTION..179
7.1.124 OPTION_A20_BOARD OPTION..180
7.1.125 OPTION_A20_PORT92 OPTION ...181
7.1.126 OPTION_A20_FAILMEM OPTION ...181
7.1.127 OPTION_REBOOT_JUMP OPTION ..182
7.1.128 OPTION_REBOOT_PORT92 OPTION ..182
7.1.129 OPTION_REBOOT_8042 OPTION...183
7.1.130 OPTION_REBOOT_CHIPSET OPTION ..183
7.1.131 OPTION_REBOOT_BOARD OPTION...183
7.1.132 OPTION_TOREAL_PORT92 OPTION...184
7.1.133 OPTION_TOREAL_8042 OPTION...184
7.1.134 OPTION_TOREAL_CPU OPTION ...185
7.1.135 OPTION_POWERMAN_CPU OPTION ...185
7.1.136 OPTION_POWERMAN_CHIPSET OPTION ...186
7.1.137 OPTION_POWERMAN_BOARD OPTION ...186
7.1.138 OPTION_SERIAL_8250 OPTION...187
7.1.139 OPTION_SERIAL_CPU OPTION...187
7.1.140 OPTION_SERIAL_WAIT_DSR OPTION ..188
7.1.141 OPTION_SERIAL_WAIT_DSRCTS OPTION ...188
7.1.142 OPTION_SERIAL_FIFO OPTION ..189
7.1.143 OPTION_SERIAL_HALT OPTION..190
7.1.144 OPTION_SERIAL_9600_BAUD OPTION ...190
7.1.145 OPTION_PARALLEL_EXTERNAL OPTION ...191
7.1.146 OPTION_PARALLEL_CPU OPTION ..191
7.1.147 OPTION_KEYBOARD_PCAT OPTION ..192
7.1.148 OPTION_KEYBOARD_CUSTOMER OPTION...192
7.1.149 OPTION_KEYBOARD_MATRIX OPTION...193
7.1.150 OPTION_KEYBOARD_PCXT OPTION ..193
7.1.151 OPTION_KEYBOARD_CHIPSET OPTION ..193
7.1.152 OPTION_8042_TESTP22P23 OPTION ..194
7.1.153 OPTION_8042_READPWRSTAT OPTION...194
7.1.154 OPTION_8042_CHECKBAT OPTION...195
7.1.155 OPTION_8042_PS2 OPTION ..195

viii EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

7.1.156 OPTION_8042_WAIT_BEFORE_BAT OPTION...195
7.1.157 OPTION_VIDEO_6845 OPTION ..196
7.1.158 OPTION_VIDEO_HD61830 OPTION ..197
7.1.159 OPTION_VIDEO_HDMLCD OPTION...198
7.1.160 OPTION_VIDEO_AMDELAN OPTION ..199
7.1.161 OPTION_VIDEO_CUSTOMER OPTION ..200
7.1.162 OPTION_VIDEO_DUPLICATE OPTION ..201
7.1.163 OPTION_VIDEO_VIDEOMEM OPTION ..202
7.1.164 OPTION_VIDEO_STDFONT OPTION ..202
7.1.165 OPTION_VIDEO_MODE_REDIR OPTION...203
7.1.166 OPTION_CRITICAL_BOARD OPTION ..203
7.1.167 OPTION_CRITICAL_BEEP OPTION ..204
7.1.168 OPTION_CRITICAL_FLOPPY_LIGHT OPTION ...204
7.1.169 OPTION_CRITICAL_MFGMODE OPTION..205
7.1.170 OPTION_CMOS_MOUSE OPTION ...205
7.1.171 OPTION_CMOS_TEST1MB OPTION ...205
7.1.172 OPTION_CMOS_TESTCLICK OPTION..206
7.1.173 OPTION_CMOS_PARITY OPTION...206
7.1.174 OPTION_CMOS_DELETE OPTION ..207
7.1.175 OPTION_CMOS_HEXLOWER OPTION...207
7.1.176 OPTION_CMOS_F1ERROR OPTION..208
7.1.177 OPTION_CMOS_NUMLOCK OPTION ...208
7.1.178 OPTION_CMOS_TYPEMATIC OPTION ..208
7.1.179 OPTION_CMOS_WEITEK OPTION..209
7.1.180 OPTION_CMOS_FLOPPYSEEK OPTION ..209
7.1.181 OPTION_CMOS_EXTCACHE OPTION..210
7.1.182 OPTION_CMOS_INTCACHE OPTION ...210
7.1.183 OPTION_CMOS_FASTA20 OPTION...211
7.1.184 OPTION_CMOS_HDSEEK OPTION ...211
7.1.185 OPTION_CMOS_CONFIGBOX OPTION ..211
7.1.186 OPTION_CMOS_EXHMEMTEST OPTION..212
7.1.187 OPTION_CMOS_PASSWORD OPTION ...212
7.1.188 OPTION_CMOS_KEYBOARD OPTION ...213
7.1.189 OPTION_CMOS_SHADOW_ENABLE OPTION ..213
7.1.190 OPTION_CMOS_SHADOW_C000 OPTION ...214
7.1.191 OPTION_CMOS_SHADOW_C400 OPTION ...214
7.1.192 OPTION_CMOS_SHADOW_C800 OPTION ...215
7.1.193 OPTION_CMOS_SHADOW_CC00 OPTION ..215
7.1.194 OPTION_CMOS_SHADOW_D000 OPTION...216
7.1.195 OPTION_CMOS_SHADOW_D400 OPTION...216
7.1.196 OPTION_CMOS_SHADOW_D800 OPTION...217
7.1.197 OPTION_CMOS_SHADOW_DC00 OPTION ..217
7.1.198 OPTION_CMOS_SHADOW_E000 OPTION ...218
7.1.199 OPTION_CMOS_SHADOW_E400 OPTION ...218
7.1.200 OPTION_CMOS_SHADOW_E800 OPTION ...218
7.1.201 OPTION_CMOS_SHADOW_EC00 OPTION...219
7.1.202 OPTION_CMOS_SHADOW_F000 OPTION ...219
7.1.203 OPTION_CMOS_SPEED OPTION ...220
7.1.204 OPTION_CMOS_REFRESH OPTION..220
7.1.205 OPTION_CMOS_POWER OPTION ...221

Contents EMBEDDED BIOS Adaptation Guide ix

General Software EMBEDDED BIOS Adaptation Guide

7.1.206 OPTION_CMOS_ATA OPTION...221
7.1.207 OPTION_CMOS_RFD OPTION ...222
7.1.208 OPTION_CMOS_LOAD_WINCE OPTION ...222
7.1.209 OPTION_HARDERR_A20 OPTION...222
7.1.210 OPTION_HARDERR_DISSHADOW OPTION..223
7.1.211 OPTION_HARDERR_KBDCTRL OPTION...223
7.1.212 OPTION_HARDERR_CMOS OPTION ..224
7.1.213 OPTION_HARDERR_PCI OPTION ...224
7.1.214 OPTION_HARDERR_TIMER OPTION ...225
7.1.215 OPTION_HARDERR_REFRESH OPTION ..225
7.1.216 OPTION_HARDERR_MEMCFG OPTION ..226
7.1.217 OPTION_HARDERR_BASEMEM OPTION..226
7.1.218 OPTION_HARDERR_DMA OPTION ..227
7.1.219 OPTION_HARDERR_INT OPTION...227
7.1.220 OPTION_HARDERR_FIRMWARE OPTION ..227
7.1.221 OPTION_HARDERR_KBD OPTION ...228
7.1.222 OPTION_HARDERR_VIDEO OPTION ...228
7.1.223 OPTION_HARDERR_PSWD OPTION ..229
7.1.224 OPTION_HARDERR_LOWMEM OPTION...229
7.1.225 OPTION_HARDERR_PROTMODE OPTION..230
7.1.226 OPTION_SOFTERR_SETUP OPTION...230
7.1.227 OPTION_SOFTERR_LPT OPTION..231
7.1.228 OPTION_SOFTERR_MEMMIS OPTION ..231
7.1.229 OPTION_SOFTERR_BOARD OPTION ...231
7.1.230 OPTION_SOFTERR_CHIPSET OPTION...232
7.1.231 OPTION_SOFTERR_CPU OPTION ...232
7.1.232 OPTION_QUERY_ENTERSETUP OPTION..232
7.1.233 OPTION_QUERY_FORMATRFD OPTION ..233
7.1.234 OPTION_QUERY_VERIFYRFD OPTION...233
7.1.235 OPTION_QUERY_FORMATRAM OPTION ...233
7.1.236 OPTION_QUERY_DEBUG OPTION ...234
7.1.237 OPTION_MFGMODE_TIMEOUT OPTION ..234
7.1.238 OPTION_MFGMODE_FIFO OPTION..235
7.1.239 OPTION_MEMTEST_LOW_POST OPTION ..235
7.1.240 OPTION_MEMTEST_HIGH_POST OPTION..235
7.1.241 OPTION_MEMTEST_WAIT OPTION...236
7.1.242 OPTION_MEMTEST_CLEAR OPTION ..236
7.1.243 OPTION_MEMTEST_CLICK OPTION ...237
7.1.244 OPTION_MEMTEST_QUICK OPTION...237
7.1.245 OPTION_RFD_TESTFREE OPTION ...237
7.1.246 OPTION_RFD_FAT_SNOOP OPTION ..238
7.1.247 OPTION_DEBUG_HOTKEY OPTION ..238
7.1.248 OPTION_DEBUG_FLASH OPTION ..239
7.1.249 OPTION_DEBUG_WATCHINT OPTION..239
7.1.250 OPTION_DEBUG_NMI OPTION ...240
7.1.251 OPTION_DEBUG_PCMCIA OPTION..240
7.1.252 OPTION_DEBUG_ASSEMBLY OPTION..241
7.1.253 OPTION_DEBUG_EDOSROM OPTION ...241
7.1.254 OPTION_DEBUG_CHIPSET OPTION...241
7.1.255 OPTION_FLOPPY_SEEK OPTION..242

x EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

7.1.256 OPTION_FLOPPY_DMA OPTION ..242
7.1.257 OPTION_FLOPPY_82077 OPTION..243
7.1.258 OPTION_FLOPPY_WATCHIO OPTION...244
7.1.259 OPTION_FLOPPY_FAST_POLL OPTION..244
7.1.260 OPTION_FLOPPY_POLL_ERRORS OPTION ..244
7.1.261 OPTION_FLOPPY_144_ONLY OPTION...245
7.1.262 OPTION_IDE_RESET OPTION..245
7.1.263 OPTION_IDE_SEEK OPTION..246
7.1.264 OPTION_IDE_DISABLE_INTS OPTION ..246
7.1.265 OPTION_IDE_SLOWDOWN OPTION ..247
7.1.266 OPTION_IDE_POLLED OPTION...247
7.1.267 OPTION_IDE_AUTODETECT OPTION ...247
7.1.268 OPTION_IDE_LBA OPTION..248
7.1.269 OPTION_IDE_CHS OPTION ..249
7.1.270 OPTION_IDE_LBACMD OPTION...249
7.1.271 OPTION_IDE_BYTE_IO OPTION ...250
7.1.272 OPTION_IDE_QUICK_DETECT OPTION ..250
7.1.273 OPTION_BOOT_BEEP OPTION..250
7.1.274 OPTION_ BOOT_QUICK OPTION ..251
7.1.275 OPTION_ BOOT_PRESERVE_WARM OPTION..251
7.1.276 OPTION_ BOOT_WARM_DELAY OPTION ..252
7.1.277 OPTION_ CON_REDIR_WAIT OPTION...252
7.1.278 OPTION_ CON_REDIR_DISABLE OPTION ..252
7.1.279 OPTION_ CON_REDIR_CANCEL OPTION ...253
7.1.280 OPTION_ CON_REDIR_AUTO OPTION ..253
7.1.281 OPTION_RTC_CMOS OPTION ...254
7.1.282 OPTION_RTC_72421 OPTION...254

7.2 PARAMETERS FOUND IN CONFIG.INC ...254
7.2.1 BIOS_DATE PARAMETER..255
7.2.2 BIOS_NAME CONSTANT ...255
7.2.3 BIOS_RESERVED CONSTANT ..255
7.2.4 CPU_TYPE PARAMETER..256
7.2.5 CPU_MHZ PARAMETER...256
7.2.6 CONFIG_BOARD_VERSION PARAMETER..257
7.2.7 CONFIG_POWER_ON_DELAY PARAMETER..257
7.2.8 CONFIG_CPU_DATA_BYTES PARAMETER ...258
7.2.9 CONFIG_CS_DATA_BYTES PARAMETER ..258
7.2.10 CONFIG_BOARD_DATA_BYTES PARAMETER ...259
7.2.11 CONFIG_MAX_CMOS_LOCATIONS PARAMETER..259
7.2.12 CONFIG_START_BOARD_CMOS PARAMETER...259
7.2.13 CONFIG_START_CMOS_CACHE PARAMETER ...260
7.2.14 CONFIG_CMOS_INDEX PARAMETER ...261
7.2.15 CONFIG_CMOS_DATA PARAMETER ..261
7.2.16 CONFIG_DEFAULT_RTC PARAMETER...262
7.2.17 CONFIG_CMOS_BOOT_0 PARAMETER...262
7.2.18 CONFIG_CMOS_BOOT_1 PARAMETER...263
7.2.19 CONFIG_CMOS_BOOT_2 PARAMETER...263
7.2.20 CONFIG_CMOS_BOOT_3 PARAMETER...264
7.2.21 CONFIG_CMOS_BOOT_4 PARAMETER...265
7.2.22 CONFIG_CMOS_BOOT_5 PARAMETER...266

Contents EMBEDDED BIOS Adaptation Guide xi

General Software EMBEDDED BIOS Adaptation Guide

7.2.23 CONFIG_CMOS_FLOPPY_0 PARAMETER...266
7.2.24 CONFIG_CMOS_FLOPPY_1 PARAMETER...267
7.2.25 CONFIG_CMOS_FLOPPY_2 PARAMETER...268
7.2.26 CONFIG_CMOS_FLOPPY_3 PARAMETER...268
7.2.27 CONFIG_CMOS_IDE_0 PARAMETER...269
7.2.28 CONFIG_CMOS_IDE_1 PARAMETER...271
7.2.29 CONFIG_CMOS_IDE_2 PARAMETER...271
7.2.30 CONFIG_CMOS_IDE_3 PARAMETER...272
7.2.31 CONFIG_CMOS_IDE0_CYL PARAMETER...273
7.2.32 CONFIG_CMOS_IDE0_HDS PARAMETER...273
7.2.33 CONFIG_CMOS_IDE0_SPT PARAMETER..274
7.2.34 CONFIG_CMOS_IDE1_CYL PARAMETER...274
7.2.35 CONFIG_CMOS_IDE1_HDS PARAMETER...275
7.2.36 CONFIG_CMOS_IDE1_SPT PARAMETER..275
7.2.37 CONFIG_CMOS_IDE2_CYL PARAMETER...276
7.2.38 CONFIG_CMOS_IDE2_HDS PARAMETER...276
7.2.39 CONFIG_CMOS_IDE2_SPT PARAMETER..277
7.2.40 CONFIG_CMOS_IDE3_CYL PARAMETER...277
7.2.41 CONFIG_CMOS_IDE3_HDS PARAMETER...278
7.2.42 CONFIG_CMOS_IDE3_SPT PARAMETER..278
7.2.43 CONFIG_CMOS_ASSIGN_A PARAMETER ..279
7.2.44 CONFIG_CMOS_ASSIGN_B PARAMETER ..279
7.2.45 CONFIG_CMOS_ASSIGN_C PARAMETER ..280
7.2.46 CONFIG_CMOS_ASSIGN_D PARAMETER ..280
7.2.47 CONFIG_CMOS_ASSIGN_E PARAMETER...281
7.2.48 CONFIG_CMOS_ASSIGN_F PARAMETER...281
7.2.49 CONFIG_CMOS_ASSIGN_G PARAMETER ..282
7.2.50 CONFIG_CMOS_ASSIGN_H PARAMETER ..283
7.2.51 CONFIG_CMOS_ASSIGN_I PARAMETER..283
7.2.52 CONFIG_CMOS_ASSIGN_J PARAMETER..284
7.2.53 CONFIG_CMOS_ASSIGN_K PARAMETER ..284
7.2.54 CONFIG_CMOS_TYPEMATIC_DELAY PARAMETER ...285
7.2.55 CONFIG_CMOS_TYPEMATIC_RATE PARAMETER ..285
7.2.56 CONFIG_CMOS_FLOPPY_RETRY PARAMETER..286
7.2.57 CONFIG_CMOS_EQUIP PARAMETER..287
7.2.58 CONFIG_BOOT_ATTEMPT PARAMETER ...287
7.2.59 CONFIG_WAIT_8042 PARAMETER ..287
7.2.60 CONFIG_WAIT_8042_INIT PARAMETER...288
7.2.61 CONFIG_SETTLE_8042 PARAMETER ..288
7.2.62 CONFIG_WAIT_COUNT PARAMETER...288
7.2.63 CONFIG_WAIT_LPT PARAMETER ...289
7.2.64 CONFIG_WAIT_IDE_INIT PARAMETER..289
7.2.65 CONFIG_WAIT_IDE_IO PARAMETER..290
7.2.66 CONFIG_WAIT_PROGRESS_COM PARAMETER ...290
7.2.67 CONFIG_SERIAL_TIMEOUT PARAMETER...290
7.2.68 CONFIG_PARALLEL_TIMEOUT PARAMETER ..291
7.2.69 CONFIG_POST_PROGRESS_PORT PARAMETER...291
7.2.70 CONFIG_POST_PROGRESS_COM PARAMETER..291
7.2.71 CONFIG_POST_PROGRESS_BAUD PARAMETER..292
7.2.72 CONFIG_MFG_PROGRESS_PORT PARAMETER..292

xii EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

7.2.73 CONFIG_MAX_LOW_MEMORY PARAMETER ..293
7.2.74 CONFIG_TESTBASE_SIZE PARAMETER...293
7.2.75 CONFIG_MAX_EXT_MEMORY PARAMETER..294
7.2.76 CONFIG_EXTRA_SEGMENT PARAMETER...294
7.2.77 CONFIG_FSINIT_SEGMENT PARAMETER..294
7.2.78 CONFIG_DEFAULT_EQUIP_BYTE PARAMETER ..295
7.2.79 CONFIG_VIDEO_ROM_SCAN PARAMETER...295
7.2.80 CONFIG_LOW_ROM_SCAN PARAMETER..295
7.2.81 CONFIG_HIGH_ROM_SCAN PARAMETER ...296
7.2.82 CONFIG_ROM_SCAN_INTERVAL PARAMETER ...297
7.2.83 CONFIG_MINI_DOS_SCAN PARAMETER ...297
7.2.84 CONFIG_PCI_ROM_SHADOW_START PARAMETER ...298
7.2.85 CONFIG_VIDEO_SEG_GRAPHIC PARAMETER ...298
7.2.86 CONFIG_VIDEO_SEG_MONO PARAMETER...299
7.2.87 CONFIG_VIDEO_SEG_COLOR PARAMETER ...299
7.2.88 CONFIG_BEEP_LENGTH PARAMETER ...299
7.2.89 CONFIG_BEEP_CYCLE PARAMETER..300
7.2.90 CONFIG_BEEP_8254_TONE PARAMETER ..300
7.2.91 CONFIG_PCMCIA_IOBASE PARAMETER ...301
7.2.92 CONFIG_RFDDISK_KBBLKSIZE PARAMETER..301
7.2.93 CONFIG_FLASH_DATASEG PARAMETER..302
7.2.94 CONFIG_FLASH_CODESEG PARAMETER..302
7.2.95 CONFIG_PAGED_MEM_SEG PARAMETER...303
7.2.96 CONFIG_VPP_TIMEOUT_IN_TICKS PARAMETER..303
7.2.97 CONFIG_PCI_ROM_MAP PARAMETER...304
7.2.98 CONFIG_PCI_MEM_AVAIL PARAMETER...304
7.2.99 CONFIG_PCI_IO_PORT_BASE PARAMETER ..305
7.2.100 CONFIG_PCI_IO_ALLOC PARAMETER ...306
7.2.101 CONFIG_PCI_IO_TMP_TBL_SEG PARAMETER ...306
7.2.102 CONFIG_PCI_BM_OFFSET PARAMETER..306
7.2.103 CONFIG_PCI_MMIO_AVAIL PARAMETER ...307
7.2.104 CONFIG_PCI_LATENCY PARAMETER ..307
7.2.105 CONFIG_PCI_IRQ_BITMAP PARAMETER...307
7.2.106 CONFIG_PS2_MOUSE_IRQ PARAMETER..308
7.2.107 CONFIG_PS2_MOUSE_LOOP PARAMETER..308
7.2.108 CONFIG_IDE_PORT_BASE PARAMETER..308
7.2.109 CONFIG_IDE_PORT_ALT_STATUS PARAMETER ...309
7.2.110 CONFIG_IDE_PORT_CTRL PARAMETER..309
7.2.111 LPT1_BASE PARAMETER ..309
7.2.112 LPT2_BASE PARAMETER ..310
7.2.113 LPT3_BASE PARAMETER ..310
7.2.114 COM1_BASE PARAMETER ..310
7.2.115 COM2_BASE PARAMETER ..311
7.2.116 COM3_BASE PARAMETER ..311
7.2.117 COM4_BASE PARAMETER ..311
7.2.118 COM1_INIT PARAMETER...312
7.2.119 COM2_INIT PARAMETER...312
7.2.120 COM3_INIT PARAMETER...312
7.2.121 COM4_INIT PARAMETER...313
7.2.122 MFG_COM_BASE PARAMETER..313

Contents EMBEDDED BIOS Adaptation Guide xiii

General Software EMBEDDED BIOS Adaptation Guide

7.2.123 MFG_INT_VECT PARAMETER..314
7.2.124 CONFIG_MFG_BAUD PARAMETER...314
7.2.125 MFG_EOI_PORT PARAMETER ..315
7.2.126 MFG_EOI_CMD PARAMETER ...315
7.2.127 CONFIG_MFG_BUFSIZE PARAMETER ..316
7.2.128 CONFIG_MFG_CBSIZE PARAMETER ..316
7.2.129 CONFIG_MFG_TIMEOUT PARAMETER ..317
7.2.130 CONFIG_CON_REDIR_STD PARAMETER...317
7.2.131 CONFIG_CON_REDIR_DEBUG PARAMETER...318
7.2.132 CONFIG_CON_REDIR_SETUP PARAMETER ..318
7.2.133 BIOS_HDWR PARAMETER ..319
7.2.134 BIOS_HDWR_SUB PARAMETER...320
7.2.135 DEBUG_CMDBUF_LEN PARAMETER ...320
7.2.136 DEBUG_MAX_BREAKPOINTS PARAMETER ...321
7.2.137 DEBUG_MAX_BKPT_CMD_LEN PARAMETER ...321
7.2.138 CONFIG_WINCE_ENTRY PARAMETER ..321
7.2.139 CONFIG_WINCE_VIDEO PARAMETER ...322
7.2.140 CONFIG_WINCE_PORT PARAMETER..322
7.2.141 CONFIG_WINCE_BAUD PARAMETER ..323
7.2.142 CONFIG_WINCE_PCI PARAMETER..323
7.2.143 CONFIG_CFGBOX_MONO_ATTRIB PARAMETER ..323
7.2.144 CONFIG_CFGBOX_COLOR_ATTRIB PARAMETER...324
7.2.145 CONFIG_DELAY_ADD PARAMETER...324
7.2.146 CONFIG_DELAY_MULTIPLY PARAMETER ...324
7.2.147 CONFIG_DELAY_IO PARAMETER ...325
7.2.148 CONFIG_SPLASH_VMODE PARAMETER ...325
7.2.149 CONFIG_SPLASH_WBYTES PARAMETER ...326
7.2.150 CONFIG_SPLASH_HEIGHT PARAMETER ...326
7.2.151 CONFIG_SPLASH_COLORS PARAMETER ..327
7.2.152 CONFIG_SPLASH_SEG PARAMETER ..327
7.2.153 CONFIG_SPLASH_BOOTS PARAMETER...328
7.2.154 SPLASH_TABLE TABLE...329
7.2.155 POWER_DEVID (POWER MANAGEMENT) TABLE..330
7.2.156 MEDIA_REGION (MEDIA MANAGEMENT) TABLE...332
7.2.157 FILE_SYSTEM (INT 13H DRIVE MANAGEMENT) TABLE...334
7.2.158 LOAD_IMAGE (WINDOWS CE BOOTABILITY) TABLE...336
7.2.159 PCI_ROM CONFIGURATION TABLE ...337
7.2.160 RELOCATE_FEATURE CONFIGURATION TABLE..338

STEP-BY-STEP BIOS ADAPTATION .. 341

8.1 THE PROJECT CONCEPT ..341
8.2 SELECTING THE BEST STARTING POINT...344
8.3 DETERMINING WHAT NEEDS TO BE CUSTOMIZED ..345

8.3.1 PROJECT FILE SYMBOL OVERRIDES..345
8.3.2 GENERAL PURPOSE PACKAGE PIN ASSIGNMENTS ..345
8.3.3 DEFINING POWER CONTROL ...345
8.3.4 WATCHDOG TIMER ...346
8.3.5 PCI INTERRUPT MAPPING ...346

xiv EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

8.3.6 SUPER I/O PROGRAMMING..346
8.4 BUILDING THE BIOS ..347
8.5 GETTING THROUGH POST..348

8.5.1 USING THE SPEAKER TO REPORT POST FAILURES...348
8.5.2 USING POST CODES TO REPORT POST FAILURES...348
8.5.3 USING A SERIAL PORT TO REPORT POST FAILURES ..348
8.5.4 USING THE GRAPHICAL POST TEST ICONS ..349
8.5.5 ATTEMPT TO BOOT AN OPERATING SYSTEM (DOS) ...349
8.5.6 WHEN NOTHING HAPPENS349

PART II .. 351

BIOS FEATURES ... 351

THE INTEGRATED BIOS DEBUGGER .. 353

9.1 HOW TO USE THE DEBUGGER ...353
9.2 DEBUGGER COMMAND SYNTAX..354

9.2.1 OPERAND TYPES ...354
9.2.2 EXPRESSIONS ..354
9.2.3 ADDRESSES ...355

9.3 COMMAND REFERENCE ...356
9.3.1 ? COMMAND..356
9.3.2 + COMMAND ...356
9.3.3 - COMMAND ..357
9.3.4 BC COMMAND ..357
9.3.5 BIOSDATA COMMAND..357
9.3.6 BL COMMAND...358
9.3.7 BP COMMAND...358
9.3.8 CIS COMMAND..359
9.3.9 CONSOLE COMMAND ...359
9.3.10 CSR COMMAND ..360
9.3.11 CSW COMMAND ...361
9.3.12 D COMMAND...361
9.3.13 DA20 COMMAND..362
9.3.14 DB COMMAND ..362
9.3.15 DCACHE COMMAND ...363
9.3.16 DD COMMAND..363
9.3.17 DW COMMAND ...364
9.3.18 E COMMAND ...364
9.3.19 EA20 COMMAND ..365
9.3.20 ECACHE COMMAND..365
9.3.21 EFL COMMAND...365
9.3.22 G COMMAND...366
9.3.23 HELP COMMAND..366

Contents EMBEDDED BIOS Adaptation Guide xv

General Software EMBEDDED BIOS Adaptation Guide

9.3.24 I COMMAND ..367
9.3.25 ID COMMAND..367
9.3.26 IW COMMAND...367
9.3.27 LFL COMMAND...368
9.3.28 MASK COMMAND ..368
9.3.29 MODE COMMAND..369
9.3.30 O COMMAND...369
9.3.31 OD COMMAND..370
9.3.32 OW COMMAND ...370
9.3.33 PCID COMMAND...371
9.3.34 PCIR COMMAND...371
9.3.35 PCIRB COMMAND ..372
9.3.36 PCIRW COMMAND ...372
9.3.37 PCIRD COMMAND ..373
9.3.38 PCIW COMMAND..374
9.3.39 PCIWB COMMAND ...374
9.3.40 PCIWW COMMAND ..375
9.3.41 PCIWD COMMAND...376
9.3.42 R COMMAND ...376
9.3.43 R16 COMMAND ...377
9.3.44 R32 COMMAND ...377
9.3.45 R32X COMMAND ..377
9.3.46 RC COMMAND ..378
9.3.47 RD COMMAND ..378
9.3.48 RDMSR COMMAND..379
9.3.49 REBOOT COMMAND..379
9.3.50 RFL COMMAND ..380
9.3.51 SFL COMMAND...381
9.3.52 SIOR COMMAND...381
9.3.53 SIOW COMMAND..382
9.3.54 SO COMMAND...382
9.3.55 T COMMAND ...383
9.3.56 TIME COMMAND..383
9.3.57 TORAM COMMAND ...384
9.3.58 TOROM COMMAND ...385
9.3.59 U COMMAND...385
9.3.60 U16 COMMAND...386
9.3.61 U32 COMMAND...386
9.3.62 UFL COMMAND ..387
9.3.63 V COMMAND...387
9.3.64 WATCH COMMAND ...388
9.3.65 WC COMMAND ...389
9.3.66 WCOMX COMMAND...389
9.3.67 WD COMMAND ...390
9.3.68 WFL COMMAND ...390
9.3.69 WP COMMAND..391
9.3.70 WRMSR COMMAND...391

9.4 PRINTF OUTPUT FORMATTING MACRO...392
9.4.1 LITERAL SPECIFICATIONS ...393
9.4.2 FORMAT SPECIFICATIONS ...393

xvi EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

9.4.2.1 $c Format Specification ...394
9.4.2.2 $b Format Specification ...394
9.4.2.3 $x Format Specification ...394
9.4.2.4 $u Format Specification ...395
9.4.2.5 $d Format Specification ...395
9.4.2.6 $lx Format Specification ..395
9.4.2.7 $lu Format Specification ..395
9.4.2.8 $ld Format Specification ..395
9.4.2.9 $s Format Specification..396
9.4.2.10 s Format Specification..397
9.4.2.11 $s[n] Format Specification...397

THE BIOS POST INTERFACE .. 399

10.1 LEGACY POST INTERFACE ...399
10.1.1 POST MESSAGES ..399
10.1.2 CRITICAL ERRORS ...400
10.1.3 SOFT ERRORS ..400
10.1.4 CONSOLE REDIRECTION ..401

10.2 GRAPHICAL POST INTERFACE...401
10.2.1 SPLASH SCREENS ..402
10.2.2 POST PROGRESS ICONS ..402
10.2.3 STILL AND ANIMATED BITMAPS ...403
10.2.4 CONFIGURATION ...403

10.2.4.1 The SPLASH_TABLE Table...403
10.2.4.2 Graphical Resources...405
10.2.4.3 Creating Bitmaps and Icons ...406
10.2.4.4 Creating Timed Sequences...408
10.2.4.5 Configuring the Graphics Driver Software ..408

PCI SUBSYSTEM ... 409

11.1 OVERVIEW ..409
11.2 PCI SERVICES...410
11.3 THE 32-BIT PCI BUILD PROCESS..410
11.4 CONFIGURING PCI IN THE PROJECT FILE ...412
11.5 CONFIGURING PCI IN THE BOARD PERSONALITY MODULE...413

11.5.1 PCI INTERRUPT ROUTING TABLE..413
11.5.2 BOARD PERSONALITY MODULE ROUTINES...415
11.5.3 CHIPSET PERSONALITY MODULE ROUTINES...415

DISK FILE SYSTEM MANAGEMENT .. 417

12.1 FILE SYSTEM CONTROL LAYER..417
12.1.1 FSCL ARCHITECTURE...418
12.1.2 FILE SYSTEM TYPES..418
12.1.3 FILE_SYSTEM TABLE ..419

Contents EMBEDDED BIOS Adaptation Guide xvii

General Software EMBEDDED BIOS Adaptation Guide

12.1.4 FSCL DATA STRUCTURES...420
12.1.4.1 FS_BASE Structure..421
12.1.4.2 FS_UNIT Structure ..421
12.1.4.3 FS_PACKET Structure ..422

12.1.5 FSHLP API ...423
12.1.5.1 FsHlpInit Function ...424
12.1.5.2 FsHlpFind Function..424

12.2 FILE SYSTEM DRIVERS ..425
12.2.1 FSD ARCHITECTURE...425
12.2.2 FSD ENTRYPOINT ...426

12.3 FLOPPY DISK DRIVE SUPPORT ..428
12.3.1 ENABLING FLOPPY DISK SUPPORT IN THE BUILD...428
12.3.2 CONFIGURING FLOPPY DISKS IN SETUP ..428
12.3.3 TUNING THE FLOPPY DISK DRIVER...429

12.3.3.1 82077 FIFOs...429
12.3.3.2 Seek During Boot ...429
12.3.3.3 Debugging Polled I/O...429
12.3.3.4 DMA or Polled Data Transfers ..429

12.4 HARD DISK (IDE/ATA) SUPPORT...430
12.4.1 ENABLING IDE/ATA DISK SUPPORT IN THE BUILD ...430
12.4.2 CONFIGURING IDE/ATA DISKS IN SETUP...431
12.4.3 TUNING THE IDE/ATA DISK DRIVER ...431

12.4.3.1 Drive Autodetection ...431
12.4.3.2 Drive Geometry Translation (LBA and CHS) ...431
12.4.3.3 Polled .vs. Interrupt-Driven I/O Completion..431
12.4.3.4 Disabling Interrupts During Transfers ...432
12.4.3.5 Slowing Down I/O Transfers ...432
12.4.3.6 Drive Reset During POST..432
12.4.3.7 Drive Seek During POST ...432

12.5 “EL TORITO” CD-ROM SUPPORT..432
12.5.1 ENABLING CD-ROM SUPPORT IN THE BUILD ..432
12.5.2 CONFIGURING CD-ROM DRIVES IN SETUP ..433

12.6 EMULATING DISKS WITH ROM..433
12.6.1 ENABLING THE ROM DISK SUPPORT OPTIONS...434
12.6.2 ENABLING THE ROM DISK IN SETUP ..434
12.6.3 BUILDING A ROM DISK IMAGE...435
12.6.4 TROUBLESHOOTING THE ROM DISK ..436
12.6.5 USING PAGED OR WINDOWED ROM DISKS..439

12.7 EMULATING DISKS WITH RAM..440
12.7.1 ENABLING THE RAM DISK SUPPORT OPTIONS...440
12.7.2 ENABLING THE RAM DISK IN SETUP ..441
12.7.3 INITIALIZING THE RAM DISK..441
12.7.4 TROUBLESHOOTING THE RAM DISK ..441

12.8 EMULATING DISKS WITH FLASH ..444
12.8.1 ENABLING THE RFD SUPPORT OPTIONS ...445
12.8.2 PROTECTED MODE .VS. WINDOWING ACCESS TO FLASH ...446
12.8.3 ENABLING THE RFD IN SETUP ..447
12.8.4 TESTING THE FLASH ARRAY ...447
12.8.5 INITIALIZING THE RFD (LOW-LEVEL FORMATTING) ..450
12.8.6 USING DOS TO FDISK A HARD-FORMATTED RFD..451

xviii EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

12.8.7 USING DOS TO FORMAT THE RFD...451
12.8.8 USING MANUFACTURING MODE TO FORMAT THE RFD..452

DRIVERS FOR FLASH AND OTHER MEDIA ... 453

13.1 MEDIA CONTROL LAYER...453
13.1.1 MCL ARCHITECTURE..454

13.1.1.1 Media Types...454
13.1.1.2 Media Addressing ..455
13.1.1.3 Vpp Control..457
13.1.1.4 Interrupt Latency ..457

13.1.2 MCL ENTRYPOINTS ..458
13.1.2.1 MediaPwrLevel Entrypoint ..458
13.1.2.2 MediaLockBlock Procedure...459
13.1.2.3 MediaStartErase Procedure..460
13.1.2.4 MediaEraseComplete Procedure ..460
13.1.2.5 MediaReadBlock Procedure...461
13.1.2.6 MediaWriteBlock Procedure..461
13.1.2.7 MediaQuery Procedure ..462

13.1.3 MTDHLP API...463
13.1.3.1 MtdHlpToProt API Function ...464
13.1.3.2 MtdHlpToReal API Function...464
13.1.3.3 MtdHlpMapAddress API Function ..465
13.1.3.4 MtdHlpMapReal API Function..465
13.1.3.5 MtdHlpQueryRegion API Function ...466
13.1.3.6 MtdHlpDelay API Function ...466
13.1.3.7 MtdHlpEnableVpp API Function...466
13.1.3.8 MtdHlpDisableVpp API Function ...467
13.1.3.9 MtdHlpRead API Function ..468

13.2 MEDIA TECHNOLOGY DRIVERS (MTDS)..468
13.2.1 MTD ARCHITECTURE ...468
13.2.2 MTD ENTRYPOINTS..469

13.2.2.1 MTD Request Entrypoint ...469
13.2.2.2 MTD Power Management Entrypoint..470

13.2.3 DISPATCHING TO FUNCTION HANDLERS...470
13.2.4 PROTECTED-MODE AND REAL-MODE CONTROL PATHS...471
13.2.5 ADDING A CUSTOM MTD TO THE BOARD PERSONALITY MODULE..473
13.2.6 ADDING WINDOWING TO THE BOARD PERSONALITY MODULE ..474
13.2.7 MTD I/O REQUEST INTERFACE ..474

13.2.7.1 LockBlock MTD Procedure ...474
13.2.7.2 StartErase MTD Procedure ..475
13.2.7.3 EraseComplete MTD Procedure ..476
13.2.7.4 ReadBlock MTD Procedure ...476
13.2.7.5 WriteBlock MTD Procedure ..477
13.2.7.6 Query MTD Procedure...478
13.2.7.7 Init MTD Procedure ...479

13.3 MEDIA_REGION ADDRESSING TABLE ..479
13.4 COMMON FLASH DEVICE LAYOUT ...480

Contents EMBEDDED BIOS Adaptation Guide xix

General Software EMBEDDED BIOS Adaptation Guide

MANUFACTURING MODE ... 483

14.1 ENTERING MANUFACTURING MODE ..483
14.2 HOST PC OPERATION ..484

14.2.1 SAMPLE MANUFACTURING MODE HOST PROGRAM..484
14.2.2 MANUFACTURING MODE DRIVE REDIRECTION ..485

14.3 HOST-SIDE MANUFACTURING MODE FUNCTIONS...486
14.3.1 MSGINITIALIZE FUNCTION ..486
14.3.2 MSGDEINITIALIZE FUNCTION ...487
14.3.3 MSGPINGTARGET FUNCTION ..487
14.3.4 MSGRECEIVE FUNCTION...487
14.3.5 MSGSEND FUNCTION ..488
14.3.6 MSGBOOTTARGET FUNCTION...488
14.3.7 MSGGETLASTPOSTCODE FUNCTION ..489
14.3.8 MSGCHECKSUM FUNCTION...489
14.3.9 MSGTESTMEMORY FUNCTION..489
14.3.10 MSGREADFLASH FUNCTION ...490
14.3.11 MSGWRITEFLASH FUNCTION..491
14.3.12 MSGREADBUFFER FUNCTION ...491
14.3.13 MSGWRITEBUFFER FUNCTION ...492
14.3.14 MSGLOCKFLASH FUNCTION ...493
14.3.15 MSGERASEFLASH FUNCTION..493
14.3.16 MSGINT13 FUNCTION ...494

ADVANCED POWER MANAGEMENT ... 497

15.1 APM SYSTEM MODEL ...497
15.2 APM SOFTWARE LAYERS..498
15.3 APM BIOS INTERFACE...499
15.4 POWER MANAGEMENT SUBSYSTEM (PMS) ...500
15.4.1 POWER_DEVID DEVICE TREE..500
15.4.2 DEVICE POWER CONTROL ENTRYPOINTS...501

SETUP AND DIAGNOSTICS SYSTEM .. 503

16.1 SETUP BUILD OPTIONS ..503
16.2 ENTERING SETUP..504
16.3 SETUP SCREENS..504
16.3.1 BASIC CMOS CONFIGURATION SCREEN...505

16.3.1.1 CONFIGURING DRIVE ASSIGNMENTS ...505
16.3.1.2 CONFIGURING FLOPPY DRIVE TYPES...506
16.3.1.3 CONFIGURING IDE DRIVE TYPES ..506
16.3.1.4 CONFIGURING BOOT ACTIONS ...506

16.3.2 CUSTOM CONFIGURATION SETUP SCREEN ...507
16.3.3 SHADOW CONFIGURATION SETUP SCREEN ...508
16.3.4 STANDARD DIAGNOSTIC ROUTINES SETUP SCREEN...508
16.3.5 START SYSTEM BIOS DEBUGGER SETUP SCREEN ...509
16.3.6 START RS232 MANUFACTURING LINK SETUP SCREEN..509

xx EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

16.3.7 OTHER PRE-BOOT SETUP SCREENS...510

POWER ON SELF TEST (POST) .. 513

17.1 INITIALIZATION WITHOUT A STACK OR RAM ..513
17.1.1 STACK-BASED PROCEDURES...514
17.1.2 REGISTER-BASED COROUTINES ..514
17.1.3 HYBRID PROCEDURES WITH DUAL LINKAGE ...514

17.2 EARLY INITIALIZATION PROCESS ...515
17.2.1 BOARDINIT0 PROCESSING...515
17.2.2 POSTTESTRESETVALUE PROCESSING...515
17.2.3 POSTCODECOMINIT PROCESSING ...515
17.2.4 BOARDINIT1 PROCESSING...516
17.2.5 MAIN POST PROCESSING ...516
17.2.6 BOARDMEMCONFIG PROCESSING...516
17.2.7 FURTHER POST PROCESSING ...517
17.2.8 BOARDINIT4 PROCESSING...517
17.2.9 BOARDINIT6 PROCESSING...517
17.2.10 DEVICE INITIALIZATION PROCESSING...518
17.2.11 FINAL POST, BOARDINIT8 PROCESSING ..518

17.3 POST CODES..518
17.3.1 SPEAKER POST CODES...518
17.3.2 VIDEO POST MESSAGES...519

CPU PERSONALITY MODULES.. 521

18.1 HOW CPM OVERRIDE ROUTINES WORK...521
18.2 HOW CPMS ARE PACKAGED IN FILES..522
18.3 OTHER CPU PERSONALITY MODULES...522
18.4 THE CPM INTERFACE ...522

18.4.1 CPUBEEP ROUTINE..523
18.4.2 CPUDISABLEA20 HYBRID...524
18.4.3 CPUDISABLECACHE PROCEDURE ...524
18.4.4 CPUDISABLEDMACTRL ROUTINE ...525
18.4.5 CPUDISABLEINTCTRL HYBRID ...525
18.4.6 CPUDISABLEWATCHDOG PROCEDURE ...526
18.4.7 CPUENABLEA20 HYBRID..526
18.4.8 CPUENABLECACHE PROCEDURE ..527
18.4.9 CPUENABLEAPM PROCEDURE ..528
18.4.10 CPUENABLEDMACTRL ROUTINE ..528
18.4.11 CPUENABLEINTCTRL HYBRID ..529
18.4.12 CPUENABLEWATCHDOG PROCEDURE ..529
18.4.13 CPUEOI PROCEDURE ...530
18.4.14 CPUEXTRWCTRL PROCEDURE..530
18.4.15 CPUFLOPPYDMA PROCEDURE ..531
18.4.16 CPUGETPROCESSORNAME PROCEDURE ...532
18.4.17 CPUGETPROCESSORTYPE PROCEDURE ..532
18.4.18 CPUHOOKVECTORS PROCEDURE..533

Contents EMBEDDED BIOS Adaptation Guide xxi

General Software EMBEDDED BIOS Adaptation Guide

18.4.19 CPUINIT0 ROUTINE ...533
18.4.20 CPUINIT1 ROUTINE ...534
18.4.21 CPUINITDMA ROUTINE ...535
18.4.22 CPUINITINTCTRL ROUTINE ...535
18.4.23 CPUINITPARALLEL ROUTINE...536
18.4.24 CPUINITREFRESH ROUTINE...536
18.4.25 CPUINITSERBIOS PROCEDURE ..537
18.4.26 CPUINITSERIAL ROUTINE..538
18.4.27 CPUINITTIMER ROUTINE...538
18.4.28 CPUINITWATCHDOG ROUTINE..539
18.4.29 CPUKICKWATCHDOG PROCEDURE...539
18.4.30 CPUPWRLVL PROCEDURE...540
18.4.31 CPUSERGETCH PROCEDURE...541
18.4.32 CPUSERGETSTATUS PROCEDURE ...541
18.4.33 CPUSERINIT PROCEDURE ..542
18.4.34 CPUSERINITEXT PROCEDURE ...543
18.4.35 CPUSERPUTCH PROCEDURE ...544
18.4.36 CPUSETFASTSPEED PROCEDURE ..545
18.4.37 CPUSETSLOWSPEED PROCEDURE...546
18.4.38 CPUSTARTDMA PROCEDURE ..546
18.4.39 CPUTESTSYNCIO ROUTINE ...547
18.4.40 CPUUNMASKINT PROCEDURE...547

CHIPSET PERSONALITY MODULES .. 549

19.1 HOW CSPM OVERRIDE ROUTINES WORK ..550
19.2 HOW CSPMS ARE PACKAGED IN FILES ...550
19.3 OTHER CHIPSET PERSONALITY MODULES ..551
19.4 THE CSPM INTERFACE ...551

19.4.1 CSASSIGNPCIIRQ PROCEDURE..551
19.4.2 CSDISABLEA20 PROCEDURE ..552
19.4.3 CSDISABLECACHE PROCEDURE..552
19.4.4 CSDISABLESHADOW PROCEDURE...553
19.4.5 CSDISABLEWATCHDOG PROCEDURE..553
19.4.6 CSDISPLAYCHIPSET PROCEDURE ...554
19.4.7 CSENABLEA20 PROCEDURE ...554
19.4.8 CSENABLEAPM PROCEDURE...555
19.4.9 CSENABLECACHE PROCEDURE...555
19.4.10 CSENABLEWATCHDOG PROCEDURE...556
19.4.11 CSGETPCIINFO PROCEDURE ...556
19.4.12 CSINIT0 ROUTINE..557
19.4.13 CSINIT1 ROUTINE..557
19.4.14 CSINITREFRESH ROUTINE ...558
19.4.15 CSINITWATCHDOG ROUTINE ..559
19.4.16 CSKICKWATCHDOG ROUTINE ..559
19.4.17 CSMAPADDRESS PROCEDURE ..560
19.4.18 CSMEMCONFIG ROUTINE ...561
18.4.19 CSPWRLVL PROCEDURE ...561
19.4.20 CSREADREG PROCEDURE ...562

xxii EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

19.4.21 CSREBOOT PROCEDURE..562
19.4.22 CSSETFASTSPEED PROCEDURE...563
19.4.23 CSSETSLOWSPEED PROCEDURE ...563
19.4.24 CSSHADOWAREA PROCEDURE ...564
19.4.25 CSSHADOWWRITECTL PROCEDURE ...565
19.4.26 CSTIMERTICK PROCEDURE...566
19.4.27 CSUNMAPADDRESS PROCEDURE ...566
19.4.28 CSWRITEREG PROCEDURE ...567

BOARD PERSONALITY MODULES ... 569

20.1 HOW BPM OVERRIDE ROUTINES WORK...569
20.2 HOW BPMS ARE PACKAGED IN FILES..570
20.3 OTHER BOARD PERSONALITY MODULES...570
20.4 THE BPM INTERFACE..571

20.4.1 BOARDAPMMODE PROCEDURE ..571
20.4.2 BOARDASSIGNPCIIRQ PROCEDURE...572
20.4.3 BOARDAUTOREDIRECT PROCEDURE ..572
20.4.4 BOARDBEEP ROUTINE...573
20.4.5 BOARDDELAYUSEC ROUTINE...573
20.4.6 BOARDDISABLEA20 HYBRID..574
20.4.7 BOARDDISABLECACHE PROCEDURE ..575
20.4.8 BOARDDISABLEDMACTRL ROUTINE ..575
20.4.9 BOARDDISABLEINTCTRL HYBRID ..576
20.4.10 BOARDDISABLESHADOW PROCEDURE ...576
20.4.11 BOARDDISABLETESTMODE PROCEDURE ...577
20.4.12 BOARDDISABLEWATCHDOG PROCEDURE ..577
20.4.13 BOARDDISABLEWRITES PROCEDURE ...578
20.4.14 BOARDENABLEA20 HYBRID...578
20.4.15 BOARDENABLEAPM PROCEDURE ...579
20.4.16 BOARDENABLECACHE PROCEDURE ...579
20.4.17 BOARDENABLEDMACTRL ROUTINE ...580
20.4.18 BOARDENABLEINTCTRL HYBRID ...580
20.4.19 BOARDENABLEPCIREGION PROCEDURE...581
20.4.20 BOARDENABLEWATCHDOG PROCEDURE ...582
20.4.21 BOARDENABLEWRITES PROCEDURE ..582
20.4.22 BOARDEOI PROCEDURE ..583
20.4.23 BOARDFLOPPYDMA PROCEDURE ...583
20.4.24 BOARDFSINIT PROCEDURE ...584
20.4.25 BOARDGETPCIINFO PROCEDURE ..585
20.4.26 BOARDHELP1 PROCEDURE ...585
20.4.27 BOARDHELP2 PROCEDURE ...586
20.4.28 BOARDIDEAUTODETECT PROCEDURE ..586
20.4.29 BOARDINIT0 ROUTINE ..587
20.4.30 BOARDINIT1 ROUTINE ..588
20.4.31 BOARDINIT4 PROCEDURE ...588
20.4.32 BOARDINIT6 PROCEDURE ...589
20.4.33 BOARDINIT8 PROCEDURE ...589
20.4.34 BOARDINITAPPROM ROUTINE ..590

Contents EMBEDDED BIOS Adaptation Guide xxiii

General Software EMBEDDED BIOS Adaptation Guide

20.4.35 BOARDINITDMA ROUTINE ..590
20.4.36 BOARDINITFIELDS PROCEDURE ..591
20.4.37 BOARDINITINTCTRL ROUTINE ..591
20.4.38 BOARDINITREFRESH ROUTINE..592
20.4.39 BOARDINITTIMER ROUTINE..593
20.4.40 BOARDINITWATCHDOG ROUTINE...593
20.4.41 BOARDKICKWATCHDOG PROCEDURE ..594
20.4.42 BOARDMAPADDRESS PROCEDURE...594
20.4.43 BOARDPCICONTROL PROCEDURE...595
20.4.44 BOARDPCIREADSCRATCH PROCEDURE..598
20.4.45 BOARDPCIWRITESCRATCH PROCEDURE ..599
20.4.46 BOARDPOSTCODECOM ROUTINE..599
20.4.47 BOARDPOSTCODECOMINIT ROUTINE...601
20.4.48 BOARDMEMCONFIG ROUTINE ..601
20.4.49 BOARDPWRLVL PROCEDURE..602
20.4.50 BOARDPOSTERROR ROUTINE ...603
20.4.51 BOARDREBOOT PROCEDURE...603
20.4.52 BOARDRESETCMOS ROUTINE ...604
20.4.53 BOARDSAVECMOS PROCEDURE ...604
20.4.54 BOARDSAVEFIELDS PROCEDURE..605
20.4.55 BOARDSETFASTSPEED PROCEDURE ...605
20.4.56 BOARDSETSLOWSPEED PROCEDURE..606
20.4.57 BOARDSETVIDEOMODE PROCEDURE...606
20.4.58 BOARDSIOREADREG PROCEDURE ..607
20.4.59 BOARDSIOWRITEREG PROCEDURE ..607
20.4.60 BOARDSHADOWAREA PROCEDURE ..608
20.4.61 BOARDTESTMODE PROCEDURE..608
20.4.62 BOARDTIMERTICK PROCEDURE ...609
20.4.63 BOARDUNMAPADDRESS PROCEDURE..609
20.4.64 BOARDUNMASKINT PROCEDURE..610

PART III .. 613

BIOS FUNCTION REFERENCE ... 615

21.1 INT 10H, VIDEO BIOS SERVICES ...615
21.1.1 SET VIDEO MODE (00H)..615
21.1.2 SET CURSOR SIZE (01H) ..616
21.1.3 SET CURSOR POSITION (02H) ..616
21.1.4 READ CURSOR POSITION (03H) ...617
21.1.5 READ LIGHT PEN POSITION (04H) ...617
21.1.6 SELECT VIDEO PAGE (05H) ...617
21.1.7 SCROLL UP WINDOW (06H) ..618
21.1.8 SCROLL DOWN WINDOW (07H)...618
21.1.9 READ CHAR/ATTR FROM SCREEN (08H)...619
21.1.10 WRITE CHAR/ATTR TO SCREEN (09H) ..619
21.1.11 WRITE CHARACTER TO SCREEN (0AH)..619

xxiv EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

21.1.12 SET COLOR PALETTE (0BH)...620
21.1.13 WRITE PIXEL (0CH) ...620
21.1.14 READ PIXEL (0DH)...620
21.1.15 WRITE TELETYPE MODE (0EH) ...621
21.1.16 RETURN VIDEO STATUS (0FH) ..621

21.2 INT 11H, EQUIPMENT LIST SERVICE..621
21.3 INT 12H, LOW MEMORY SIZE SERVICE...622
21.4 INT 13H, DISK SERVICES...622

21.4.1 RESET (00H) ..623
21.4.2 READ STATUS (01H) ..623
21.4.3 READ SECTORS (02H)..624
21.4.4 WRITE SECTORS (03H) ..624
21.4.5 VERIFY SECTORS (04H)...625
21.4.6 FORMAT TRACK (05H) ..625
21.4.7 READ DRIVE PARAMETERS (08H) ...626
21.4.8 INITIALIZE HARD DISK CONTROLLER (09H) ...626
21.4.9 READ LONG SECTORS (0AH) ...627
21.4.10 WRITE LONG SECTORS (0BH)..627
21.4.11 SEEK TO CYLINDER (0CH) ...628
21.4.12 RESET HARD DISK CONTROLLER (0DH)..628
21.4.13 TEST DRIVE READY (10H)...629
21.4.14 RECALIBRATE DRIVE (11H)...629
21.4.15 CONTROLLER DIAGNOSTIC (14H)..629
21.4.16 READ DRIVE TYPE (15H) ..630
21.4.17 DETECT MEDIA CHANGE (16H)...630
21.4.18 SET DISKETTE TYPE (17H) ..631
21.4.19 SET MEDIA TYPE FOR FORMAT (18H) ...631

21.5 INT 14H, SERIAL I/O SERVICES..632
21.5.1 INITIALIZE SERIAL PORT (00H) ...632
21.5.2 SEND CHARACTER (01H)...633
21.5.3 RECEIVE CHARACTER (02H) ...634
21.5.4 READ SERIAL PORT STATUS (03H)..634
21.5.5 EXTENDED INITIALIZE SERIAL PORT (04H)...635

21.6 INT 15H, GENERAL SERVICES ..636
21.6.1 QUERY PORT 92H A20 GATE CAPABILITY (24H)..636
21.6.2 KEYBOARD INTERCEPT UP-CALL (4FH) ..637
21.6.3 APM INSTALLATION CHECK (5300H) ...637
21.6.4 APM INTERFACE CONNECT (5301H) ..638
21.6.5 APM PROTECTED MODE 16-BIT INTERFACE CONNECT (5302H) ...638
21.6.6 APM PROTECTED MODE 32-BIT INTERFACE CONNECT (5303H) ...639
21.6.7 APM INTERFACE DISCONNECT (5304H) ...640
21.6.8 APM CPU IDLE (5305H)...640
21.6.9 APM CPU BUSY (5306H) ...641
21.6.10 APM SET POWER STATE (5307H) ...641
21.6.11 APM ENABLE/DISABLE APM FUNCTIONALITY (5308H) ...642
21.6.12 APM RESTORE APM POWER-ON DEFAULTS (5309H) ...643
21.6.13 APM GET POWER STATUS (530AH)..643
21.6.14 APM GET APM EVENT (530BH) ..644
21.6.15 SYSTEM REQUEST KEY (58H) ...644
21.6.16 WAIT FUNCTION (86H)..645

Contents EMBEDDED BIOS Adaptation Guide xxv

General Software EMBEDDED BIOS Adaptation Guide

21.6.17 MOVE EXTENDED MEMORY BLOCK (87H) ...645
21.6.18 EXTENDED MEMORY SIZE (88H)...646
21.6.19 SWITCH TO PROTECTED MODE (89H) ...646
21.6.20 DEVICE BUSY UP-CALL (90H) ..647
21.6.21 DEVICE INTERRUPT UP-CALL (91H)..648
21.6.22 READ/WRITE CMOS RAM CELL (A0H)...648
21.6.23 SET CONSOLE I/O REDIRECTION (A1H) ..649
21.6.24 GET EMBEDDED BIOS VERSION (A3H) ..649
21.6.27 RETURN SYSTEM CONFIGURATION (C0H) ..650
21.6.28 RETURN EXTENDED BIOS DATA AREA (C1H) ...650
21.6.29 PS/2 MOUSE REQUEST (C2H) ...650
21.6.30 WATCHDOG TIMER CONTROL (C3H) ..651
21.6.31 DEBUGGER BREAKPOINT (D0H)..652
21.6.32 FLASH PROGRAMMING (E0H)..652

21.7 INT 16H, KEYBOARD SERVICES..653
21.7.1 READ KEYBOARD INPUT (00H) ...653
21.7.2 RETURN KEYBOARD STATUS (01H) ..654
21.7.3 RETURN SHIFT FLAG STATUS (02H)..654
21.7.4 SET TYPEMATIC RATE (03H)...654
21.7.5 PUSH DATA TO KEYBOARD (05H) ...655
21.7.6 ENHANCED READ KEYBOARD (10H)...656
21.7.7 ENHANCED READ KEYBOARD STATUS (11H) ...656
21.7.8 ENHANCED READ KEYBOARD FLAGS (12H) ...656
21.7.9 SET CPU SPEED (F0H) ..657
21.7.10 GET CPU SPEED (F1H)..657
21.7.11 READ CACHE STATUS (F400H) ...658
21.7.12 ENABLE CACHE (F401H)...659
21.7.13 DISABLE CACHE (F402H)..659

21.8 INT 17H, PARALLEL I/O SERVICES ..660
21.8.1 WRITE CHARACTER (00H)...660
21.8.2 INITIALIZE PRINTER (01H)...660
21.8.3 READ PRINTER STATUS (02H) ...661

21.9 INT 1AH, TIME SERVICES..661
21.9.1 READ SYSTEM TIMER COUNT (00H) ...661
21.9.2 WRITE SYSTEM TIMER COUNT (01H)..662
21.9.3 READ REAL TIME CLOCK TIME (02H)...662
21.9.4 WRITE REAL TIME CLOCK TIME (03H) ...662
21.9.5 READ REAL TIME CLOCK DATE (04H) ..663
21.9.6 WRITE REAL TIME CLOCK DATE (05H) ..663
21.9.7 PCI SERVICES (B1H) ...664

PART IV .. 665

TROUBLESHOOTING ... 667

22.1 COMPILING, ASSEMBLING, & LINKING ...668
22.2 3RD-PARTY TECHNICAL SUPPORT ..669

xxvi EMBEDDED BIOS Adaptation Guide Contents

General Software EMBEDDED BIOS Adaptation Guide

CALLING INTEL CORPORATION ..670
CALLING MICROSOFT CORPORATION ..670
CALLING PARADIGM SYSTEMS...670
CALLING PHARLAP SOFTWARE..671

22.3 TECHNICAL SUPPORT FROM GENERAL SOFTWARE..671
22.3.1 SUPPORT BY EMAIL...672
22.3.2 SUPPORT BY FAX..672
22.3.3 SUPPORT BY PHONE ..672
22.3.4 REPRODUCING THE PROBLEM ...672
22.3.5 USING TECH SUPPORT REQUESTS (TSRS) ..673

22.4 ADVANCED TROUBLESHOOTING ...673
22.4.1 DIAGNOSING POST ...673
22.4.2 PCI ISSUES ..675
22.4.3 BOOTING ISSUES..676
22.4.4 RS-232 COMMUNICATIONS ISSUES ...676
22.4.5 CONSOLE I/O ISSUES...677
22.4.6 HARD DISK ISSUES ..677
22.4.7 V20, V25, V30, AND 80186 ISSUES..678

PRODUCT CHANGE NOTES .. 679

EMBEDDED BIOS DOCUMENTATION..679
EMBEDDED BIOS SOFTWARE..680

Glossary EMBEDDED BIOS Adaptation Guide i

General Software EMBEDDED BIOS Adaptation Guide

Conventions Used in This Manual

Glossary of Terms

186-EC A high integration CPU manufactured by Intel, consisting of a 186 core
with proprietary (non PC-standard) UARTs, DMA controllers, interrupt
controllers, and other peripherals in the same package.

386-EX A high integration CPU manufactured by Intel, consisting of a 386SX core
with additional UARTs, DMA controllers, interrupt controllers, and other
peripherals in the same package. Normally used with the RadiSys R300 or
R380 chipsets for PC/AT compatibility.

430HX A Pentium chipset manufactured by Intel, with PCI support, for PC
mainboards. Now bundled with Pentium Processors on a family of
mezzanine boards, the EMBMOD133 and EMBMOD166.

430TX A Pentium chipset manufactured by Intel, with PCI support, for laptop
mainboards with low power requirements. Bundled with Pentium CPUs in
families of mezzanine boards, the EMBMOD133/EMBMOD166, and
Mobile Modules.

440BX A Pentium II/Pentium III chipset manufactured by Intel, with PCI support,
for high-performance systems. Bundled with Pentium II, Pentium III, and
Celeron Processors in families of mezzanine boards.

810 A Pentium II/Pentium III chipset manufactured by Intel, with a new Hub
Link architecture, for high-performance systems.

840 A Pentium Pentium III chipset manufactured by Intel, with a new Hub
Link architecture, for high-performance multiprocessor systems.

Am186CC A high integration, 40Mhz CPU manufactured by AMD, consisting of a
186 core with proprietary (non PC-standard) UARTs, DMA controllers,
interrupt controllers, and other peripherals in the same package, especially
designed for the communications market.

Am186EM A high integration, 40Mhz CPU manufactured by AMD, consisting of a
186 core with proprietary (non PC-standard) UARTs, DMA controllers,
interrupt controllers, and other peripherals in the same package.

Am186ES A high integration, 40Mhz CPU manufactured by AMD, consisting of a
186 core with proprietary (non PC-standard) UARTs, DMA controllers,
interrupt controllers, and other peripherals in the same package.

API Application Programming Interface, a term for the architected system by
which clients of a software system communicate their requests and receive
information from a software component. There are many APIs provided
by EMBEDDED BIOS, documented in Chapter 21, that provide access to
BIOS-controlled devices and functions.

APM Advanced Power Management, a system-wide architecture that includes
the target hardware, system BIOS, operating system, and application.
EMBEDDED BIOS provides APM services to operating systems and

ii EMBEDDED BIOS Adaptation Guide Glossary

General Software EMBEDDED BIOS Adaptation Guide

applications, and in the process of serving APM requests, manipulates the
underlying hardware by calling functions in the BPM, CPM, and CSPM.

BIOStartTM The Windows-compatible rule-based expert system from General Software
that is used to create new BPMs, CPMs, CSPMs, Project files, and build
the BIOS. If the OEM does not have access to a Windows-based machine,
then these files may be created and edited manually with a text editor, and
the BIOS can be built using GSMAKE from the DOS prompt. BIOStart
provides a point-and-click interface with rule checking to help guide the
OEM through the BIOS configuration decisions.

BoardInit0 The BPM routine containing very early board-specific initialization.
Usually, the OEM does not need to create this routine in new BPMs for
custom targets.

BoardInit1 The BPM routine containing the bulk of board-specific initialization,
usually involving the loading of chipset and Super I/O registers with
default values, but may include identification of DRAM banks and their
geometries. Commonly, the OEM must create this routine in new BPMs
for custom targets.

BoardInit4 The BPM routine containing board-specific initialization that must occur
with RAM enabled, but before the video and keyboard are initialized.
Rarely used, but in some cases useful for downloading field-
programmable software into the keyboard or video controllers.

BoardInit6 The BPM routine containing board-specific initialization that must occur
with RAM enabled, and after the video and keyboard are initialized. This
is the routine commonly used by OEMs requiring the console I/O to be
redirected over a serial port based on the detection of a hardware shunt or
attached RS-232 cable.

BPM Board Personality Module, a set of source modules, including at minimum
one .ASM file and one .INC file, that implements zero, one, or more of the
architected functions documented in Chapter 20. The BPM contains
board-related code, such as Super I/O programming and some chipset or
high-integration CPU programming specific to a given board design, such
as the Intel EXPLR1 or EXPLR2 reference designs, or the AMD SC300,
SC310, SC400, or SC410 reference designs.

Build The process by which the source modules and configuration files are used
to form a binary file suitable for programming into a BIOS ROM. The
Build process may be performed entirely within BIOStart, or from the
DOS prompt with GSMAKE. The Build process requires invocation of
the Microsoft or Borland assembler, linker, and various tools from General
Software (see Chapter 4, Setting up Development Tools). There are two
parts to the Build process: the 16-bit BIOS build that generates a 64KB-
256KB .ABS file, and the 32-bit BIOS extensions build that creates 32-bit
components like the 32-bit directory services and 32-bit PCI code. When
the 32-bit build is performed, a utility called GSMERGE is used to merge
the .ABS file from the 16-bit BIOS build, together with any other .ABS
files such as VGA BIOS components, with the 32-bit BIOS components to
produce a final output file that may be programmed into the BIOS ROM.
Not all targets or projects may need to use the 32-bit build or GSMERGE
process—for example if no 32-bit PCI services are required.

Chipset One or more VLSI packages containing logic normally peripheral to a
CPU, but necessary for the control of an external bus (such as ISA, EISA,

Glossary EMBEDDED BIOS Adaptation Guide iii

General Software EMBEDDED BIOS Adaptation Guide

or PCI), DRAM (including refresh and bank geometry), cache control, and
other general hardware glue functions.

Console Redirection A feature of EMBEDDED BIOS that allows debugger, SETUP, POST,
and DOS keyboard and video I/O to be rerouted over an RS-232 serial
port. EMBEDDED BIOS provides for different redirection assignments
for the debugger, SETUP screen, and then all other console activities.

CE ReadyTM A special feature of EMBEDDED BIOS that can boot Windows CE on a
target directly from the pre-boot BIOS environment, without the need for
special 3rd-party loaders or intermediary operating systems.

CONFIG.INC An include file found in the INC directory that contains default symbol
definitions for many of the BIOS configuration parameters. This file was
modified directly by the OEM in prior versions of the BIOS, but is not
modified in versions beyond 4.0. See Chapter 7 for details about the
symbols found in this file.

CPM CPU Personality Module, a set of source modules, including at minimum
one .ASM file and one .INC file, that implements zero, one, or more of the
architected functions documented in Chapter 18. The CPM contains CPU
programming code specific to a given high-integration chipset, such as the
Intel 186-EC or Intel 386-EX.

CSPM Chipset Personality Module, a set of source modules, including at
minimum one .ASM file and one .INC file, that implements zero, one, or
more of the architected functions documented in Chapter 19. The CSPM
contains chipset programming code specific to a given chipset, such as the
AMD SC300, SC310, SC400, SC410, RadiSys R380, Ali M1487, or Acer
M6117.

Embedded BIOSTM General Software’s BIOS designed specifically for embedded systems.

Embedded DOSTM General Software’s DOS architecture, of which two varieties are sold.

Embedded DOSTM 6-XL General Software’s real-time DOS for embedded systems, employing
prioritized scheduling of lightweight threads with 32,767 priorities
selectable on-the-fly, mutual exclusion semaphores, signaling semaphores,
message ports and queues, and a fully reentrant INT 21h API. With a full
set of utilities, device drivers, and two versions of COMMAND.COM
(one with a small footprint and a full capability version).

Embedded DOSTM-ROM General Software’s ROMmable DOS for consumer electronics, with a
configurable footprint as small as 32KB, integrated autoscanning ROM
disk, VG230 support, full set of utilities and device drivers, a built-in
resident COMMAND.COM, and an external COMMAND.COM.

File System A mass storage system, responding to INT 13h disk I/O BIOS requests,
either consisting of a real diskette drive/IDE drive, or an emulated drive.
File Systems are defined with the FILE_SYSTEM macro in the project
file. File Systems are managed by File System Drivers, or FSDs. The File
System Control Layer (FSCL) manages File System Drivers.

File System Driver A body of code that manages file systems of a given class. Predefined file
systems include Floppy, Ide, Rom, Ram, and Flash.

FSCL File System Control Layer, the subsystem within EMBEDDED BIOS that
manages File System Drivers (FSDs) and processes INT 13h requests.

iv EMBEDDED BIOS Adaptation Guide Glossary

General Software EMBEDDED BIOS Adaptation Guide

FSD See File System Driver.

Flash A special class of nonvolatile memory, capable of being read, written, and
erased. Flash may be based on NOR or NAND technologies. NOR Flash
is usually packaged in Bulk Erase, Boot Block, or Sectored components,
and may be directly mapped into the memory address space of the CPU.
NAND Flash has smaller block sizes and is typically I/O mapped.
EMBEDDED BIOS uses MTDs to access Flash components. Flash parts
may be interleaved to widen the data path; when this technique is
employed, MTDs must be made aware of this design, as it doubles the
logical block size of the Flash array.

INT 10h The BIOS software API that provides access to the video display. The
INT 10h API is documented in Chapter 21.

INT 13h The BIOS software API that provides access to IDE disks, floppy disks,
and their emulators. The INT 13h API is documented in Chapter 21.

INT 16h The BIOS software API that provides access to the keyboard. The INT
16h API is documented in Chapter 21.

INT 1ah The BIOS software API that provides access to the real time clock, and
also to PCI services. The INT 1ah API is documented in Chapter 21.

M1487 A chipset manufactured by Acer Labs, Inc. (ALI), commonly referred to as
“ALI Finali”, that provides PCI bus management, and works with 386 and
486 CPUs manufactured by Intel, AMD, Cyrix, and SGS Thomson.

M1541 A chipset manufactured by Acer Labs, Inc. (ALI) that provides PCI bus
management, and works with AMD K6 CPUs manufactured by AMD, and
Pentium II Processors manufactured by Intel.

M6117 An embedded CPU manufactured by Acer that behaves like a 386 CPU
core with a chipset in a single package. As of this writing, the latest
stepping is M6117C, which requires a different chipset module than the
M6117 chipset does.

Manufacturing Mode A feature of EMBEDDED BIOS that provides host PC control over an
embedded target running EMBEDDED BIOS through an RS-232
asynchronous serial communications protocol. See Chapter 14 for details
about Manufacturing Mode.

MBR Master Boot Record, the first 512-byte sector on a hard drive or its
emulator. The MBR contains the primary bootstrap code necessary to load
the PBR of the active partition and transfer control to it. The MBR, like
the PBR, contains a two-byte 55h/aah signature in the last two bytes, and
contains a Partition Table with four entries, each of which specifies a
section of a hard drive to be treated as a separate logical drive or storage
medium.

MCL Media Control Layer, the EMBEDDED BIOS subsystem that manages
requests to read, write, erase, and lock storage in Flash, ROM, and RAM
media. The MCL is generalized to permit I/O to other types of media (i.e.,
remote storage over Ethernet) should this be desired by the OEM.

MMU Memory Management Unit, a hardware component usually found in a
chipset or high-integration CPU, providing hardware mapping of storage

Glossary EMBEDDED BIOS Adaptation Guide v

General Software EMBEDDED BIOS Adaptation Guide

into the physical address space available to the CPU. Commonly, such
hardware maps (under programmed control) portions of ROM or Flash
devices wired to chip select lines on a high-integration CPU into a
segment of memory below the 1MB address marker for accessing by the
EMBEDDED BIOS MCL.

MTD Media Technology Driver, a small software driver providing MCL with
functionality that drives a particular type of storage in a specific interleave
factor. For example, Bulk Erase Flash programming is handled with one
MTD, ROM with another, RAM with yet another MTD, and sectored Intel
Flash managed with a different MTD.

OPTIONS.INC An include file found in the INC directory that contains default symbol
definitions for many of the BIOS configuration parameters. This file was
modified directly by the OEM in prior versions of the BIOS, but is not
modified in versions beyond 4.0. See Chapter 7 for details about the
symbols found in this file.

PBR Partition Boot Record, the first 512-byte sector on a Floppy or its
emulator. The PBR contains the operating system bootstrap code, has a
two-byte 55h/aah signature in the last two bytes, and contains a BPB at
offset 0bh. A PBR is also present as the first sector within a hard disk
partition, but is not the same as an MBR, which is the first sector on a hard
disk.

POST Power-On Self-Test, the process by which EMBEDDED BIOS performs
its initialization sequence to ready the target hardware and the BIOS
software for support of the operating system or Manufacturing Mode.

Project File A configuration file for the BIOS build, produced with the BIOStart utility
or with any text editor, that contains overrides (symbol redefinitions) for
the default configuration parameters found in INC\OPTIONS.INC or
INC\CONFIG.INC.

RAM Disk A feature of EMBEDDED BIOS that emulates a floppy disk by using
random access memory to maintain an image of a floppy disk. When the
RAM disk is read, sectors within the floppy disk image in RAM are copied
by the RAM disk software into the user buffer with CPU move
instructions. When the RAM disk is written, sectors from the user buffer
are copied into the floppy disk image in RAM to replace the previous data.

RFD A feature of EMBEDDED BIOS that emulates a floppy disk by using
NOR-technology Flash memory to maintain a simulated image of a floppy
disk. Unlike the ROM or RAM disks, the Flash disk’s storage does not
look byte-for-byte like the data on a floppy disk. Instead, the RFD moves
data from block to block, to even the wear on Flash media, and to
accommodate for the basic write/erase principles of NOR Flash memory
technology.

ROM Disk A feature of EMBEDDED BIOS that emulates a floppy disk by using
read-only memory to maintain an image of a floppy disk. When the ROM
disk is read, sectors within the floppy disk image in ROM are copied by
the ROM disk software into the user buffer with CPU move instructions.

SC300 An embedded CPU manufactured by AMD that behaves like a 386 CPU
core with a chipset in a single package. The SC300 contains, among other
components, an integrated LCD controller, memory management unit
(MMU) and a proprietary PCMCIA controller.

vi EMBEDDED BIOS Adaptation Guide Glossary

General Software EMBEDDED BIOS Adaptation Guide

SC310 An embedded CPU manufactured by AMD that has all the functionality of
the SC300 except LCD controller and PCMCIA controller.

SC400 An embedded CPU manufactued by AMD that behaves like a 486 CPU
core with a chipset in a single package. The SC400 contains, among other
components, an integrated LCD controller, memory management unit
(MMU) and a 386-compatible PCMCIA controller.

SC410 An embedded CPU manufactured by AMD that has all the functionality of
the SC400 except LCD controller and PCMCIA controller.

SC520 An embedded CPU manufactured by AMD that provides a 5x86 CPU core
with 16KB on-chip cache, PCI, SDRAM memory controller, and PC/AT
glue logic and peripherals.

SETUP A feature of EMBEDDED BIOS that provides a full-screen interface used
by the end-user to manipulate CMOS settings and configure the BIOS’s
operation on the target, as well as enter additional BIOS modes, such as
the built-in debugger and Manufacturing Mode.

Super I/O A VLSI package containing one or more functions traditionally performed
by discrete controllers. Typically, Super I/O controllers from National or
other manufacturers contain UARTs, parallel ports with ECP and EPP
support, a floppy disk controller, IDE controller interface logic, and an
IRDA interface. Super I/O controllers are usually software configurable
by the BIOS through the setting of configuration registers on the package.
The configuration registers are commonly accessed by the CPU by writing
a configuration register index value into an I/O port such as 22h, then
reading or writing the data for the configuration register through another
I/O port, such as 23h.

Support Module A package of one or more files comprising a BPM, CPM, or CSPM that
can enhance the EMBEDDED BIOS core software to provide support for
an evaluation board, a high-integration CPU, or a chipset. Support
Modules are available from General Software and from its Technology
Centers.

Technology Center An authorized software or hardware development center that provides
development services for General Software and/or its OEM customers.

Distribution Center An authorized sales representative that provides sales and first-level
technical support and licensing in the native language and customs for
General Software products.

Support Center An authorized full service, highly-technical, support center that provides
technical support in the native language and customs for General Software
products. Contact the General Software web site for a Support Center in
your area.

Chapter 1 EMBEDDED BIOS Adaptation Guide 1

General Software EMBEDDED BIOS Adaptation Guide

Chapter 1

INTRODUCTION

Introducing EMBEDDED BIOS

Thank you for choosing General Software’s EMBEDDED BIOS brand BIOS (Basic Input/Output
System) firmware for use in your embedded system. EMBEDDED BIOS offers a superior
combination of configurability, performance, and functionality that enables it to satisfy the most
demanding ROM BIOS needs for your embedded system. Its modular architecture and high
degree of configurability make it the most flexible BIOS in the world.

Configurability

The configurability of EMBEDDED BIOS is unsurpassed by any other BIOS product in the
industry. At the lowest level, EMBEDDED BIOS comes with full source code, enabling the
BIOS adaptation engineer to make custom modifications that would otherwise not be possible
with a "binary-only" adaptation kit from a desktop BIOS manufacturer. Source code offers
greater security and the ultimate low-level control for embedded designs.

All source-level configurable options are defined as symbolic equates in two source code files:
INC\OPTIONS.INC and INC\CONFIG.INC. The BIOS build architecture provides for a project
file named PROJECTS\projectname\projectname.INC, that contains OEM-specified overrides
for any or all of the over 400 standard source-level configuration options. The separation of the
released BIOS sources and the OEM’s needed changes allows for a high degree of
maintainability, and at the same time permits many simultaneous projects to use the same source
tree.

Although project files can be created and edited with any simple text editor, EMBEDDED BIOS
provides BIOStart, a Windows-hosted expert system that the OEM can use to create and edit
project files with the guidance of expert BIOS building knowledge at General Software.
BIOStart’s knowledge base, derived from core BIOS developers and customer support engineers,
provides multiple views of the BIOS options, and cross-references options and tuning parameters
so that parameter dependencies are handled properly.

2 EMBEDDED BIOS Adaptation Guide Chapter 1

General Software EMBEDDED BIOS Adaptation Guide

BIOStart can also patch binary copies of EMBEDDED BIOS, allowing the OEM’s customers to
configure certain aspects of prebuilt BIOSes without the need for rebuilding from the source
code. This provides substantially the same functionality as other “Binary Configuration”
programs on the market.

At run-time, EMBEDDED BIOS can be configured with a comprehensive SETUP screen system
(itself a configurable subsystem at the source code level). SETUP options include standard
CMOS configuration, custom programming, built-in diagnostics, access to Manufacturing Mode,
Debugger access, and support for initialization of RAM and Flash disks. The SETUP screen can
even be configured to run over an RS-232 serial line, if desired.

The EMBEDDED BIOS architecture provides for operation with different high-integration
chipsets and classes of CPU. Chipsets are supported by EMBEDDED BIOS through an
architected interface that the core BIOS makes calls to (the Chipset Personality Module, or
CSPM). The adaptation engineer adds customized chipset-programming code to the standard
chipset programming template, so that it is localized to a few routines inside one custom module
that other BIOS components call. CPU support is handled in a similar fashion, with CPU
Personality Modules (CSPMs) that support different classes of CPUs. Standard support for
8086, 80286, 80386, 80486, Pentium, Pentium II, Pentium III, Celeron, and Pentium Pro is
provided as a CPU class, and other CPU class modules are available from General Software.
Finally, a third type of module called the Board Personality Module (BPM) provides a place for
board-specific modifications to the BIOS to be placed by the OEM.

Embedded Features

Serving the entire embedded 80x86-based market, EMBEDDED BIOS offers special-purpose
features not provided by typical desktop BIOS implementations.

With embedded CPU support, virtually any type of CPU can be supported, provided it is
reasonably compatible with the Intel 8086 instruction set. For example, Intel’s 186EA, 186EB,
186EC, 386EX, and other CPUs are supported by EMBEDDED BIOS when the associated CPU-
specific personality module is selected for the project. This allows support of high-integration
processors that have on-board timers, DMA controllers, serial ports, watchdog timers, power
management, and other features.

With Chipset support, virtually any add-on chipset, or CPU with on-board chipset (such as the
AMD SC300, SC310, SC400, and SC410 processors) can be supported by EMBEDDED BIOS.
Traditionally, chipsets provide DRAM memory management, bus control, and address space
management. The EMBEDDED BIOS architecture provides for Chipset Personality Modules
that can be selected for a project.

EMBEDDED BIOS’s board-level support provides for the OEM to control the BIOS’s access to
Chipset and CPU modules in major or subtle ways. Essentially a routing module, the board
module contains routines which call associated routines in the Chipset and CPU Personality
Modules. The board module routines can be modified as needed to replace the calls to the
underlying CPU and chipset modules with custom code, as needed for hardware designs that
work differently than standard reference designs supported by General Software.

EMBEDDED BIOS is implemented in hand-optimized 8086 assembly language, with special
code paths for 80186, 80286, 80386, i486, and Pentium processors. The code paths have been
hand-tuned to minimize the interrupt latency commonly found in desktop BIOS

Chapter 1 EMBEDDED BIOS Adaptation Guide 3

General Software EMBEDDED BIOS Adaptation Guide

implementations, and many of the "hot paths" of the BIOS have been straight-line optimized for
the common case.

ROM disk software is integrated directly with the system BIOS itself, eliminating the need to
populate the ROM scan area with ROM BIOS extensions to simulate one or more floppy or hard
disks in ROM. Instead, with the ROM disk configuration feature enabled, an image of a floppy
or hard disk can be stored in ROM anywhere in the address space of the target and treated as a
solid-state drive. If the ROM disk feature is enabled, the ROM disk can be selectively turned on
or off in the Setup screen.

RAM disk software is also integrated directly into the system BIOS to support PCMCIA SRAM
cards and other RAM areas as floppy or hard disk emulators. SETUP even has a formatting
screen for the RAM disk.

The system BIOS supports a Resident Flash Disk (RFD) that provides read/write access to
sectored Flash devices as though they were a floppy or hard disk of up to 32MB in size. The
inclusion of this software makes it simple and easy to support Flash in embedded and hand-held
consumer electronics. Multiple RFDs can be supported in the same target.

The integrated BIOS debugger gives the adaptation engineer the capability of debugging the
hardware and bringing-up the system with powerful tools like a disassembler, breakpoints,
CMOS editing, A20-line gating commands, cache control commands, PCI bus management
commands, and Super I/O controls. The debugger is very useful for debugging chipset modules,
CPU class modules, and initialization of user ROM extensions and hardware. Like the Setup
screen, the integrated BIOS debugger can run directly on a PC keyboard and video screen, or it
can be redirected over an RS-232 serial link.

Embedded systems deployed into more inaccessible areas need watchdog timer support, so that
they can automatically restart in the event that application or system software fails.
EMBEDDED BIOS provides watchdog timer control functions to allow operating systems and
application programs to use watchdog timer hardware found in chipsets and certain CPU classes.

Keyboard and video output may be selectively redirected over RS-232 serial links for different
system components. For example, standard console I/O, such as that used by DOS and DOS
applications, can be redirected over any COM port, including those built-into high-integration
CPUs. Debugger I/O and Setup screen I/O can also be redirected over the same or different RS-
232 serial links.

A special Manufacturing Mode feature provides the necessary provisions for programming
electronics products through a high-speed serial link, and then testing and repairing the same
items in the field at service centers. The OEM can write custom software that uses EMBEDDED
BIOS Manufacturing Mode functions to perform virtually any maintenance or programming task
on the target under host control.

Desktop PC Features

EMBEDDED BIOS provides a comprehensive Power-On Self-Test (POST) algorithm that is
automatically configured for the peripherals and capabilities selected by the adaptation engineer.
During POST, hardware is initialized and tested, including the CPU, RAM, and peripherals.
POST provides "beep code" diagnostics for errors when a display is not available, as well as
error message diagnostics on the display when available. POST can also be configured to output
status report codes to a manufacturing port (typically, port 80h) so that automated Q/A
equipment can determine the status of a system during POST. A special set of ASCII POST

4 EMBEDDED BIOS Adaptation Guide Chapter 1

General Software EMBEDDED BIOS Adaptation Guide

status codes are also available through a serial port, for flexibility in the debugging process when
new hardware is being brought up. Either POST code system, or both, can be used during
debugging.

The EMBEDDED BIOS SETUP screen system is configurable at the source level by the
adaptation engineer to contain any combination of subscreens, including Basic CMOS
Configuration, Custom Configuration, Shadow Configuration, Diagnostics screens,
Manufacturing Mode, Debugger access, and formatting of drive emulators such as RAM and
RFD drives. SETUP screens can also be customized at the source level (in the Board Personality
Module) to contain custom fields as required by the application.

Also available is a password protection system, so that a password must be provided by the end-
user before POST allows booting of an operating system. The password is stored in CMOS, is
one-way encrypted, and can be modified in a Setup screen.

The ability to shadow slower ROM devices with DRAM or SRAM is selectable in the Shadow
Setup screen and calls chipset-specific code to enable shadowing for the BIOS ROM itself or for
feature ROMs on a 16KB region basis. DRAM may take the form of FP, EDO, SDRAM,
RDRAM, or other technologies.

EMBEDDED BIOS provides extensive support for both internal CPU cache control (i486 and
above) and external cache control (typically chipset-controlled). Internal cache is managed by
the CPU class personality modules, whereas external cache is managed by the cache manager,
which directs peripherals (chipset, 8042, custom I/O ports, or CPU integrated peripherals) to
manage the cache. Keyboard controls on the PC/AT keyboard are implemented for enabling and
disabling the cache on-the-fly (while the system is running). The BIOS provides cache control
services to applications that allow operating systems and user code to control and inspect the
status of the cache.

CPU speed controls are handled by the system BIOS by routing control through the appropriate
logic (chipset, 8042, custom I/O ports, or CPU integrated peripherals). As with cache control,
CPU speed is controllable on-the-fly at the keyboard or via programming interfaces.

Software Compatibility

EMBEDDED BIOS offers a high degree of compatibility with past and current BIOS standards,
allowing it to run off-the-shelf operating system software and application software.

EMBEDDED BIOS has been tested with all major versions of DOS, including MS-DOS, DR-
DOS, Embedded DOS-ROM, and Embedded DOS 6-XL; OS/2; Windows 3.1, Windows 95,
Windows 98, Windows NT, and real time operating systems such as QNX.

EMBEDDED BIOS is rigorously tested with programs such as AMI Diag, MSD, Check-It,
Manifest, Q/A Plus, and so on, ensuring its compatibility with established desktop application
standards.

In addition to its standard data structures and programming interfaces, EMBEDDED BIOS
provides additional industry-standard interfaces, such as APM and PCI.

Applications for EMBEDDED BIOS

Chapter 1 EMBEDDED BIOS Adaptation Guide 5

General Software EMBEDDED BIOS Adaptation Guide

EMBEDDED BIOS addresses the architectural needs of several different classes of applications;
namely, Hand-Held Consumer Electronics, Consumer Appliances, Single Board Computers, and
Special Purpose Devices.

Hand-held consumer electronics work better and cost less with EMBEDDED BIOS. This BIOS
has a small footprint, high configurability, Flash file system, DOS operating system,
Manufacturing Mode, Advanced Power Management, and low cost.

Consumer Appliances, such as televisions, set-top boxes, internet terminal devices, microwaves,
and telephones, can all be designed and developed quicker with EMBEDDED BIOS. The BIOS
provides access to standard peripherals, which can then be replaced by solid-state disk emulators
in the final production BIOS. This means consumer appliances can be developed based on the
model that they are a PC-compatible that runs DOS programs in response to user commands.
The tried-and-proven techniques of DOS application programming are applied to the design,
development, and testing of consumer appliances to yield the quickest time to market and lowest
risk.

Single Board Computers designed with EMBEDDED BIOS in mind can provide users with the
extra features they need to be competitive in their field. Consider the flexibility that ROM,
RAM, and Flash disks offer the licensee, in addition to console redirection. Industry-standard
implementation of data structures and software interrupts make EMBEDDED BIOS a solid
choice for the SBC vendor and for the vendor’s customers.

Highly-Specialized Devices built around EMBEDDED BIOS can be debugged early with the
integrated BIOS debugger, loaded with software using Manufacturing Mode, and verified in Q/A
with the burn-in Diagnostics SETUP screens. When the hardware is highly custom,
EMBEDDED BIOS provides the richest tool environment, and the most configurable options,
making it the safest route to bringing up new designs quickly.

Lowered System Cost With Embedded DOS-ROM

Cost-sensitive applications are high-volume, low-priced commodity electronics products that
require a very low per-copy royalty scheme for licensing system software such as BIOS and
DOS. EMBEDDED BIOS's pricing is highly competitive, and at the same time provides
Embedded DOS-ROM, so that there is no need to license a separate DOS product from another
vendor.

Choosing Embedded DOS-ROM or Embedded DOS 6-XL

General Software's Embedded DOS 6-XL is a DOS Adaptation Kit that, like the EMBEDDED
BIOS Adaptation Kit, enables the embedded system developer to produce a custom DOS
environment for an embedded target.

Embedded DOS 6-XL is a real-time, reentrant, multitasking operating system that runs
embedded application software built with DOS tools, such as Microsoft MSVC++ and Borland
C++. It is configured with over 70 configuration options, supporting a wide variety of real-time
DOS-based applications.

6 EMBEDDED BIOS Adaptation Guide Chapter 1

General Software EMBEDDED BIOS Adaptation Guide

If you have a need for a DOS that is also a real-time kernel, we suggest using Embedded DOS 6-
XL as your operating system. If you do not have multitasking or real-time requirements, then
Embedded DOS-ROM will be an excellent choice.

Related Reading

For background information, or reference use, we suggest that you read the following related
publications. We use these resources for developing applications for our customers.

American Megatrends, WINBIOS and AMIBIOS Technical Reference, AMI, Norcross, Georgia.

Brown, Ralf, PC Interrupts, Addison/Wesley, Reading, Mass.

Dipert, Brian, & Levy, Markus, Designing with Flash Memory, Annabooks, 1993.

Duncan, Ray, MS-DOS Functions, Microsoft Press.

Gilluwe, Frank Van, The Undocumented PC, Addison/Wesley, Reading, Mass., 1994.

IBM Corporation, Technical Reference Personal Computer XT Model 286, Order No. 68X2210,
New York, NY, 1986.

Intel, 386 DX Microprocessor Programmer’s Reference Manual #230985-003, Intel Corporation.

Microsoft Press, MS-DOS 6.22 Programmer’s Reference, Microsoft Corporation.

Phoenix, System BIOS for IBM PC/XT/AT Computers, Addison/Wesley, Reading, Mass., 1991.

Schulman, Andrew, Undocumented DOS, Addison/Wesley.

About the EMBEDDED BIOS Adaptation Kit

Your new EMBEDDED BIOS 4.3 Adaptation Kit includes the following parts:

• EMBEDDED BIOS Adaptation Guide (this manual)
• Core BIOS Software on Diskettes or CD-ROM (1st diskette contains installer)

• Optional Support Module Disks (each contains INSTALL.BAT)
• Optional CPU Personality Module Disk (each contains INSTALL.BAT)

• EMBEDDED BIOS OEM License Agreement
• Technical Support Request (TSR) form
• Product Registration form

The rest of this part of the manual describes the steps needed to produce a BIOS with this
adaptation kit. Chapter 2 will explain how to install the EMBEDDED BIOS Adaptation Kit
software on your development system. Chapter 3 provides a good background for newcomers to
the BIOS world, and an interesting architectural refresher tour for x86 PC veterans. Chapter 4
provides the information you need to set-up your development tools to work with EMBEDDED

Chapter 1 EMBEDDED BIOS Adaptation Guide 7

General Software EMBEDDED BIOS Adaptation Guide

BIOS. Finally, in Chapters 5, 6, and 7, you’ll learn how to customize and build a BIOS to your
specifications.

Chapter 22 provides helpful troubleshooting techniques and procedures that can save time and
resolve technical problems quickly without guesswork.

The Release Disks contain the core BIOS software, utilities, BIOStart, and installer. DOS users
can use the INSTALL.BAT on disk #1 to install the system. Windows users should use the
SETUP.EXE program disk #1 to install the system. If a README.TXT file is present, the up-
to-the-minute instructions in that file should be used instead of the instructions in this Chapter.

The Support Module Disks each contain the INSTALL.BAT file used to install a personality
module for any plug-in support for chipsets, CPUs, or reference design boards. These
personality modules are sold separately and augment the core BIOS kit.

The enclosed OEM License Agreement enables you to license binary adaptations of the
EMBEDED BIOS software. Contact General Software for help with this form and for current
pricing for the volume you are interested in. We suggest that you begin the licensing process
early so that you can take advantage of current rates (they are subject to change and have never
gone down before).

The enclosed Technical Support Request (TSR) form should be used to submit technical support
requests to General Software by FAX. You may duplicate this form as needed to make multiple
requests.

General has implemented a proprietary and sophisticated Product Support Database that allows
tracking the nature, content, progress, and history of each call made to or from our Product
Support Group. This allows any Support Technician to access the needed information should
your situation require more than one call and the original Support Technician is not currently
available to take your call or respond to your fax.

Also enclosed is a Product Registration form that should be completed and mailed immediately.
This information is needed for technical support and also makes you eligible to receive upgrades
and access General Software's on-line services.

For Customers with Version 4.0 of Embedded BIOS

If you are already using EMBEDDED BIOS 4.0, then you already know about project files,
board modules, chipset modules, and CPU modules. The new additions then, are relatively
straightforward:

1. Do not edit INC/OPTIONS.INC and INC/CONFIG.INC. Just in case you have a beta
version of 4.0 that did not use project files, this is an essential concept. If this is new to
you, please read this entire section, plus the section that follows it, to make sure you're
aware of the project architecture.

2. Disk Support is Reorganized-- the FILE_SYSTEM table defines them. Whereas past
versions of EMBEDDED BIOS used symbols like OPTION_SUPPORT_IDE,
OPTION_SUPPORT_FLOPPY, OPTION_SUPPORT_RFD_DISK,
OPTION_SUPPORT_ROM_DISK, and OPTION_SUPPORT_RAM_DISK to
enable device drivers, these are now thought of as "file systems" and are enabled with the
FILE_SYSTEM macro in the project file.

8 EMBEDDED BIOS Adaptation Guide Chapter 1

General Software EMBEDDED BIOS Adaptation Guide

3. Multiple Disk Emulators are Supported. Previously the ROM, RAM, and RFD disk
emulators could only support one image each. Now they are reentrant and each can
support up to 64 drives. This makes it possible for a system to have many ROM, RAM,
and RFD disks in a system.

4. OEM-Written File Systems Supported. Previously only ROM, RAM, and RFD disks
were supported. Now OEMs can add their own file systems, perhaps even clones of these
basic systems with special features, without modifying the core BIOS. This is
accomplished by giving the new OEM-written file system a name other than ROM,
RAM, or RFD, inserting this code into the board module, and then declaring the new file
system using the FILE_SYSTEM macro in the project file.

5. Drive Assignments are more Dynamic. Previously the Setup screen assignments were
simple-- floppy types were extended to support ROM, RAM, and RFD disks. Now file
systems are mapped to drive letters in Setup’s BASIC screen. This allows file systems to
be mapped to any drive letter, soft or hard.

For Customers with Versions of Embedded BIOS Earlier than 4.0

If you are already using an earlier version (3.x or less) of EMBEDDED BIOS, then you’ll want
to know how this version of the software differs from yours so that you can use it properly. In
order to accommodate the needs of more customers with diverse needs, we have made changes to
the build architecture of EMBEDDED BIOS with which you’ll need to be familiar.

1. Do not edit INC/OPTIONS.INC and INC/CONFIG.INC. Whereas past versions of
EMBEDDED BIOS were configured with these files, version 4.3 uses an OEM-edited
project file that contains only overriding definitions to these two standard files. Project
files reside in subdirectories underneath the new PROJECTS directory.

2. Use the new version of GSMAKE supplied with this adaptation kit. The new version
includes support for features required by BIOStart and additions to the MAKEFILEs.
You must make certain that any copies of the old GSMAKE in your path do not come
before the new version. The old version of GSMAKE does not work with the new
MAKEFILEs in this release.

3. There are now three personality module types: CPU, Chipset, and Board types. CPU
Personality Modules each reside in their own subdirectory underneath the CPUS

subdirectory. Chipset Personality Modules each reside in their own subdirectory
underneath the CHIPSETS subdirectory. Finally, the new Board Personality Modules each
reside in their own subdirectory underneath the BOARDS subdirectory. The new Board
Personality Module is used to contain the board-specific code that used to reside in the
Chipset Personality Module.

4. A project file should be created for each new project. Project files not only include the
overrides for the options and parameters in the OPTIONS.INC and CONFIG.INC files, but they
also specify which board, chipset, and CPU modules are to be used in the project. Here is
how we suggest using this new flexibility:

4a) Create a board module for each new board you design with. Don’t create a board
module just because you’re developing the next revision of a BIOS for a product.
Instead, see if you can create a new project file for it and reconfigure it with just BIOS
options. This will reduce your maintenance overhead in the long run.

Chapter 1 EMBEDDED BIOS Adaptation Guide 9

General Software EMBEDDED BIOS Adaptation Guide

4b) Create new project files that refer to the same CPU, chipset, and board modules when
you want to vary the feature support of the core BIOS. This makes total reuse of the
board module’s functionality, and simplifies maintenance when the board module is
adjusted.

4c) Don’t modify chipset or CPU support modules from General Software just to change
initialization for the CPU or chipset. Instead, comment out the “Rcall” to the chipset or
CPU routine in the appropriate board module routine, and insert the code that needs to be
used for initialization in place of it. This will keep your change local, and should be
compatible with future versions of the BIOS.

4d) When creating new chipset, CPU, or board modules, start with an empty module file
that is essentially a clone of the NOCPU.ASM, NOBOARD.ASM, or NOCHPSET.ASM files. Add only
those routines to the module that are different from the established standard, found in
SYSTEM/CPU.ASM, SYSTEM/BOARD.ASM, and SYSTEM/CHIPSET.ASM, respectively. Note that
there is a slight routine definition change from the routine in the SYSTEM directory to the
routine in the personality module: (i) remove the IFNDEF/ENDIF bracket around the
routine, and (ii) add “, OVERRIDE ” to the parameters on the DefProc or DefRtn statement.

5. CMOS cell assignments have changed. A signature has also been installed in the CMOS
array to ensure that CMOS checksums that are produced by other BIOSes do not cause
the chipset-programming portions to be blindly loaded and used as running values.

6. Learn BIOStart. It is the new way projects are managed, and its knowledge base is
continually enhanced to provide more automation for BIOS customization.

7. Some options are deleted, some new ones added, and some renamed. For example, all of
the old-style Flash part options are replaced with a table created with the
MEDIA_REGION macro. We added lots of new control over POST and error handling,
and renamed a few features like OPTION_FORCE_9600_BAUD to
OPTION_SERIAL_9600_BAUD for consistency.

8. The Flash support is completely reorganized. OPTION_FLASH_xxx is no longer used
to specify what Flash parts will be supported in a configuration. Instead, use the
MEDIA_REGION macro to build a table in your project file. This allows support of
multiple Flash and other media types, and provides a great framework for new media
support through the new Media Technology Driver architecture.

9. Embedded DOS-ROM can execute directly out of ROM. This means that it can be
combined with the BIOS image and need not consume ROM or Flash disk space.
Further, the optional mini-COMMAND feature supported by Embedded DOS-ROM that
causes the commands to be parsed inside the DOS kernel itself, so that an external
loadable COMMAND.COM file is unnecessary.

Part I EMBEDDED BIOS Adaptation Guide 11

General Software EMBEDDED BIOS Adaptation Guide

PART I

BASIC STEPS FOR BIOS BUILDING

This part of the EMBEDDED BIOS reference documentation discusses the basic information
needed by the BIOS adaptation engineer to use this adaptation kit, including installation of the
software, build procedures, and recommended adaptation methodology. Here is your roadmap:

1. Install the Core BIOS Software (from diskettes or CD-ROM) (see Chapter 2 for Details).
1.1 Windows users should use the Windows-based SETUP.EXE.
1.2 DOS users should use INSTALL.BAT.

2. Install any Optional Support Modules (from diskettes) (see Chapter 2 for Details).
2.1 Both Windows and DOS users use INSTALL.BAT on each disk.

3. Configure your development environment (see Chapter 3 for Details).
3.1 Set the PATH to include the TOOLS subdirectory.
3.2 Set the BORLAND environment variable if you use Borland tools.
3.3 Set the MASM61 environment variable if you use MASM 6.1.

4. Build the “SAMPLE” BIOS project to make sure the software is installed correctly.
4.1 DOS users:

4.1.1 SET GSPROJ=SAMPLE

4.1.2 CD PROJECTS

4.1.3 GSMAKE

4.2 Windows users: Run BIOStart, select Build, then SAMPLE project.
4.3 If the build completed successfully, you’re ready to take the next step.

5. If you have a reference design board, build a BIOS and install it in ROM on the board.
5.1 Determine the project name (shown here as projname) for the reference design.
5.2 DOS users:

5.2.1 SET GSPROJ=projname

5.2.2 CD PROJECTS

5.2.3 GSMAKE

5.3 Windows users: Run BIOStart, select Build, then projname project.
5.4 The BIOS image is PROJECTS\projname\projname.ABS, (or .BIN if 16/32 build)

Part I EMBEDDED BIOS Adaptation Guide 13

General Software EMBEDDED BIOS Adaptation Guide

Chapter 2 EMBEDDED BIOS Adaptation Guide 15

General Software EMBEDDED BIOS Adaptation Guide

Chapter 2

INSTALLATION

Backing-up Your Release Disks

If you received your copy of the EMBEDDED BIOS software on diskettes, you should not
modify any of the files on the release disk(s). You should immediately make a backup of your
disks with DISKCOPY and store the originals in a safe place. If you did not receive release
disks, or if you received disks that are unreadable (sector not found, data error, etc.), please
contact General Software for replacements.

Installing the Core EMBEDDED BIOS Software

The core EMBEDDED BIOS software, including build tools and source code, is installed
separately from any additional support modules. The core BIOS software comes on CD-ROM or
diskettes, and support modules come on diskettes only.

It is recommended that Windows NT 4.0 or greater be used as the operating system environment
for BIOStart or the DOS box environment.

If you have Windows 95, Windows 98, or Windows NT on your development machine, you
should use Windows to install the core BIOS by selecting Start|Run|A:SETUP. This will install
the BIOStart software and will run the installer inside BIOStart. This process is quick and
seamless. A new icon will appear on your desktop, called BIOStart. This is the program that is
used to perform option-level customization of the BIOS.

If you do not have Windows on your development machine, you need to use the DOS-based
batch file to install the core BIOS software. Before running the INSTALL.BAT batch file, you need
to create a subdirectory on your hard disk where you wish to install the system; we recommend
C:\EBIOS43. After creating the subdirectory, use the CD command to make that directory the
current one. Then, after changing into the new directory, run the installation batch file from
drive A: or B: as follows:

C:\> MD EBIOS43

C:\> CD EBIOS43

C:\EBIOS43> A:INSTALL

16 EMBEDDED BIOS Adaptation Guide Chapter 2

General Software EMBEDDED BIOS Adaptation Guide

Installing Additional Support Modules

If you have purchased additional support modules to go with the core BIOS, then they must be
installed after the core BIOS, using the INSTALL.BAT file that comes on each diskette. For each
disk, place it in drive A:, and type:

C:\EBIOS43> A:INSTALL

After the installation process is completed, a tree of subdirectories will be created underneath the
EBIOS43 directory.

Organization of the Software

After the installation process is completed, a tree of subdirectories will be created underneath the
EBIOS43 directory. The EBIOS43 directory is used to anchor all of the directories in the
EMBEDDED BIOS development environment. The directory structure is outlined in Figure 2.1
(this figure may be incomplete if new components have been added to the release since this
printing of the manual).

EBIOS43

System32 System Inc Boards Chipsets CPUs Projects 5HVRXUFH Util Tools Cow

,1& 2%- 237,216�,1& 12%2$5' 12&+36(7 12&38 6$03/($'6 +267�& *60$.(2%-

3&, ������$60 &21),*�,1& 053��� ���+; ���(; 053��� ,&216 +267�(;(%,26/2&

�����$60 7�,1& 053��� ���7; ���(& 053��� ,') 0(66$*(�& %,260$3

�����$60 '$7$�,1& 6&���(9 ���%; 6&���(9 63/$6+ 0)*'59�$60 %,267$57

�����$60 ,'(�,1& 6&���(9 $0'6&��� 6&���(9 0)*'59�6<6 *60(5*(

�����$60 0(7$�,1& 6&���(9 $0'6&��� 6&���(9 35,17)�$60 &97%03

�����$60 3267�,1& 0����(9 $0'6&��� 0����(9 6(5%$6(�$60 %,26680

�����$60 6(*���,1& 81,&251 0���� 81,&251 6(5&02'�& &+.5)'

$30�$60 86(*6�,1& 673& 0���� 673&(9 ',6.,0$*

7�$60 ,2�,1& */25,$ 673& */25,$ 3(5)

%,26�$60 %3%�,1& $0���&'3 673&,1' $0���&'3 �:,=

),/(6

%2$5'�$60 3&,�,1& $0���65* 0(',$*;0 $0���65*

&$&+(�$60 6758&�,1& $0.�6'% $0.�6'%

HWF� HWF� HWF� HWF� HWF� HWF� HWF�

Figure 2.1. EMBEDDED BIOS Source Code Adaptation Kit Software Organization.

PROJECTS Subdirectory

The PROJECTS subdirectory contains one or more subdirectories, each associated with a BIOS
adaptation project. Each project has a name, and its associated subdirectory must be given the
same name.

Inside a project’s subdirectory are one or more files that define the BIOS build for the project.
The file with the .INC extension (called the “project file”) specifies the parameters for the 16-bit
BIOS build—this file must always be present.

A second file in this subdirectory with an .IDF extension (called the “IDF file”) specifies how the
16-bit output file and other components, such as VGA BIOS extensions and output files from the

Chapter 2 EMBEDDED BIOS Adaptation Guide 17

General Software EMBEDDED BIOS Adaptation Guide

32-bit BIOS build, are to be combined into a single output file, usually with a .BIN extension.
Many BIOS projects do not need an IDF file because they do not use 32-bit BIOS components
(such as 32-bit PCI).

Note: If an IDF file is present, then the 32-bit build will be invoked, unless the special
environment variable NOGSMERGE is defined. Use “SET NOGSMERGE=Y” on the command
line to disable the 32-bit BIOS build and merge step. Use “SET NOGSMERGE=” on the
command line to remove the environment variable, allowing the merge to take place if an IDF
file exists.

Both the project file and the IDF file must be named the same as the subdirectory name, with the
proper extensions.

The core BIOS comes with a SAMPLE project, defined with its own PROJECTS\SAMPLE
subdirectory that contains a file called SAMPLE.INC. This file is editable with any text editor, and
defines which board, chipset, and CPU personality modules will be used, and any build option
overrides associated with the BIOS build.

When preparing to build a BIOS under DOS, the PROJECTS subdirectory must be made the current
working directory of the current drive. This subdirectory contains the master MAKEFILE, used
as instructions to the GSMAKE process.

It will be noted later, but is a good idea to reiterate here, that the GSPROJ environment variable
is used by this MAKEFILE to determine which project to build in the DOS environment. Thus, if a
dozen or so projects are defined, and the SAMPLE project is to be built, then the OEM must set
GSPROJ=SAMPLE before running GSMAKE. BIOStart automatically sets this environment
variable based on the selected project when it is used instead of manually invoking GSMAKE.

SYSTEM Subdirectory

The SYSTEM subdirectory contains the assembly source files for the core system BIOS..

The OBJ subdirectory in the SYSTEM directory is used to hold the OBJ files during the build
process; they are generated by the assembly process and used by the LINK process, but they are
not output files from the build.

Note: In order to process the MAKEFILE properly, you must be sure to use the GSMAKE.EXE
program supplied with this Adaptation Kit; do not use NMAKE.EXE or some other MAKE.EXE
supplied by your compiler vendor. The General Software GSMAKE utility can read the
enhanced MAKEFILEs used in building this software to run both the Microsoft and Borland
development tools based on the BORLAND= environment variable. If you define this variable,
then Borland tools will be used; otherwise, Microsoft tools will be used.

SYSTEM32 Subdirectory

The SYSTEM32 subdirectory contains subdirectories, each containing the assembly source files for
a 32-bit BIOS.

The following subdirectories (and maybe additional ones since this printing) are defined in the
SYSTEM32 subdirectory:

18 EMBEDDED BIOS Adaptation Guide Chapter 2

General Software EMBEDDED BIOS Adaptation Guide

INC - Contains the common include files for the 32-bit components.
PCI - Contains the source code for the 32-bit PCI services component.

None of the 32-bit BIOS components are a necessary component of the 16-bit BIOS; these
extensions of the BIOS architecture provide support for things like 32-bit BIOS Directory
Services, 32-bit PCI Services, and other things.

Note: These components are built using 32-bit assemblers and linkers. If you are using Borland
tools, your TASM32 and TLINK32 tools will be invoked by the MAKEFILE. If you are using
Microsoft tools, MASM and LINK32 will be invoked. Please note that the Microsoft assembler
you purchased may not include a LINK32.EXE program. If this is the case, you may use the
LINK32.EXE program supplied with your Microsoft Visual C++ compiler. For the latest
information on how to obtain these build tools, contact General Software.

Note: In order to process the MAKEFILE properly, you must be sure to use the GSMAKE.EXE
program supplied with this Adaptation Kit; do not use NMAKE.EXE or some other MAKE.EXE
supplied by your compiler vendor. The General Software GSMAKE utility can read the
enhanced MAKEFILEs used in building this software to run both the Microsoft and Borland
development tools based on the BORLAND= environment variable. If you define this variable,
then Borland tools will be used; otherwise, Microsoft tools will be used.

INC Subdirectory

The INC subdirectory contains the common header files used by the EMBEDDED BIOS
components. None of these files should ever be modified by the OEM. Two files, OPTIONS.INC
and CONFIG.INC, contain defaults for configurable options. The OEM should never modify these
files to change the defaults. Instead, the specific lines being changed should be copied into the
appropriate project file, and changed in the project file copy.

Each configuration parameter in OPTIONS.INC or CONFIG.INC is coded as a symbol equated to a
value. In the OPTIONS.INC file, almost all of the symbols are set to 0 to disable the specific
option, or 1 to enable it. In the CONFIG.INC, almost all of the symbols are set to a numeric
parameter that fine-tunes the system.

CHIPSETS Subdirectory

The CHIPSETS subdirectory contains one or more subdirectories, each of which holds exactly one
Chipset Personality Module (CPM). If you have purchased additional support modules to work
with EMBEDDED BIOS, then there may be subdirectories underneath this subdirectory.

The name of a Chipset Personality Module’s subdirectory underneath CHIPSETS is significant. It
must be the same name as the chipset files contained in the subdirectory. Thus, if the module is
named MYCHPSET, then the directory’s name is MYCHPSET, and there must be two files in the
subdirectory: MYCHPSET.ASM (containing the code), and MYCHPSET.INC (containing additional
definitions for the code).

EMBEDDED BIOS comes with one Chipset Personality Module, NOCHPSET, that is used as a
placeholder for systems that do not have a chipset. The adaptation engineer can use this file as a
structured template for adding custom chipset support for any design.

Chapter 2 EMBEDDED BIOS Adaptation Guide 19

General Software EMBEDDED BIOS Adaptation Guide

No build process occurs in the CHIPSETS directory. Instead, these files are included using
assembly directives in the SYSTEM\CHIPSET.ASM file.

CPUS Subdirectory

The CPUS subdirectory contains one or more subdirectories, each of which holds exactly one CPU
Personality Module. If you have purchased additional support modules to work with
EMBEDDED BIOS, then there may be subdirectories underneath this subdirectory.

The name of a CPU Personality Module’s subdirectory underneath CPUS is significant. It must be
the same name as the CPU files contained in the subdirectory. Thus, if the module is named
MYCPU, then the directory’s name is MYCPU, and there must be two files in the subdirectory:
MYCPU.ASM (containing the code), and MYCPU.INC (containing additional definitions for the code).

EMBEDDED BIOS comes with one CPU Personality Module, NOCPU, that is used as a
placeholder for systems that do not have a nonstandard CPU that requires additional setup or
configuration programming.

No build process occurs in the CPUS directory. Instead, these files are included using assembly
directives in the SYSTEM\CPU.ASM file.

BOARDS Subdirectory

The BOARDS subdirectory contains one or more subdirectories, each of which holds exactly one
Board Personality Module. If you have purchased additional support modules to work with
EMBEDDED BIOS, then there may be subdirectories underneath this subdirectory.

The name of a Board Personality Module’s subdirectory underneath BOARDS is significant. It
must be the same name as the board files contained in the subdirectory. Thus, if the module is
named MYBOARD, then the directory’s name is MYBOARD, and there must be two files in the
subdirectory: MYBOARD.ASM (containing the code), and MYBOARD.INC (containing additional
definitions for the code).

EMBEDDED BIOS comes with one Board Personality Module, NOBOARD, that is used as a
placeholder for systems that do not require any nonstandard initialization or configuration other
than the standard calls POST makes to the chipset and CPU modules.

No build process occurs in the BOARDS directory. Instead, these files are included using assembly
directives in the SYSTEM\BOARD.ASM file.

TOOLS Subdirectory

The TOOLS subdirectory contains the build utilities necessary to supplement your assembler and
linker development tools so that you can build a binary copy of EMBEDDED BIOS. The tools
provided are as follows:

GSMAKE.EXE - Program Maintenance Utility
GSMERGE.EXE - Binary 16-bit/32-bit File Merge Utility
PERF.EXE - Disk Performance Analyzer
BIOSLOC.EXE - Locate Utility
BIOSSUM.EXE - ROM BIOS Extension Checksum Tool

20 EMBEDDED BIOS Adaptation Guide Chapter 2

General Software EMBEDDED BIOS Adaptation Guide

BIOSMAP.EXE - Map File Analysis Utility
DISKIMAG.EXE - Disk Image Utility
BIOSTART.EXE - Windows-based BIOS configuration and build utility
CVTBMP.EXE - DOS-based BMP->RLE conversion and BMP display utility
PALCHECK.EXE - DOS-based BMP analyzer utility
CHKRFD.EXE - DOS-based RFD image analyzer

The TOOLS directory must be added to your path prior to building the system so that the utilities
are available to the build process from the SYSTEM directory. BIOStart may automatically
perform this function for you depending on your host operating system. If you find that your
DOS box can’t access your tools, you will need to perform this function manually using your
operating system’s tools (i.e., right click on “My Computer”, Properties, and then update the
environment’s PATH variable as necessary).

UTIL Subdirectory

The UTIL subdirectory contains the build files necessary to build any auxilliary utilities
associated with EMBEDDED BIOS, such as the remote disk server device driver. A MAKEFILE,
associated .LRF linker response files, and source files are provided.

The UTIL subdirectory contains an OBJ subdirectory, used to contain the temporary object files
created by the assembler.

The two most important components of UTIL that you will be building are MFGDRV.SYS and
HOST.EXE. Both of these utilities are used on the host side to make Manufacturing Mode work.
It is necessary to build COW before building UTIL, because the UTIL build requires COW object files
to complete.

COW Subdirectory

The COW subdirectory contains the build files necessary to build the Character-Oriented-Windows
user interface system that is used by UTIL\HOST.EXE. A MAKEFILE, associated .LRF linker response
files, and source files are provided.

The COW subdirectory contains an OBJ subdirectory, used to contain the temporary object files
created by the C compiler.

RESOURCE Subdirectory

The RESOURCE subdirectory contains four subdirectories that contain graphical and other resources
for use in combined BIOSes. These resources include Splash Screens, Advertisements, Icons,
and IDF files. General Software provides some basic resources with this adaptation kit.
Additional resources may be added to these directories by the OEM.

What’s Next?

Once you’ve installed the software, you are ready to sit back and review the information in the
next chapter, because its concepts will give you the minimal background necessary to understand
what the BIOS does, and help identify what components you’ll need in your BIOS adaptation.

Chapter 2 EMBEDDED BIOS Adaptation Guide 21

General Software EMBEDDED BIOS Adaptation Guide

After a leisurely reading of Chapter 3, go ahead and make short work of Chapter 4 (setting up
tools), and then dive into Chapter 5, where you’ll learn how to actually build a BIOS.

Chapter 3 EMBEDDED BIOS Adaptation Guide 23

General Software EMBEDDED BIOS Adaptation Guide

Chapter 3

KEY EMBEDDED BIOS CONCEPTS

This chapter presents an architectural overview of EMBEDDED BIOS. OEMs with an
understanding of these concepts generally produce BIOSes more efficiently in two ways. First,
an appreciation of all the functional issues is an important thing to have before starting a design,
so that the design can accommodate those issues. Second, with this material as background, the
OEM will have a longer view of the adaptation process. Understanding this material will make
your adaptation move more smoothly.

You may also wish to take advantage of General Software’s published white papers on selected
design topics. Contact General Software for details.

3.1 Architectural Overview

EMBEDDED BIOS is functionally similar to the BIOS in a PC, in many ways. First, the BIOS
tests and initializes all of the equipment on the system when power is applied. Once the system
has been initialized, it transfers control to an operating system or application. Finally, it provides
software services through architected mechanisms that allow the operating system and
application to manipulate the hardware; for example, to perform floppy disk I/O, read keystrokes
from the keyboard, and display characters on a video display.

Because the BIOS is ultimately responsible for managing the hardware, it must implement
policies for initialization and management of the devices. For example, the BIOS's memory
model determines how much memory will be available to operating systems and applications,
and where the memory will be located in the address space.

Similarly, its interrupt model determines the policy used to make interrupt assignments of
external hardware devices, establish their priorities, and define how operating system and
application software will request services from the BIOS.

The BIOS Power-On Self-Test (commonly, POST) is responsible for testing and initializing the
hardware components in the target such as the DMA controllers, interrupt controllers,
programmable timers, and other components so that they work together to provide a viable
environment. For example, if dynamic RAM (DRAM) is used in a design, it must be

24 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

periodically refreshed; this is the responsibility of the BIOS. Using configuration options, the
developer directs POST to provide refresh through on-board CPU functions, through chipset
functionality, or using more elaborate techniques such as tying an 8254 programmable interval
timer to an 8237 DMA controller to cause DMA cycles to perform the refreshing. POST sets up
the policies to be used for performing DRAM refresh and many other tasks so that operating
systems and applications don’t have to do these tasks by themselves.

These and many other architectural issues are described in detail in this chapter.

3.1.1 Memory Model

EMBEDDED BIOS employs a memory model that is compatible with desktop PC standards.
Because the BIOS is used primarily in a real-mode environment, it does not define any standards
for the use of extended memory beyond 1MB. Instead it is concerned with the layout and usage
of memory below 1MB in the address space.

Because Intel-architecture processors can be programmed to respond to a variety of different
kinds of addresses (physical, linear, virtual, and real-mode addresses), we will refer to 32-bit
physical addresses whenever describing where some object is located in the target machine.
When referring to how the object is referenced with actual machine instructions, we will use
what is called 16:16 notation for addresses. In this format, addresses contain two parts, each 16
bits in width. The first 16-bit entity is a segment address, and the second 16-bit entity is a byte
offset relative to the specified segment. A segment address can be transformed into a physical
address by multiplying it by 16 (10h in hexadecimal).

3.1.1.1 The Interrupt Vector Table

At physical location 00000000h in the address space is the real-mode Interrupt Vector Table, or
IVT. This table is defined by Intel 80x86 architecture and by other PC standards to be an array
of far (16:16) pointers to objects, some being Interrupt Service Routines (ISRs), while other
elements are pointers to data structures. This table contains 256 elements and each element is
four bytes long, so the table is exactly 1KB in size.

3.1.1.2 The BIOS Data Area

The first address immediately following the IVT is 00000400h. Addressed with the equivalent
real-mode segment 0040h, the space following the IVT is called the BIOS Data Area, or BDA.
The BDA is used by the BIOS to keep track of how the system is configured; i.e., how many
serial and parallel ports exist. It is also used to keep track of the state of the running BIOS, such
as the track number over which a floppy disk recording head is positioned. The BDA extends up
to but not including physical address 00000500h, so that the first free address to be used by
operating systems and application program is 00000500h.

All the fields in the BDA are architected by IBM. Slight modifications to this area have been
made by other desktop BIOS vendors since PC clones have matured, to accommodate new BIOS
functionality. When these modifications become industry-standard on the desktop, they are
incorporated into the EMBEDDED BIOS BDA.

3.1.1.3 Free Low RAM

Chapter 3 EMBEDDED BIOS Adaptation Guide 25

General Software EMBEDDED BIOS Adaptation Guide

Starting at physical address 00000500h, or segment 0050h, operating systems and user programs
use memory as they see fit. The amount of memory, or size of free low RAM (including the IVT
and BDA), is kept in the BIOS Data Area by the BIOS itself, and can be retrieved with a BIOS
software service (INT 12h).

3.1.1.4 The Extended BIOS Data Area

The last several KB of low memory are reserved by the BIOS for extending the BIOS Data Area
without interfering with the well-established user address, 00000500h. During POST, the BIOS
determines the amount of low RAM, and reserves the top 1KB of this RAM for itself. When the
operating system or user application use the INT 12h BIOS service to determine the amount of
low memory, the BIOS actually returns 1KB less than is actually present. In a desktop PC
environment, the Extended BIOS Data Area usually ends at physical address 000A0000h to
make room for video adapter hardware such as the VGA screen regeneration memory). In
designs that do not have VGA hardware at segment A000h, additional memory can be mapped to
this address space by the hardware (or possibly by the chipset), so that the BIOS can provide
access to a larger amount of low memory.

3.1.1.5 Expanded Memory

In the 1980’s a standard emerged for add-on memory cards that provided 64KB pages of memory
within the memory range 000A0000h - 000E0000h called expanded memory. Several
application programs, such as Lotus 1-2-3 and Windows for example, took advantage of this
memory to store program data while they were running. This standard was primarily for
application programs, but operating systems evolved to manage this memory. The BIOS,
however, never manages this memory by itself (EMBEDDED BIOS does not provide any
support for EMS by itself).

3.1.1.6 Video ROM Extensions

Physical address 000C0000h or 000E0000h is inspected by the BIOS during POST for the
presence of a possible EGA or VGA ROM BIOS Extension. By checking for a special signature
and checksumming the ROM, the BIOS determines if the ROM exists, and if so, it is invoked by
the BIOS POST to initialize any video hardware that the core system BIOS is not aware of. For
example, the common VGA screens used in desktop PCs are actually not directly supported by
the video BIOS on the PC motherboard; instead, the video ROM BIOS Extension on the VGA
controller card hooks the BIOS service (INT 10h) so that it can handle video requests instead of
the system BIOS.

If a video ROM is not detected by the BIOS, and video services are enabled by the adaptation
engineer, then the default video routines in the video module of the BIOS are used to provide
video service for monochrome and color graphics adapters.

3.1.1.7 Other ROM Extensions

Additional ROM extensions are detected by POST during system initialization within a special
address range (usually 000C8000h - 000EE000h) at 2KB intervals using a special signature
pattern and checksum technique. When valid ROM extensions are found, they are called just as
video ROM extensions are called, and they perform operations as necessary to support their

26 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

function. For example, SCSI disk controllers may have ROM BIOS extensions to provide basic
disk services (INT 13h) so that the bootstrap process can actually boot from a SCSI device.
Similarly, network interface cards (NICs) may have a remote boot ROM that gets control as a
ROM extension so that it can initialize the NIC and request a download of the operating system
over a network.

3.1.1.8 The System ROM

The BIOS itself is stored in ROM so that it fits neatly at the end of the 1MB address space.
Typically, a 64KB ROM such as a 27C512, or a 128KB bulk Flash part such as a 28F010, is
used to hold the system BIOS code itself. This code receives control at power-on reset time at
physical address 000FFFF0h; this address is equivalent to the 16:16 address F000:FFF0.

On 80386 and above CPUs, the high bits of the physical address are all set, requiring the glue
hardware surrounding the CPU to either double-map the ROM BIOS into the top of extended
memory, or to disable the high bits so that the CPU really boots from the top of the lower 1MB
address space.

Regardless of how the CPU gets control, the system ROM usually occupies 64KB-128KB,
although the BIOS may be configured to use from 16KB to 256KB of that total file’s size with a
build option. Naturally, features must be removed from a full-featured BIOS to allow its size to
be reduced to arbitrarily small sizes.

3.1.1.9 Extended Memory

Just as the BIOS sizes low memory below 1MB during POST, it also determines the amount of
RAM above the 1MB address line and keeps this size in CMOS, if available. The amount of
usable extended memory is returned through a BIOS software service (INT 15h, function 88h),
although the BIOS does not provide any other services for managing this memory beyond simple
data copying functionality (INT 15h, function 87h). There is an additional service defined by the
ACPI specification (INT 15h, function E820h) that can report memory beyond the amount that
INT 15h function 88h can report. This is important because function 88h can only report up to
63MB of extended memory. This function, called SMAP, is supported by EMBEDDED BIOS.

The management of extended memory is the function of operating system software such as
HIMEM.SYS. This driver is available in the Embedded DOS-ROM source tree.

3.1.1.10 CMOS Memory

Actually separate from the memory address space of the processor, an amount of battery-backed
CMOS RAM is usually available in AT-compatible systems. In such a compatible configuration,
this memory is accessed by reading and writing to I/O ports 70h and 71h.

The BIOS uses this memory to store the equipment configuration and user options associated
with the operation of the BIOS, and the integrated BIOS Setup screen system is used to edit the
CMOS memory in a running system.

3.1.2 Interrupt Model

Chapter 3 EMBEDDED BIOS Adaptation Guide 27

General Software EMBEDDED BIOS Adaptation Guide

In addition to defining the way memory is used in a system, EMBEDDED BIOS has an interrupt
model for receiving BIOS service requests via software interrupts, handling CPU traps and
faults, processing device hardware interrupts, and managing points in the IVT that point to data
structures used by BIOS service modules.

The following table shows the IVT entries used by EMBEDDED BIOS. Note that some
interrupts (notably, vectors 08h through 12h) are used by the BIOS although they also be be
generated by the CPU in protected mode circumstances.

Vector Type Function or Service

00h CPU Divide by zero trap
01h CPU Single-step trap
02h CPU NMI interrupt
03h CPU Breakpoint trap (INT 3)
04h CPU Arithmetic overflow trap
05h CPU Array bounds exception
06h CPU Invalid Opcode Trap
07h CPU Device Not Available Trap
08h IRQ0 18.2 Hz Timer Tick
09h IRQ1 Keyboard
0ah IRQ2 Cascaded to PIC 2
0bh IRQ3 COM2 Serial Port
0ch IRQ4 COM1 Serial Port
0dh IRQ5 LPT2 Parallel Port
0eh IRQ6 Floppy Disk Controller
0fh IRQ7 LPT1 Parallel Port
10h Service Video Services
11h Service Equipment List Service
12h Service Low Memory Size Service
13h Service Floppy/IDE/ROM/Remote Disk Services
14h Service Serial Port Services
15h Service General Services, Up-Calls
16h Service Keyboard Services
17h Service Parallel Port Services
18h Up-Call Boot Fault Up-Call
19h Up-Call Bootstrap Up-Call
1ah Service Date/Time Services, PCI Services
1bh Up-Call Control-Break Up-Call
1ch Up-Call 18.2 Hz Application Timer Up-Call
1dh Table Pointer to Video Control Param Table
1eh Table Pointer to Diskette Parameter Table
1fh Table Pointer to Video Graphics Table
20h-3fh DOS -- reserved by DOS --
40h Redirector Floppy disk services redirected by IDE
41h Table Fixed Disk Parameter Table (Drive 80h)
42h Extension EGA Default Video Driver
43h Extension Video Graphics Characters
44h-45h N/A -- not used --
46h Table Fixed Disk Parameter Table (Drive 81h)
47h-49h N/A -- open --
4ah Up-Call User Alarm
4bh-6fh N/A -- open --

28 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

70h IRQ8 Real-Time Clock Interrupt (1 Khz)
71h IRQ9 -- open --
72h IRQ10 -- open --
73h IRQ11 -- open --
74h IRQ12 PS/2 Mouse
75h IRQ13 Math Coprocessor
76h IRQ14 IDE Drive Controller
77h IRQ15 APM Suspend Request
78h-ffh N/A -- open --

3.1.2.1 BIOS Service Interrupts

The BIOS receives requests to perform functions through software interrupts. Software
interrupts, generated by the operating system or by a user application, are generated with INT
nnh instructions, where nnh is a number that is assigned to a specific type of service, such as 16h
for keyboard input, 10h for video output, or 13h for disk I/O.

In most cases, a BIOS service has multiple functions. For example, the disk BIOS service
interrupt supports resetting the device, reading data from the media, writing data to the media,
and checking the type of media inserted into the drive. For multifunction BIOS services, the
requesting application places a function code in the AH CPU register, fills other registers as
necessary with operands, and executes the appropriate software interrupt for the service. When
the service completes, it returns to the caller to execute the instruction following the software
interrupt.

Upon return, the BIOS services return status or other information in CPU registers, many times
including the CPU flags register. For example, when an INT 13h disk read function is requested
to read from a disk that has been removed from the drive itself, the disk BIOS returns with the
carry flag set (CY) and a disk subsystem error code in the AH register. If the function were to
complete successfully, then the carry flag would not be set (NC). Remember that not all BIOS
services use the same return status conventions; therefore, you should consult the service
reference in Chapter 22 for complete details.

3.1.2.1.1 INT 10h, Video Services

All video functions are provided through the INT 10h software interrupt mechanism. The caller
provides a function code in the AH CPU register and specifies operands as appropriate for the
given function in other CPU registers before issuing the INT 10h instruction.

EMBEDDED BIOS actually begins handling an INT 10h request in its CONIO module, which
determines whether the video should be redirected over a serial link. This console redirection
enables embedded systems that don’t have a real MDA, CGA, EGA, or VGA video system to
display their output via more inexpensive means. Console redirection may play a part in the final
shipped embedded product, or it may simply be used during development and test in liu of an
actual PC keyboard and screen.

If CONIO determines that the INT 10h service should not be redirected to a serial device, then it
passes control to one of the modules that handle video controllers, such as module VIDEO,
which manipulates the 6845 CRT controller registers directly to manage the display. Actual
writing of data to the video screen and reading characters from the screen is accomplished by
memory reads and writes to video regeneration memory, mapped into the memory address space

Chapter 3 EMBEDDED BIOS Adaptation Guide 29

General Software EMBEDDED BIOS Adaptation Guide

at physical address 000b0000h for monochrome output, or 000b8000h for color output. Both
monochrome and color adapters may be present in a system, in which case using the INT 10h set
mode function can be used to switch between the displays.

If CONIO determines that INT 10h services should be redirected, then it calls the SERIAL
module to perform the work of transmitting characters to the remote terminal equipment. In
addition to writing characters to the display, the BIOS also supports the set cursor address
function, and several other functions that manipulate the video display in some manner. These
functions are translated to ANSI escape sequences that are transmitted to the remote terminal
equipment just as other data characters via the SERIAL module’s services through INT 14h.

The basic functions provided by the INT 10h BIOS are given below:

Function Video Service

00h Set Video Mode
01h Set Cursor Type
02h Set Cursor Position
03h Return Cursor Position
04h Return Light Pen Condition (not in core BIOS)
05h Set Current Video Page
06h Scroll Up Region
07h Scroll Down Region
08h Return Character and Attribute
09h Write Character and Attribute
0ah Write Character
0bh Set Color Palette
0ch Write Graphic Pixel (not in core BIOS)
0dh Read Graphic Pixel (not in core BIOS)
0eh Write Character Only
0fh Return Video Display Mode

3.1.2.1.2 INT 11h, Equipment List Service

The BIOS provides a way for the application to determine what equipment is available through
the INT 11h software interrupt mechanism. Unlike many of the other BIOS software interrupts,
INT 11h does not require a function code or any operands. Instead, it returns a bit mask in its
AX CPU register that can be inspected to determine what equipment is supported by BIOS
services. For a complete description of this function, see Chapter 22.

The equipment list is stored in the BIOS Data Area (BDA) by POST during system initialization
in a 16-bit field called DevFlags. ROM Extensions that extend BIOS services to support
additional equipment must edit this field if the equipment is to be made available to the operating
system or application.

3.1.2.1.3 INT 12h, Low Memory Size Service

The BIOS returns the amount of physical memory below the 1MB boundary (exclusive of the
1KB Extended BIOS Data Segment) in response to the INT 12h software interrupt. Like INT
11h (Equipment List), this software interrupt returns its information in the AX CPU register and
does not accept function codes or operands. See Chapter 22 for full details.

30 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

The low memory size is stored in the BIOS Data Area (BDA) by POST during system
initialization in a 16-bit field called LowMemorySize. ROM Extensions or other software that
uses memory from the end of available low memory must reduce this field by the amount of
memory reserved so that the operating system and applications will not overwrite the reserved
memory. This technique is used by the BIOS itself during POST to establish the Extended BIOS
Data Area (EBDA), a 1KB region located at the top of physical low memory.

3.1.2.1.4 INT 13h, Disk Services

All mass-storage devices, including floppy disk, hard disk, ROM disks, RAM disks, RFD disks,
and OEM-defined disks, are accessed through the INT 13h software interrupt. As with the video
services, INT 13h services accept a function code in the AH CPU register, with operands
appropriate to a given function placed in the other CPU registers before executing the INT 13h
instruction.

The following functions are supported by the FLOPPY disk driver (note that gaps in the function
numbers indicate unassigned functions for floppy I/O):

Function Floppy Disk Service

00h Reset Floppy Controller
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
05h Format Track
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
17h Set Disk Type
18h Set Media Type for Format

The following functions are supported by the IDE disk driver (note that gaps in the function
numbers indicate unassigned functions for hard drive I/O):

Function IDE Disk Service

00h Reset IDE Controller
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
05h Format Track
08h Read Drive Parameters
09h Initialize Parameters
0ah Read Long Sectors
0bh Write Long Sectors
0ch Seek to Cylinder
0dh Alternate Reset
10h Test Drive Ready

Chapter 3 EMBEDDED BIOS Adaptation Guide 31

General Software EMBEDDED BIOS Adaptation Guide

14h Run Controller Diagnostic
15h Read Disk Type
41h-48h Extended Disk Functions

The following functions are supported by the ROM disk driver (note that write-oriented
functions return a write-protected status for the ROM disk):

Function ROM Disk Service
00h Reset ROM Disk
01h Read Last Status
02h Read Sectors
04h Verify Sectors
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
18h Set Media Type for Format

The following functions are supported by the RAM disk driver:

Function RAM Disk Service
00h Reset RAM Disk
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
18h Set Media Type for Format

The following functions are supported by the Resident Flash Disk (RFD) driver:

Function RFD Disk Service
00h Reset Flash Disk
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
18h Set Media Type for Format

Disk I/O is handled by different code modules in the BIOS, depending on whether a specific
request is directed at a floppy device, an IDE hard drive, a ROM disk, a RAM disk, or a Resident
Flash disk. During POST, the FLOPPY1/2/3, IDE1/2, ROMDISK, RAMDISK, and RFD1/2
modules are initialized if enabled through CMOS. POST maps these servers to specific drives
when CMOS is scanned.

Disk I/O is logically divided into two types: floppy-compatible and hard drive-compatible.
Traditionally, DOS requires floppy-compatible drives to have a FAT file system layout with a
Partition Boot Record (PBR) in the first sector, two File Allocation Tables (FATs) following the

32 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

PBR, and a root directory following the FATs. Hard drives are expected to be partitioned, and
have a different logical layout. Starting with a Master Boot Record (MBR) in the first sector that
contains a Partition Table, the remainder of the hard disk is divided into partitions that each have
their own format logically similar to floppy disks. Each partition starts with a PBR, two FATs,
and a root directory.

Because floppy disks and hard drives have different information organizations, the BIOS
separates them into two sets of devices. Disks numbered 00h, 01h, 02h, and so on, are floppy
drives, and DOS can expect floppy-style file systems on them. Disks numbered 80h, 81h, 82h,
and so on, are hard drives, and DOS expects them to have an MBR, not a PBR, in the first sector.

The EMBEDDED BIOS ROM drive simulates one or more disks by treating the INT 13h read
sectors function as simply a memory copy from OEM-specified areas of ROM to the
application’s data buffer. The memory image for each disk is created by the adaptation engineer
using the DISKIMAG utility (provided with the EMBEDDED BIOS Adaptation Kit). ROM
disks can be either soft (formatted like a floppy disk) or hard (formattted like a hard drive). The
FILE_SYSTEM table entry in the project file that defines a ROM disk has a parameter that
specifies whether the image is formatted as a floppy or a hard disk.

The EMBEDDED BIOS RAM drive is similar to the ROM drive, except that it supports both
reading and writing. Build options specify the location of the RAM in the address space, and if
automatic formatting is to be used by the BIOS during POST, in the event the RAM disk
contents are not properly initialized.

The EMBEDDED BIOS Resident Flash Disk (RFD) operates only on Flash media, and can
simulate both floppy disks and hard drives up to 32MB in size with a special wear-leveling
algorithm that is built right into the core BIOS. Support for Flash media is provided through a
Media Control Layer (MCL), which in turn calls Media Technology Drivers (MTDs) to perform
the low-level I/O to the Flash. The FILE_SYSTEM table entry in the project file that defines a
RFD has a parameter that specifies whether the image is formatted as a floppy or a hard disk.

The OEM can also implement special file system drivers and integrate them into the BIOS disk
system without modifying the core BIOS source code. This is done by adding code to the board
module, and then adding a special FILE_SYSTEM table entry in the project file that refers to
the new file system’s entrypoint.

3.1.2.1.5 INT 14h, Serial Port Services

All serial I/O functions are provided by the BIOS through the INT 14h software interrupt
mechanism. As with disk drives, serial ports are numbered; the logical port numbers are 00h for
COM1, 01h for COM2, 02h for COM3, and 03h for COM4.

The serial I/O service accepts a function code in the AH CPU register and operands in other
registers. The logical port number is normally passed in the DX CPU register, so that the serial
service can operate on a specific serial port. The following table shows a summary of the serial
port services:

Function Serial Port Service

00h Initialize Serial Port
01h Send Character
02h Receive Character

Chapter 3 EMBEDDED BIOS Adaptation Guide 33

General Software EMBEDDED BIOS Adaptation Guide

03h Read Port Status
04h Extended Initialize
05h Manipulate Modem Control Register

Upon return from the INT 14h instruction, status is returned in a complex way, with the AX CPU
register containing both a Line Status Register and a Modem Status Register. Because this
service exposes actual bit patterns used in the 8250, serial ports tied to incompatible UARTs
(such as those on the 80C186-EC CPU) are supported by translating the status returned by such a
UART into the the most-equivalent bitmask that would correspond to the 8250’s status registers.

The BIOS handles INT 14h requests in the SERIAL module. This module translates logical port
numbers into physical port numbers by indexing into the ComPorts array in the BIOS Data
Area. Physical port numbers above 10h are assumed to be handled by the 8250 UART module,
whereas port numbers 00h-10h are assumed to be handled by the CPU personality module.
Thus, serial I/O requests are distributed on-the-fly to the appropriate hardware handler based on
the configuration data in the BIOS Data Area.

The original IBM BIOS supported serial port data transfer rates through 9600 baud. The baud
rate, as well as other communications parameters associated with a serial port, are configured
using an INT 14h Initialize Serial Port function. EMBEDDED BIOS supports this standard as
well as the Extended Initialize INT 14h function supported by modern desktop PC BIOS
implementations, allowing higher baud rates through 115K baud.

3.1.2.1.6 INT 15h, General System Services

Often called a catch-all general service, the INT 15h software interrupt is actually used two
ways: one where the application requests services, and another where the BIOS notifies the
application that it is about to enter or leave a spin-loop in order to wait for a device to complete a
task that will take some amount of real time. These "up-calls" or "call-outs" as they are
sometimes called, interrupt the user application, which may choose to "hook" INT 15h to receive
the notification, or not hook INT 15h, and therefore not be informed about the spin-loops. See
the section on "BIOS Up-Calls" later in this chapter for further details.

The INT 15h services used by the application are implemented by the BIOS. These services are
diverse; from returning the amount of available extended memory above 1MB, moving memory
from one physical address to another, and switching into protected mode, to returning the address
of the Extended BIOS Data Segment, returning the System Configuration Table (SCT) address,
and manipulating the watchdog timer (see Chapter 22 for programming details). These services
are all requested by placing a function code in the AH CPU register, setting other CPU registers
to operand values, and executing an INT 15h instruction. Upon return, status is returned in
several different ways; consult Chapter 21 for details. A summary of INT 15h services is shown
in the following table.

Function General Service

24h Query A20 Port 92h Support
4fh Scancode Translate Up-Call
53h Advanced Power Management
85h System Request Key Up-Call
86h Wait Micro Interval
87h Protected Mode Memory Block Move
88h Return Extended Memory Size in KB

34 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

89h Switch to Protected Mode
90h Device Busy Up-Call
91h Device Interrupt Up-Call
A0h Read/Write CMOS Cell
A1h Set Current I/O Redirection
A3h Get Embedded BIOS Version
A4h Query Embedded DOS-ROM file system
C0h Return System Configuration
C1h Return Extended BIOS Data Area
C2h PS/2 Mouse
C3h Enable/Disable Watchdog Timer
D0h Breakpoint into BIOS Debugger
D8h EISA Slot Configuration
E0h Resident Flash Array Functions
E8h Get Extended Memory Information
FFh Print Character for Embedded DOS-ROM Debug I/O

All INT 15h requests are dispatched by module MISC. Of course, if the operating system or
application "hooks" IVT entry 15h so that it can receive up-calls, then it will also receive other
function requests as well, and should pass them on to the BIOS in a "chained" approach.

Some functions are routed by MISC to the PROTMODE module, which handles steady-state
protected mode processing in the BIOS. PROTMODE is complex because it must deal with
several different mode switching techniques, and must also save the state of the CPU cache
across mode switches. For details about what methods are available, consult Chapter 7.

3.1.2.1.7 INT 16h, Keyboard Services

All keyboard I/O functions are provided through the INT 16h software interrupt mechanism.
Before executing an INT 16h instruction, the application places a function code in the AH CPU
register, and other operands as appropriate in other CPU registers. Upon return from the INT
16h software interrupt, the status is returned in special ways, including through the Zero flag in
the CPU. See Chapter 21 for programming details. A summary of INT 16h services is shown in
the following table.

Function Keyboard Service

00h Read Character
01h Return Keyboard Status
02h Return Keyboard Flags
03h Set Keyboard Typematic Rate
05h Push Character/Scancode to Buffer
10h Enhanced Read Character
11h Enhanced Write Character
12h Enhanced Return Keyboard Flags
f0h Set CPU Speed
f1h Get CPU Speed
f4h Cache Control

As the table indicates, several keyboard functions in fact don’t manipulate the keyboard. Instead,
they manipulate other system components, such as the CPU’s clocking and the system’s cache.
Because these features were commonly implemented in the 8042 keyboard controller of many

Chapter 3 EMBEDDED BIOS Adaptation Guide 35

General Software EMBEDDED BIOS Adaptation Guide

desktop PC systems, their controlling BIOS functions were added to the INT 16h services. The
CPU speed functions are routed to the HELPER module, and the cache control function is routed
to the CACHE module.

As with video output through INT 10h, EMBEDDED BIOS is able to support a real PC or AT
keyboard, or it can redirect INT 16h services over a serial port. Module CONIO receives the
application INT 16h requests and determines how keyboard requests are to be serviced. If
redirection to a serial port is enabled, then it calls the SERIAL module to read a character from a
serial port or determine the serial port’s status.

3.1.2.1.8 INT 17h, Parallel Port Services

All parallel port I/O services are provided through the INT 17h software interrupt mechanism. A
function code is passed by the application in the AH CPU register, with additional operands as
required in other CPU registers. In particular, the DX register is programmed with a logical
printer port number, where 0=LPT1, 1=LPT2, and 2=LPT3. The following table shows the
functions available in the INT 17h service family:

Function Parallel Port Service

00h Write Character
01h Initialize Parallel Port
02h Return Parallel Port Status

INT 17h requests are handled by the BIOS through module PARALLEL. This module translates
the logical parallel port number into a physical port I/O address, and then manipulates that port
directly to perform the function. Parallel port hardware is expected to be compatible with the
IBM hardware.

3.1.2.1.9 INT 18h, Boot Fault Routine

After POST initializes the system, it calls INT 19h to boot the operating system from the
appropriate device. If the INT 19h service fails to load the operating system, then the BIOS (or
the operating system boot record) executes an INT 18h instruction, so that the ROM BIOS can
regain control and perform an alternate function.

By default, EMBEDDED BIOS initializes the INT 18h function to a routine that prints "No boot
device available.", and prompts to enter the debugger or SETUP system, or reboot the system.

At any point prior to the boot process, user-written code, such as code in ROM BIOS Extensions,
can "hook" the INT 18h interrupt vector and gain control in this situation, thereby replacing the
default handler in the BIOS. In the original PC, INT 18h jumped to a separate ROM that
contained ROM BASIC. The embedded system developer might use this mechanism to execute
application code from ROM in the event of a boot device failure.

3.1.2.1.10 INT 19h, Bootstrap Routine

After POST initializes the system, it calls module BOOTOS, which executes an INT 19h
instruction to load the operating system or start the embedded application.

36 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

By default, EMBEDDED BIOS initializes the INT 19h function to a routine in module BOOTOS
that cycles through six boot actions defined in CMOS cells. The six boot actions are attempted
in order until one is successful. Keep in mind that, if ROM extensions such as DOS hook INT
19h so that they can get control when the system boots, then BOOTOS will not receive control to
cycle through all of the boot actions, and the boot action sequence will be defeated.

Boot actions are Boot from any drive (A: through K:), Boot Windows CE in ROM, Boot
Embedded DOS-ROM out of ROM, Enter Manufacturing Mode, Enter Debugger, and No
Action.

The boot actions for drives A: through K: read one sector from the drive at sector 1, head 0, track
0 into physical memory location 00007C00h. If the read is successful and if the boot record
contains the byte sequence 55h, aah, as the last two bytes in the 512-byte sector, then control is
transferred to the boot record at 16:16 address 07C0:0000, and the BIOS plays no further role in
the bootstrap process.

There are two ways to boot Windows CE with EMBEDDED BIOS. The first way is selected as
a boot action "Boot Windows CE." The second way is by enabling a feature in SETUP that
instructs EMBEDDED BIOS to attempt to find the Windows CE system file (NK.BIN) on disks
that BOOTOS is told to boot from. If NK.BIN can be found during POST, it will be loaded into
memory and booted. Otherwise, the boot record for that drive will be loaded and booted. This
makes it possible to load Windows CE without loading DOS to run LOADCEPC. This feature
of EMBEDDED BIOS is called "CE Ready."

As with the INT 18h interrupt vector, user-written code, such as code in a ROM BIOS Extension,
can "hook" the INT 19h interrupt vector and gain control when it is time to load the operating
system or start an embedded application. For systems with application code located and burned
into ROM, the INT 19h vector can be hooked during POST and then be used as a way to receive
control after the system has been initialized. This is how Embedded DOS-ROM receives control
when it is configured to boot out of ROM.

3.1.2.1.11 INT 1ah, Time/Date Services

All time and date services are provided through the INT 1ah software interrupt mechanism. The
application places a function code in the AH CPU register, and places any appropriate operands
in other CPU registers, before executing an INT 1ah instruction. Upon return, INT 1ah services
return their status in a complex way. The following table summarizes the available date/time
services. Refer to Chapter 21 for complete programming details.

Function Date/Time Service

00h Return Ticks Since Midnight
01h Set Ticks Since Midnight
02h Return Time
03h Set Time
04h Return Date
05h Set Date
b1h PCI Services (architected by Intel)

The INT 1ah service manages the time and date as separate pieces of information, and in two
ways. In systems with a PC-compatible Real Time Clock (RTC) component, the BIOS is

Chapter 3 EMBEDDED BIOS Adaptation Guide 37

General Software EMBEDDED BIOS Adaptation Guide

capable of reading the contents of the RTC and updating it under program control. Both the date,
and the time, can be stored in this device.

In systems that do not have a RTC component (and in those that do), the system time is
maintained in a different way as a 32-bit number that represents "the number of ticks since
midnight", in a location in the BIOS Data Area. It is common for DOS to detect whether the
RTC services are available, and then use the ticks since midnight value as a system time when
the real time clock is not present. When available, the RTC is normally the preferred method of
obtaining the time, and is the only way of obtaining the date, since the RTC part is usually kept
running with a battery when the system is turned off.

As can be seen from the table, INT 1ah is also the access point for PCI services, available on
some targets. Consult Chapter 21 for details.

3.1.2.2 Table Pointers

Not all IVT entries point to a BIOS service routine. Several BIOS-managed interrupt vectors
actually point to data structures maintained by the BIOS. These data structures are the Video
Parameter Table (VPT), the Diskette Parameter Table (DPT), Video Graphics Character Table
(VGCT) and the Fixed Disk Parameter Tables (VDPTs).

3.1.2.2.1 INT 1dh, Video Parameter Table (VPT)

The Video Parameter Table (VPT) is used by the VIDEO module to program the 6845 CRT
controller’s internal registers according to the specific mode requested by the application. The
VPT is pointed to by IVT entry 1dh, and may be changed by software such as a VGA ROM
Extension that supports additional modes.

The default VPT used by the integrated VIDEO module is shown below (this table is found in
module BIOS in the source code):

; The following table contains parameters (indexed by the user mode)

; to load into the 6845’s 16 operating registers. Vector 1dh points

; to this table, and the user software may replace it.

 PUBLIC VideoTbl

VideoTbl label byte

 db 38h, 40, 2dh, 10, 1fh, 6, 19h, 1ch, 2, 7, 6, 7, 0, 0, 0, 0

 db 71h, 80, 5ah, 10, 1fh, 6, 19h, 1ch, 2, 7, 6, 7, 0, 0, 0, 0

 db 38h, 40, 2dh, 10, 7fh, 6, 64h, 70h, 2, 1, 6, 7, 0, 0, 0, 0

 db 61h, 80, 52h, 15, 19h, 6, 19h, 19h, 2, 13, 11, 12, 0, 0, 0, 0

3.1.2.2.2 INT 1eh, Floppy Diskette Parameter Table (DPT)

IVT entry 1eh points to the current Diskette Parameter Table, or DPT, being used by the floppy
disk BIOS. Because there are potentially several floppy drives in a system, the DPT defines the
operational characteristics of the floppy currently being accessed.

The DPT pointer in the IVT is used by more than just the FLOPPY module. During the
initialization of DOS, it copies the ROM-based DPT established by the BIOS into its own RAM

38 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

buffer, and re-points the 1eh vector to the RAM location. This allows it to modify the default
DPT before performing diskette operations so that they can be optimized.

Reestablishing the DPT in RAM serves another purpose as well. Softguard copy-protection
relies on the fact that the DPT is copied into RAM by DOS, and edits the DPT pointed to by the
1eh vector to tell the BIOS that it will be reading 128-byte sectors during its check for a special,
128-byte sector on a certain track of a release diskette. When it is done calling INT 13h services
to verify that this sector exists, then it restores the DPT to its original state.

Clearly, the DPT is not an architecturally sound way of providing more control over floppy disk
services provided by the BIOS. Unfortunately, this architectural relic was firmly established
with the first IBM PC BIOS and must be provided in other BIOS products.

The format of the DPT is shown below in an assembly language structure. This structure can be
found in your INC directory in the STRUC.INC header file.

; Diskette parameter table structure format.

DPT struc

dpt_specify1 db ? ; specify command 1.

dpt_specify2 db ? ; specify command 2.

dpt_motoroff db ? ; motor off time.

dpt_bps db ? ; bytes per sector (coded, above).

dpt_spt db ? ; sectors per track.

dpt_gap db ? ; gap length between sectors.

dpt_dtl db ? ; data length (always ffh).

dpt_gap3 db ? ; gap length for FORMAT.

dpt_fill db ? ; fill byte for FORMAT.

dpt_headsettle db ? ; head settle time.

dpt_motoron db ? ; motor-on start time.

dpt_maxtrack db ? ; max track number for this drive.

dpt_drr db ? ; data transfer rate.

dpt_unused1 db ? ; unused byte.

dpt_unused2 db ? ; unused byte.
DPT ends

The fields in the DPT are actually used as operand bytes when the FLOPPY1, FLOPPY2, and
FLOPPY3 modules send commands to the Intel 82077A or 82078-compatible floppy disk
controller. The specific values for each field are governed by the established standards for
recording information on DOS-compatible floppy disks for the various drive types and media
types. By manipulating these fields, the application program can cause the BIOS to read, write,
format, and verify nonstandard media. For exact specifications on the values to be stored in the
DPT, consult the Intel documentation on the 82077A or 82078 floppy disk controllers.

3.1.2.2.3 INT 1fh, Video Graphics Character Table (VGCT)

The Video Graphics Character Table (VGCT) is pointed to by IVT entry 1fh, and is used by
VGA ROM BIOS Extensions to define the shape of the IBM-compatible character set when in
graphics modes. When in character modes, the built-in VIDEO module in the BIOS does not use
this entry. If you are internationalizing your adaptation of EMBEDDED BIOS to foreign
character sets, this is the table to change the fonts for standard BIOS resolutions.

Chapter 3 EMBEDDED BIOS Adaptation Guide 39

General Software EMBEDDED BIOS Adaptation Guide

3.1.2.2.4 INT 41h/46h, Fixed Disk Paramter Tables (FDPTs)

IVT entries 41h and 46h are used in versions of the BIOS that support IDE drives, so that
operating system software can determine the fixed disk drive types. Introduced by IBM with the
IBM PC/AT Personal Computer, IVT entry 41h points to a data structure that describes the
primary hard drive (drive 80h) and IVT entry 46h points to a data structure that describes the
secondary hard drive (drive 81h). These structures should not be used by application software,
and are rarely used by operating system software, since INT 13h function 08h can provide
substantially the same information about both floppies and fixed disks in the system.

To maintain compatibility with the IBM PC/AT BIOS, EMBEDDED BIOS establishes these
vectors to point to structures with the following format (see module IDE1 for how they are
created):

FDPT STRUC

fdpt_cyl dw ? ; maximum number of cylinders.

fdpt_hd db ? ; maximum number of heads.

 dw ? ; reserved, MBZ (not used, see PC/XT).

fdpt_wp dw ? ; starting cyl for write precompensation.

 db ? ; reserved, MB. (max ECC data burst length).

 db ? ; DTE_CONTROL.

 db ? ; reserved, MBZ.

fdpt_cap dw ? ; disk capacity in megabytes.

fdpt_lz dw ? ; landing zone cylinder.

fdpt_spt db ? ; sectors per track.

 db ? ; reserved.

FDPT ENDS

3.1.2.3 BIOS Upcalls

While nearly all of the software interrupts associated with the BIOS are invoked by the operating
system or application and serviced by the BIOS itself, there are a few software interrupts that are
actually generated by the BIOS, and may be "hooked" by the operating system or the application.
These software interrupts, called "up-calls" or "call-outs", are used to notify application software
that events in the BIOS have occurred.

3.1.2.3.1 INT 15h Device Management

The INT 15h software interrupt is a two-way interrupt service. Functions such as 87h, 88h, and
89h are made by the application and serviced by the BIOS to provide protected mode support.
Other functions, such as 90h and 91h, are invoked by the BIOS, and "hooked" by DOS or by
application software to be notified when events inside the BIOS occur. These invocations of INT
15h functions by the BIOS are called "up-calls", or simply, "call-outs".

INT 15h up-calls are generated by various modules within the BIOS. The floppy and hard disk
modules are the most important ones, as they involve comparatively large intervals of time
during head seeks and waiting for rotational latency of the media. During seeks and disk
rotations, an operating system can use INT 15h to gain control and perform other tasks until
notified that the operation has completed. Just as with the other INT 15h services, the BIOS

40 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

places a function code in the AH CPU register, with a device code in other registers, before
executing its INT 15h instruction.

3.1.2.3.1.1 INT 15h Function 4fh

Function code 4fh is used to indicate that the keyboard has received a keypress or key release
interrupt, with a scancode in the AL CPU register from the keyboard controller. The
KEYBOARD module issues the INT 15h function to give the application a chance to interpret
the scancode and modify it if required.

Upon return from the INT 15h function 4fh call, the keyboard BIOS checks the state of the carry
flag. If the carry flag is cleared by the application, then the BIOS performs no more processing
on the scan code and assumes that the application handled it. If the carry flag was set by the
application, then the BIOS handles the scan code as returned by the application in the AL CPU
register. The latter case allows the application to modify the scan code in the AL register without
handling it directly. Because the BIOS sets the carry flag before issuing the INT 15h instruction,
the BIOS will handle the scan code by default if the application does not modify the carry flag.

3.1.2.3.1.2 INT 15h Function 90h

Function code 90h is used to indicate that a spin-loop is about to be executed by a BIOS
component. When the BIOS invokes INT 15h function 90h, it passes a device code in the AL
CPU register that indicates what device is causing the wait. The following device codes are
architected by IBM:

Code Device Name

00h IDE Hard Drive
01h Floppy Disk Drive
02h Keyboard
03h PS/2 Mouse
80h Network
FCh Hard Disk Reset Operation
FDh Floppy Disk Drive Motor Control Operation
FEh Printer

Upon return, the application software that hooks the INT 15h function 90h service should set the
CY flag if it did not wait for the device to complete its operation, or clear the CY flag if a wait or
timeout occurred in the application code. The state of the CY flag is tested by the BIOS when
the INT 15h function 90h routine returns to determine whether to actually perform or skip the
spin-loop.

3.1.2.3.1.3 INT 15h Function 91h

Function code 91h is used to indicate that a device interrupt has just been received that would
complete the spin-loop. As with function 90h, a device code is passed in the AL CPU register to
indicate which device has just completed an operation. The device codes for functions 90h and
91h are identical.

Chapter 3 EMBEDDED BIOS Adaptation Guide 41

General Software EMBEDDED BIOS Adaptation Guide

Upon return, the application software that hooks the INT 15h function 91h service should set the
AH CPU register to 00h and clear the CY flag.

3.1.2.3.1.4 INT 15h Function 85h

Another INT 15h up-call provides notification that the user has pressed or released the SysReq
key on an AT-class (101-key) keyboard. When the KEYBOARD.ASM module detects that this key is
pressed, it issues an INT 15h with AH=85h, and sets the AL CPU register to 00h, indicating that
they key was depressed. When the key is released, it issues an INT 15h with AH=85h, and sets
the AL CPU register to 01h.

3.1.2.3.2 INT 1bh Control-Break Signal

The KEYBOARD.ASM module executes an INT 1bh software interrupt if it detects that the user
pressed the Control and Break keys simultaneously. This allows the application to gain control
when this happens. Upon return from the INT 1bh instruction, the BIOS stores a 00h scan code
and 00h character code in the keyboard’s typeahead buffer.

DOS normally hooks the INT 1bh Interrupt Vector Table entry so that it can terminate a program
prematurely. The mechanisms used by DOS to make this happen are proprietary to the specific
version of DOS and are beyond the scope of this manual.

3.1.2.3.3 INT 1ch User Timer Interrupt

The BIOS provides a regular 18.2Hz heartbeat for operating systems and applications by
executing an INT 1ch instruction every 55 milliseconds. By default, the BIOS has its own INT
1ch handler that does nothing, so that the application software is not required to provide a
handler unless one is needed.

In strictly ISA systems, INT 1ch is executed inside the IRQ0 Interrupt Service Routine of the
BIOS after the 8254 Programmable Interval Timer’s T0 timer expires, and after the End-Of-
Interrupt (EOI) has been issued to the primary Programmable Interrupt Controller (PIC). Thus,
suspension inside the INT 1ch handler by the application does not degrade system performance
the way it would be if the application suspended operations inside the INT 08h handler.

In non-ISA systems, such as those designed around the NEC V-Series (i.e., V25) processors,
EMBEDDED BIOS cannot program the on-board timers to generate an interrupt on INT 08h.
Instead, the timer is actually hard-wired to interrupt vector 1ch. The BIOS accounts for this and
calls INT 08h inside the INT 1ch handler. Application software should be aware of this
possibility and not block inside the INT 1ch handler. Instead, they should chain the INT 1ch
handler, call the lower layer first, and then perform any work as required. This technique gives
the BIOS a chance to issue an EOI before any application code runs.

3.1.2.3.4 INT 4ah Real Time Software Interrupt

Just as the ISA IRQ0 hardware timer interrupt routed to INT 08h causes the INT 1ch user timer
software interrupt to be generated every 55ms, ISA IRQ8 is tied to a 1Khz timer routed to INT
70h, which in turn causes an INT 4ah instruction to be generated every 1ms (at a 1Khz rate).

42 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

Commonly called the real-time clock interrupt, INT 4ah can be "hooked" by real-time kernels to
gain control for rescheduling purposes on ISA platforms. Warning: Nonstandard platforms may
not provide this support, as it is provided by the Dallas Real-Time Clock (RTC) chip in PC/AT-
compatible targets.

To enable the 1Khz INT 4ah interrupt heartbeat, the operating system or application must
manipulate the CMOS RTC registers. The BIOS automatically routes the hardware interrupt
(IRQ8) to interrupt vector 70h. The BIOS-supplied ISR for INT 70h then calls INT 4ah after
issuing an EOI to both Programmable Interrupt Controllers (PICs).

3.1.2.4 CPU Traps/Faults

Intel 8086-family processors and their architectural equivalents all provide a way for the
operating system or application program to gain control when an instruction cannot be executed
for some reason. When the CPU encounters a problem with executing an instruction, it generates
an exception.

When EMBEDDED BIOS is built with the option to enable the integrated BIOS debugger, the
BIOS routes all the CPU-generated exceptions to the debugger itself, so that the adaptation
engineer can determine why the exception occurred and then debug the problem. Without the
debugger enabled, the operating system or application program is responsible for catching
exceptions and handling them in an appropriate manner.

There are two types of exceptions; namely, traps and faults. Traps are generated when something
happens that makes it impossible for the instruction to be restarted. When an invalid instruction
is detected, for example, an "Invalid Instruction Trap" occurs.

Faults are different from traps in that a fault handler can perform some sort of work that would
potentially allow the problem instruction to be able to re-execute correctly. A good example of
such a fault is the "Page Fault" mechanism commonly used in virtual memory management
systems in protected-mode operating systems. Because an instruction may execute from a page
that is not present in memory, or perhaps because its operands in memory are located in pages of
memory that are not present, the page fault mechanism gives the operating system control so that
the necessary pages of virtual memory can be mapped to real physical memory. Once the
mapping is completed, the fault routine returns to the interrupted context, and the instruction
proceeds as though the fault never happened.

In Intel CPUs, the following exceptions can be generated by the CPU. Note that some are
marked as traps, and some are faults. Also note that the interrupt vector numbers assigned to the
exceptions conflict with the BIOS service interrupt numbers. This is not a misprint; it is an
historical part of the BIOS architecture first defined by IBM.

Vector Processors Exception Type

00h 8086 Divide Error Trap
01h 8086 Instruction Trace Trap
02h 8086 NMI Interrupt (Trap)
03h 8086 Breakpoint Trap
04h 8086 Arithmetic Overflow Trap (INTO Instructions)
05h 80286 Array Bounds Trap
06h 8086 Invalid Opcode Trap

Chapter 3 EMBEDDED BIOS Adaptation Guide 43

General Software EMBEDDED BIOS Adaptation Guide

07h 8086 Device Not Available Trap
08h 80286 Double Fault
09h N/A -- Reserved for Future Use --
0ah 80286 Invalid Task State Segment Fault
0bh 80286 Segment Not Present Fault
0ch 80286 Stack Exception Fault
0dh 80286 General Protection Fault
0eh 80386 Page Fault
0fh N/A -- Reserved for Future Use --
10h 80386 Floating Point Fault
11h 80486 Alignment Fault
12h 80486 Machine Check Fault

In NEC V-Series CPUs, the following exceptions can be generated by the CPU.

Vector Processors Exception Type

00h V20 Divide Error Trap
01h V20 Instruction Trace Trap
02h V20 NMI Interrupt (Trap)
03h V20 Breakpoint Trap
04h V20 BRKV Instruction
05h V20 CHKIND Instruction

3.1.2.5 Hardware Interrupts

EMBEDDED BIOS is configurable to support a wide variety of processors that provide at least
the functionality of the Intel 8088 CPU. Processors in the Intel 8086 family include the 80286,
the 80386, the i486, Pentium, and Pentium-Pro CPUs, and these CPUs are generally deployed in
ISA, PCI, or local bus-type system architectures.

Intel’s 80C186-EA/EB/EC family of processors provide a superset of the instruction set, but in
addition have on-board peripherals that are not like those in an ISA-class machine. Instead, the
on-board timers, serial ports, and so on, are internally wired to different interrupt request lines,
which in turn translate to different interrupt vectors that must be serviced by the BIOS.

Similarly, the NEC V-Series processors execute supersets of the Intel 8086 CPU’s instruction set;
however, their on-board peripherals are also proprietary and are internally-wired to different
interrupt request lines. These different IRQs are necessarily routed through different interrupt
vectors.

ISA-class systems all have a similar interrupt model for hardware interrupts. The ISA interrupt
assignments are as follows:

IRQ Vector Device

IRQ0 08h 8254 Programmable Interval Timer
IRQ1 09h Keyboard Controller
IRQ2 0ah Cascade Interrupt to PIC2
IRQ3 0bh COM2 Serial Port (8250)
IRQ4 0ch COM1 Serial Port (8250)

44 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

IRQ5 0dh LPT2 Parallel Port
IRQ6 0eh Floppy Disk Controller
IRQ7 0fh LPT1 Parallel Port
IRQ8 70h Real-Time Clock Interrupt (1Khz)
IRQ9 71h -- open --
IRQ10 72h -- open --
IRQ11 73h -- open --
IRQ12 74h PS/2 Mouse
IRQ13 75h Math Coprocessor
IRQ14 76h Primary IDE Controller
IRQ15 77h Secondary IDE Controller

3.3 Setup Screens

The EMBEDDED BIOS SETUP screen system is a comprehensive in-system configuration
utility that can be invoked by the user during a power-on reset. SETUP provides a menu-driven,
multi-screen interface that allows the user to quickly navigate through options at all levels of
complexity. SETUP can even be configured by the adaptation engineer to redirect its keyboard
and screen I/O over a serial port.

SETUP consists of ten components. The first component is the SETUP module itself, which
implements the main menu and dispatches to the other components, as shown below.

Setup Module Menu Option

SETUP Main Menu
SETUPBAS "Basic CMOS Configuration"
SETUPCST "Custom Configuration"
SETUPDEM "General Software Demonstration Screen"
SETUPDIA "Standard Diagnostic Routines"
SETUPPMT "Power Management Timer Configuration"
SETUPPMF "Power Management Device Configuration"
SETUPPWD "Password Configuration"
SETUPSHA "Shadow Configuration"
SETUP "Start System Debugger"
SETUP "Enter Manufacturing Mode"
SETUP "Format RAM Disk"
SETUP "Format Flash Disk"
SETUP "Reset CMOS To Last Known Values"
SETUP "Reset CMOS To Factory Defaults"
SETUP "Write To CMOS And Exit"
SETUP "Exit Without Saving Changes"
DIAG Diagnostics SETUP Screen, Part 1
DIAG2 Diagnostics SETUP Screen, Part 2

3.4 API Service Modules

The implementation of EMBEDDED BIOS is highly modular. Service modules, such as those
that receive control when application software executes an INT 16h service request, are separated
from the modules that actually manipulate hardware wherever possible. This enables the BIOS

Chapter 3 EMBEDDED BIOS Adaptation Guide 45

General Software EMBEDDED BIOS Adaptation Guide

to be expanded to support new devices without affecting its architectural integrity. The
following is a list of EMBEDDED BIOS service modules.

Module Name Function

CONIO Keyboard and Video I/O (INT 16h, INT 10h)
DISKIO All Disk I/O (INT 13h)
MISC Information Services (INT 11h, 12h, 15h)
PARALLEL Parallel I/O (INT 17h)
SERIAL Serial I/O (INT 14h)
TIME Date/Time (INT 1ah)
PCIAPI PCI BIOS Function Router and Handlers

3.5 Device Service Modules

The modules that actually interact with devices are shown below. Overlap with the Service
Modules list above occurs because sometimes a module both services a software interrupt and
also interacts with the hardware.

Module Name Function
72421 72421 Real Time Clock Device Driver
8042 8042-Compatible Keyboard Controller Device Driver
8237 8237A-Compatible DMA Controller Device Driver
8250 8250-Compatible UART Device Driver
8254 8254-Compatible Counter Timer Device Driver
8255 8255 PC/XT PIO Device Driver
8259 8259-Compatible Interrupt Controller Device Driver
HD61830 Hitachi 61830 LCD Driver
CUSTKBD Custom Keyboard Module (for OEM use)
CUSTVID Custom Video Module (for OEM use)
FLOPPY1 Floppy Device Driver, Part 1
FLOPPY2 Floppy Device Driver, Part 2
FLOPPY3 Floppy Device Driver, Part 3
IDE1 IDE/Hard Disk Driver, Part 1
IDE2 IDE/Hard Disk Driver, Part 2
KEYBOARD PC, PC/XT, PC/AT Keyboard Driver
MTDAMD16 16-Bit AMD Flash Media Technology Driver
MTDAMD81 8-Bit 1-Way Interleave AMD Flash (with background erase) MTD
MTDAM81S 8-Bit 1-Way Interleave AMD Flash (no background erase) MTD
MTDAMD82 8-Bit 2-Way Interleave AMD Flash Media Technology Driver
MTDAMD84 8-Bit 4-Way Interleave AMD Flash Media Technology Driver
MTDATM81 8-Bit 1-Way Interleave Atmel Flash Media Technology Driver
MTDBULK 8-Bit Bulk Flash Media Technology Driver
MTDINT16 16-Bit Intel Flash Media Technology Driver
MTDINT81 8-Bit Intel Flash Media Technology Driver
MTDINT82 8-Bit 2-Way Interleave Intel Flash Media Technology Driver
MTDINT8A 8-Bit 1-Way Boot Block Intel Flash Media Technology Driver
MTDINT8B 8-Bit 2-Way Intel Flash Media Technology Driver
MTDINTA 16-Bit Advanced Intel Flash Media Technology Driver
MTDINTA2 16-Bit 2-Way Advanced Intel Flash Media Technology Driver
MTDTNAND Toshiba NAND Media Technology Driver
MTDRAM RAM Media Technology Driver

46 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

MTDROM ROM Media Technology Driver
PS2MOUSE PS/2 Mouse Device Driver
RAMDISK RAM Disk Driver
RFD1 Resident Flash Disk, Part 1
RFD2 Resident Flash Disk, Part 2
ROMDISK ROM Disk Driver
VIDEO 6845 CRT Controller Device Driver
SERMSG RS-232 Driver for Manufacturing Mode

3.6 Other Modules

Other modules that aren’t service request handlers or device drivers are shown below. Some of
these modules provide other types of functionality, such as the integrated BIOS debugger.
Others serve as routers for directing requests to the appropriate device handler (i.e., cache
control).

Module Name Function

APM Advanced Power Management Request Handler
BIOS Data Structures & BCPA Patch Area
BOARD Board Personality Module Default Routines
BOOTOS Boot-Time Action Logic
CACHE Cache Request Router
CFGBOX Configuration Box Display
CHIPSET Chipset Personality Module Default Routines
CPU CPU Personality Module Default Routines
DEBUG Debugger Main Loop and Command Dispatching
DEBUGASM Debugger Disassembler
DEBUGCMD Debugger Command Handlers
DEBUGISR Debugger Interrupt Service Routines
DEBUGOBJ Debugger Command Handlers
DEBUGTBL Debugger Opcode Table
EMULATE PCODE interpreter
HELPER Helper Routines for BIOS
MEDIA Media Control Layer
MEMTEST Exhaustive Memory Tests
MFGPROT Manufacturing Mode Protocol Engine
PCI PCI Bus Support
POST Power-On Self-Test Main Routine
POST1 POST Routines
POST2 POST Routines
POST3 POST Routines
POST4 POST Routines
POST5 POST Routines
POWER Power Management Engine
PRINTF Output Formatting Package
PROTMODE Protected Mode Switching, A20 Gating, Data Copying
ROMSCAN ROM Extension Scan

3.7 CPU Personality Modules

Chapter 3 EMBEDDED BIOS Adaptation Guide 47

General Software EMBEDDED BIOS Adaptation Guide

EMBEDDED BIOS derives part of its configurability from the way its architecture permits
routing of I/O requests to peripheral device managers or CPU Personality Modules (CPMs), so
that on-board devices can be supported. In effect, all CPU-specific code in EMBEDDED BIOS
is confined to one module called CPU.

Actually, the CPU module is a shell for convenience. Based on the CPUCLASS parameter in the
project file, it includes the right .ASM files from a subdirectory of the CPUS directory that
provide support for a particular CPU class.

The EMBEDDED BIOS Adaptation Kit includes standard support for NOCPU CPU class, which
includes the generic forms of the following processors: 8088, 8086, 80286, 80386, i486,
Pentium, and Pentium Pro. Exotic forms of these processors, such as the 80486SLC, or high
integration processors such as the 80C186-EC and 386-EX, are supported by other class modules
not provided with the standard Adaptation Kit. Typically, however, the standard NOCPU CPU
class module can be adapted to support similar CPUs without too much effort.

EMBEDDED BIOS CPU Personality Modules all have the same architecture, regardless of the
CPU class being supported. They all implement functions that are called by other components of
the BIOS. A summary of the CPM functions is given below. The complete CPM specification
is presented in Chapter 18.

CPM Function Purpose

CpuInit0 Early CPU initialization
CpuInit1 Normal CPU initialization
CpuInitRefresh Test and initialize CPU DRAM refresh controller
CpuEnableApm Enable APM Support in CPU Module
CpuGetProcessorType Return CPU type ordinal
CpuGetProcessorName Return pointer to ASCIIZ CPU name
CpuHookVectors Allow CPU Personality Module to route interrupts
CpuInitDma Test and initialize CPU DMA controller
CpuEnableDmaCtrl Enable CPU DMA controller
CpuDisableDmaCtrl Disable CPU DMA controller
CpuStartDma Start CPU DMA process
CpuFloppyDma Start CPU DMA process for floppy channel
CpuInitIntCtrl Test and initialize CPU interrupt controller
CpuEnableIntCtrl Enable interrupt controller
CpuDisableIntCtrl Disable interrupt controller
CpuUnmaskInt Enable interrupt level at CPU interrupt controller
CpuEoi Perform EOI on CPU interrupt controller
CpuInitTimer Test and initialize CPU timer controller
CpuBeep Beep speaker using the CPU timer controller
CpuInitWatchdog Test and initialize CPU watchdog timer
CpuEnableWatchdog Start watchdog timer
CpuDisableWatchdog Stop watchdog timer
CpuKickWatchdog Kick watchdog timer
CpuEnableCache Enable CPU L1 cache
CpuDisableCache Disable CPU L1 cache
CpuSetFastSpeed Set CPU speed to high
CpuSetSlowSpeed Set CPU speed to low
CpuEnableA20 Enable A20 line in CPU-specific manner
CpuDisableA20 Disable A20 line in CPU-specific manner
CpuTestSyncIo Test CPU synchronous I/O controller

48 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

CpuInitSerial Test and initialize CPU serial ports
CpuInitParallel Test and initialize CPU parallel ports
CpuInitSerBios Initialize serial I/O subsystem in CPU
CpuSerPutCh Write byte to CPU serial port
CpuSerGetCh Read byte from CPU serial port
CpuSerGetStatus Read status of CPU serial port
CpuSerInit Handle INT 14h fn 00h for CPU serial port
CpuSerInitExt Handle INT 14h fn 04h for CPU serial port
CpuExtRwCtrl Handle INT 14h fn 45h for CPU serial port

3.8 Chipset Personality Modules

EMBEDDED BIOS can also be configured to support high-integration chipsets used in high-
density motherboard designs, and chipsets that are actually packaged with embedded processors
such as the AMD Elan series. Chipsets are feature-rich and are all programmed differently,
because there is no one hardware interface standard that all the chipset vendors would be able to
agree to use. Main functional areas handled by Chipset Personality Modules are L2/L3 Cache
Control, DRAM Configuration and Initialization, PCI Interrupt Routing, and ROM Shadowing.

Chipsets are generally responsible for managing the Single and Dual Inline Memory Modules
(SIMMs, DIMMs, and SODIMMs), interleaving them properly to achieve high memory
bandwidth. Chipsets also control the wait states used to access memory and I/O devices, support
shadowing, DRAM refresh, and external bus clocking. The chipset programming here is what
makes it possible for the BIOS to support FP, EDO, SDRAM, Registered SDRAM, RDRAM,
and other memory types.

Memory and bus management is just one function that generally falls into a chipset’s feature
domain. Another is the emulation of standard ISA hardware: an 8042 keyboard controller, two
8237A DMA controllers, an 8254 programmable interval timer, two 8259 programmable
interrupt controllers, and a real-time clock with integrated CMOS. Some chipsets add floppy
disk controllers, serial, and parallel ports.

Specialty functions provided by some chipsets include CPU and ISA bus clock control, external
cache management, turbo mode control, A20 line gating, and the PS/2-compatible I/O port 92h.

Because EMBEDDED BIOS components, such as the CACHE module, have a need to control
the functionality of the chipset, General Software has defined a standard software interface for
the core system BIOS to a Chipset Personality Module (CSPM). The core BIOS contains default
routines that perform these functions in a standard way for systems without chipsets. These
routines can be overridden by replacements in a CSPM. General Software makes available
support modules containing one or more CSPMs each, for many chipsets.

The following is a summary of the functions provided by the CSPM that are called by the core
system BIOS. A detailed specification for CSPMs is presented in Chapter 19.

CSPM Function Purpose

CsInit0 Early chipset initialization
CsInit1 Normal chipset initialization
CsMemConfig Autodetect DRAM geometry and size
CsInitRefresh Test and initialize chipset DRAM refresh controller
CsEnableApm Enable APM Support in Chipset Module

Chapter 3 EMBEDDED BIOS Adaptation Guide 49

General Software EMBEDDED BIOS Adaptation Guide

CsDisplayChipset Display chipset module identification
CsShadowArea Enable shadowing for region of address space
CsDisableShadow Disable all shadowing
CsShadowWriteCtl Enable/disable writes to shadow memory
CsInitWatchdog Test and initialize chipset watchdog timer
CsEnableWatchdog Start chipset watchdog timer
CsDisableWatchdog Stop chipset watchdog timer
CsKickWatchdog Kick chipset watchdog timer
CsEnableCache Enable external (L2) chipset-controlled cache
CsDisableCache Disable external (L2) chipset-controlled cache
CsSetFastSpeed Set CPU speed to fast with chipset control
CsSetSlowSpeed Set CPU speed to slow with chipset control
CsEnableA20 Enable A20 with chipset control
CsDisableA20 Disable A20 with chipset control
CsReboot Reboot CPU with chipset control
CsGetPciIrq Return assigned PCI interrupt line for IRQ level
CsMapAddress Map 32-bit media address using chipset MMU
CsUnMapAddress Restore mapping registers in chipset MMU
CsReadReg Read chipset register for debugger
CsWriteReg Write chipset register for debugger
CsEnableApm Enable APM support in chipset
CsTimerTick Receive control on each timer tick for convenience

3.9 Board Personality Modules

The EMBEDDED BIOS architecture supports a third class of personality modules, related to
how the chipset, CPU, and any other components in the target system are interconnected. This
module, called the Board Personality Module (BPM), receives requests from the core BIOS to
perform functions that would ordinarily be passed-on to the CPM and/or the CSPM. However,
circumstances may dictate that the predefined routines in the CPM or CSPM not be called, or be
called in a different order, or that additional instructions be placed around the calls to the
underlying CPM or CSPM routines. This is the job of the BPM.

As with the CPM and CSPM, default routines inside the core BIOS perform standard routing
functions, and these default routines are overridden by a specified BPM module. Based on the
BOARD parameter in the project file, it includes the right .ASM files from a subdirectory of the
BOARDS directory that provide support for a particular board design.

The EMBEDDED BIOS Adaptation Kit includes standard support for NOBOARD design, which
performs pass-through routing of requests to chipset and CPU modules where appropriate, and
performs default no-operation functions for non-CPU or chipset functions.

EMBEDDED BIOS Board Personality Modules all have the same architecture, regardless of the
board being supported. They all implement functions that are called by other components of the
BIOS. A summary of the BPM functions is given below. The complete BPM specification is
presented in Chapter 20.

BPM Function Purpose

BoardInit0 Early board initialization
BoardInit1 Normal board initialization
BoardInit4 Board initialization before keyboard and video init

50 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

BoardInit6 Board initialization after keyboard and video init
BoardInit8 Chipset/board initialization from CMOS cells
BoardInitFields Load fields from CMOS into RAM
BoardSaveFields Store fields from RAM into CMOS
BoardResetCmos Reset fields in CMOS to predefined conditions
BoardSaveCmos Save CMOS cells to nonstandard hardware (ie, Flash)
BoardInitAppRom Initialize board for application ROM access
BoardDelayUsec Perform delay using board-specific mechanism
BoardInitRefresh Test and initialize DRAM refresh
BoardMemConfig Determine size and geometry of DRAMs
BoardShadowArea Shadow an area of address space <1MB
BoardDisableShadow Disable all shadowing
BoardInitDma Test and initialize DMA hardware
BoardEnableDmaCtrl Enable DMA controller
BoardDisableDmaCtrl Disable DMA controller
BoardFloppyDma Start DMA operation
BoardInitIntCtrl Test and initialize interrupt controller
BoardEnableIntCtrl Enable interrupt controller
BoardDisableIntCtrl Disable interrupt controller
BoardUnmaskInt Enable specific IRQ level
BoardEoi Perform EOI on interrupt controller
BoardInitTimer Test and initialize timer controller
BoardBeep Beep speaker
BoardInitWatchdog Test and initialize watchdog timer
BoardEnableWatchdog Start watchdog timer
BoardDisableWatchdog Stop watchdog timer
BoardKickWatchdog Kick watchdog timer
BoardEnableCache Enable external (L2) cache
BoardDisableCache Disable external (L2) cache
BoardSetFastSpeed Set CPU speed to high
BoardSetSlowSpeed Set CPU speed to low
BoardEnableA20 Enable A20 line
BoardDisableA20 Disable A20 line
BoardReboot Reboot system
BoardPostError Handle critical error during POST
BoardEnableApm Enable APM functions
BoardApmMode Set power management mode
BoardPwrLvl Set power level for the board itself
BoardTestMode Determine if Manufacturing Mode should be entered
BoardDisableTestMode Disable Manufacturing Mode entry flag
BoardEnableWrites Enable Vpp to Flash devices
BoardDisableWrites Disable Vpp to Flash devices
BoardSetVideoMode Adjust video BIOS parameters (rows, cols, etc.)
BoardTimerTick Receive control from INT 08h timer tick
BoardPciControl Manage PCI policy
BoardEnablePciRegion Enable access to PCI region
BoardHelp1 Unarchitected board helper for CSPM if required
BoardHelp2 Unarchitected board helper for CSPM if required
BoardMapAddress Map 32-bit address using board/chipset/CPU hardware
BoardUnMapAddress Restore prior mapping using board/chipset CPU hardware
BoardFsInit Perform board-specific file-system initialization
BoardIdeAutoDetect Examine IDE parameters during IDE driver initialization
BoardSioReadReg Read Super I/O register for debugger
BoardSioWriteReg Write Super I/O register for debugger

Chapter 3 EMBEDDED BIOS Adaptation Guide 51

General Software EMBEDDED BIOS Adaptation Guide

BoardPostCodeComInit Initialize POSTCODECOM output device during POST
BoardPostCodeCom Output message to POSTCODECOM device for POST

3.10 BIOS Configuration

EMBEDDED BIOS is configurable in many ways. Of course, the EMBEDDED BIOS
Adaptation Kit includes full source, so you could in theory modify the source code to fit your
hardware.

In early BIOS implementations, this was in fact how adaptations of desktop PC BIOSes were
performed. The task took months and costs were high. Modularity started becoming important
because of the critical time to market factor.

Some vendors announced BIOSes that were excessively modular and abstract, in a 180-degree
turnaround to respond to the growing number of desktop PC manufacturers who needed a custom
BIOS. For example, experimental BIOSes were implemented in C at the expense of overall
system performance, excessive stack depth, and general control over the hardware. These
BIOSes were fine learning aids, but they don’t solve real-world engineering problems.

EMBEDDED BIOS strikes a middle ground. It comes with source code so that the adaptation
engineer can make changes to it if absolutely necessary. In nearly all cases, however, it just isn’t
necessary. Two include files, called INC\OPTIONS.INC and INC\CONFIG.INC, are included by every
core BIOS source code module. These two files contain the default values for roughly 400
symbol definitions that tell the rest of the BIOS code how to be assembled through conditional
and parametric assembly. After these files are included, a third file called the project file is
included. The project file, maintained by the OEM, specifies the board, chipset, and CPU
personality modules to be used in a build. Further, the project file contains new definitions that
override the parameters in INC\OPTIONS.INC and INC\CONFIG.INC as necessary for the customized
build of the BIOS.

Thus, a change to the project file causes the system-wide changes necessary to start supporting,
or omit support for, some function. Configuring the BIOS by editing a project file is totally
automated with the Windows-based BIOStart utility, or can take only a short amount of time in a
text editor with a reassembly of the BIOS with GSMAKE in the DOS command-line
environment.

Once a binary version of a BIOS is create, it can still be further configured BIOStart by a binary
patching process. See Chapter 6 for more details about binary configuration.

Finally, EMBEDDED BIOS can be configured by the end user during POST with the
comprehensive Setup system. This set of full-screen menus allows the user to edit CMOS values
used by the Chipset Personality Module (CSPM), the device control modules (floppy disk, hard
disk, and so on), and other modules, such as the cache control system.

3.10.1 Project Files

The adaptation engineer can configure EMBEDDED BIOS features and underlying mechanisms
by creating and editing a project file associated with a BIOS project. Projects are given a name
by the OEM, and are then folded into the BIOS build environment by creating a subdirectory of
the project’s name underneath the PROJECTS directory, and then creating a text file by the same
name with an .INC extension inside the new subdirectory. This file is called the project file.

52 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

Three configuration parameters are required in any project file: BOARD, CPUCLASS, and
CHIPSET. These three parameters name the Board, CPU, and Chipset Personality Modules,
respectively, that should be used to build a BIOS for the project. The rest of the project file
contains zero, one, or more overrides for symbol definitions found in the INC\OPTIONS.INC and
INC\CONFIG.INC files.

This file and directory structure can be created and edited with BIOStart, the Windows-based
BIOS configuration program, or this can all be done by hand with DOS file management
commands and a text editor.

Before making configurations, the adaptation engineer should make a plan, on paper, that
describes the hardware to be supported, the features to be provided, and how the features will be
supported by the given hardware.

Each option in the INC\OPTIONS.INC and INC\CONFIG.INC default symbol definition files is
represented by a symbol equate. Most options in the INC\OPTIONS.INC file are set to 1 to indicate
that the associated support should be enabled, and to 0 if support should not be provided. Note
that not all configuration possibilities are necessarily valid ones. For example, enabling the
second 8237A option but not enabling the primary 8237A would be nonsensical, since it takes
one of an object to have an additional one. Most options in the INC\CONFIG.INC file are qualifiers
for options set elsewhere; i.e., the starting physical address of the Flash disk array. Of course, if
the associated feature were not enabled, then the value may not have meaning to the BIOS build.

3.10.2 Binary Configuration Patch Area

Most of the configuration parameters in the INC\CONFIG.INC header file are simply assembled
into an area called the Binary Configuration Patch Area (BCPA). Then, other BIOS modules
needing access to these values reference the fields in the BCPA instead of the assembly symbols
in the INC\CONFIG.INC include file.

By dereferencing these values through the BCPA table, the BIOStart program can be used to
patch the BCPA stored in a binary image of the BIOS, after it is assembled. The BCPA table is
prefixed with a special signature that makes it easy for the BCP program to locate.

3.10.3 System Configuration Table

BIOS service INT 15h function C0h returns a pointer to a data structure called the System
Configuration Table (SCT), an area inspected by DOS and applications to determine which
features are supported by the underlying BIOS. The SCT is defined in module BIOS and may be
modified by the adaptation engineer.

The contents of the standard SCT are given below:

 PUBLIC SCT

SCT:

 dw SCT_End - SCT - 2

 db BIOS_HDWR ; hardware ID byte.

 db BIOS_MAJOR_VERSION

 db BIOS_MINOR_VERSION

; The next byte contains bitflags as follows, indicating what

Chapter 3 EMBEDDED BIOS Adaptation Guide 53

General Software EMBEDDED BIOS Adaptation Guide

; features the BIOS supports.

;

; bit 7 - BIOS using DMA ch3

; bit 6 - cascaded IRQ2

; bit 5 - real-time clock present

; bit 4 - int 1Ah is keyboard scan

SCTFLAGS = 00000000B ; start out with nothing.

 IF OPTION_SUPPORT_8259_2

SCTFLAGS = SCTFLAGS OR 01000000B ; bit 6 - cascaded IRQ2.

 ENDIF ; (OPTION_SUPPORT_8259_2

 IF OPTION_SUPPORT_CMOS

SCTFLAGS = SCTFLAGS OR 00100000B ; bit 5 - real-time clock present.

 ENDIF ; (OPTION_SUPPORT_8259_2)

SCTFLAGS = SCTFLAGS OR 00010000B ; bit 4 - INT 1Ah is keyboard scan.

 db SCTFLAGS ; define flag byte with above bitflags.

 db 4 dup(0) ; reserved
SCT_End EQU $

3.10.4 Keyboard Scancode Translation Table

The KEYBOARD module uses a lookup table in module BIOS to translate scancodes read from
the PC/XT-style 8255 or the PC/AT-style 8042 keyboard controller, into ASCII characters. This
table also defines how the keyboard shift keys, such as CTRL, SHIFT, CAPS_LOCK,
SCROLL_LOCK, and NUM_LOCK, affect other keys when they are pressed or released.

The keyboard translation table can be modified by the adaptation engineer to handle special
keyboards that do not conform to the IBM PC or PC/AT standards. If this is desired, some
modifications to routine Int09Isr in module KEYBOARD.ASM will be necessary to handle
communication with the alternate controller. Alternatively, the OEM may insert custom
keyboard handling code in the CUSTKBD.ASM module, and that code in the project file.

3.11 Console I/O Redirection

Both INT 10h (video) and INT 16h (keyboard) services may be redirected by EMBEDDED
BIOS to any serial port, so that the application, Setup screen, and integrated BIOS debugger can
all communicate over an RS-232 link to a remote host running a terminal program. These three
classes of I/O can be redirected independently, to any valid serial port in the system supported by
the SERIAL.ASM module.

3.11.1 Video (INT 10h) Redirection

Redirection of INT 10h (video) requests happens in CONIO by looking at the CurrIo field in the
Extended BIOS Data Area (EBDA). If this field is set to IO_CONSOLE (0), then video is
routed to the VIDEO module, which programs the 6845 CRT controller. If this field is set to

54 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

IO_COM1 (1), IO_COM2 (2), IO_COM3 (3), or IO_COM4 (4), then the I/O is redirected to
the specified port. IO_NONE is a value the system uses to disable INT 10h output altogether.

Other fields in the EBDA take part in redirection. Consider the fact that application INT 10h
services are separated from debugger INT 10h services and Setup screen INT 10h services. This
is handled by the Setup and Debugger modules by setting the CurrIo field to the values in
SetupIo or DebugIo, respectively, before those modules do any output. Then, when the
modules are finished with their processing, they restore the CurrIo field to its former value. The
save areas for this restoration are SetupIox and DebugIox, respectively. An INT 15h function is
available for handling these details; it is callable from the application program, or from the
Board, CPU, or Chipset Personality Modules if a stack is available.

3.11.2 Keyboard (INT 16h) Redirection

Redirection of INT 16h requests to the SERIAL.ASM module happens in module CONIO.ASM by
looking at the CurrIo field in the Extended BIOS Data Area (EBDA). If this field is set to
IO_CONSOLE (0), then keyboard requests are passed to module KEYBOARD.ASM, which programs
the 8042 keyboard controller on an AT, or the 8255 peripheral interface on a PC/XT compatible
machine. If this field is set to IO_COM1 (1), IO_COM2 (2), IO_COM3 (3), or IO_COM4
(4), then the I/O is redirected to the specified port. IO_NONE is a value the system uses to
disable INT 16h output altogether.

Just as with INT 10h services, other fields in the EBDA take part in input redirection. Because
application INT 16h services are separated from debugger INT 16h services and Setup screen
INT 16h services, the Setup and Debugger modules set the CurrIo field to the values in SetupIo
or DebugIo, respectively, before those modules request any input. Then, when the modules are
finished with their processing, they restore the CurrIo field to its former value. The save areas
for this restoration are SetupIox and DebugIox, respectively.

Module SERIAL.ASM doesn’t actually do the I/O directly for the I/O redirection. Instead, it
translates the logical serial port number associated with the console redirection into a physical
port number, and then calls the 8250 driver module, or the CPU personality module, depending
on where the physical UART is located.

3.12 Integrated BIOS Debugger

When bringing-up new hardware, it is essential to have a debugging tool that can disassemble
code, display and alter the contents of memory, write to I/O ports, breakpoint code, and test the
operation of the A20 line and CMOS storage. These functions are all features of the integrated
BIOS debugger that is provided with EMBEDDED BIOS.

By enabling the OPTION_SUPPORT_DEBUGGER configuration option in CONFIG.INC, the
debugger code will be automatically assembled into the BIOS. Then, when the system boots, the
debugger can be started in several ways.

First, on machines with a PC or PC/AT-compatible keyboard, the debugger can be entered
through a special key chord. Just depress both the left ALT key and the left SHIFT key to break
into the debugger.

Second, the debugger hooks the CPU exception vectors in case a divide by zero occurs, an
invalid opcode is executed, or an INT 3 instruction is executed, for example. By placing an INT

Chapter 3 EMBEDDED BIOS Adaptation Guide 55

General Software EMBEDDED BIOS Adaptation Guide

3 in the POST mainline code (or anywhere else in the BIOS source code) after INT 10h and INT
16h services are available, the debugger will automatically be invoked. To resume, type the ’G’
command to "GO", or continue on with the rest of initialization.

Third, the debugger can be entered from the Setup main menu, if the debugger Setup screen
option is enabled. This allows an end-user to access the integrated BIOS debugger from within
the full-screen menuing system.

Fourth, the debugger is a selectable boot action, allowing it to gain control if any of the other
bootable drives are not available or are not formatted. This is controlled via the Basic SETUP
screen.

Finally, the debugger can be entered if no operating system can be loaded. The system displays a
message that indicates that a boot device cannot be found, and then prompts the user to press the
ESC key to enter the debugger.

The debugger can be used over a serial port, in the event that the target system has no keyboard
or monitor, or if those devices are being used by the application. For example, if a graphics
application has drawn on the screen, the integrated BIOS debugger’s output would disrupt the
video display if it were not redirected. Redirection of debugger output is controlled via the
OPTION_CONIO_DEBUG configuration option in the project file.

Use of the integrated BIOS debugger is outside the scope of this section; consult Chapter 9 for
complete details.

3.13 Manufacturing Mode

EMBEDDED BIOS provides a powerful mode of operation that allows a host PC to control a
target PC running EMBEDDED BIOS over an RS-232 connection at high speeds. The target can
enter Manufacturing Mode from a SETUP screen, by testing OEM-defined hardware, or at the
OEM’s option, when critical POST errors occur. Manufacturing Mode is also available as a boot
action, in the case that no actual bootable drives are available.

Manufacturing Mode is an alternative boot mode, similar to booting the operating system from a
drive. Once started, Manufacturing Mode waits for incoming requests over an RS-232 port
selected by the OEM. The target can enter MM permanently, or can attempt to establish a
connection for up to a few seconds before continuing to boot the operating system.

When the target is in MM, the host computer can run two types of software. The first type is a
device driver (MFGDRV.SYS) provided in the UTIL subdirectory of the BIOS software. This device
driver provides an additional drive letter on the host machine that maps to a specified target
drive, allowing the host computer’s operator to remotely format and copy files to/from the device
with standard DOS commands and utilities. It should be remembered that this link, including
drive-level access, is provided by MM without requiring any operating system on the target side.

Another type of software that may be run on the host to communicate with a target in MM is a
program that calls the MM API functions (described in Chapter 14). An example program is
provided in the UTIL subdirectory of the BIOS software (HOST.EXE). This program illustrates how
a C or C++ program can be written to call the MM API functions to perform functions such as
Flash updating, memory testing, and booting the operating system.

56 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

To make the RS-232 connections between your target and host development machine for MM,
you will need a properly-wired null modem; that is, with the transmit and receive lines twisted, as
well as the handshaking lines twisted. Here are the pinouts for cables built with 9-pin connectors
and 25-pin connectors:

Signal 9-Pin 25-Pin 25-Pin 9-Pin
Ground-Ground pin 5 pin 7 pin 7 pin 5
Xmit-Recv pin 3 pin 2 pin 3 pin 2
RTS-CTS pin 7 pin 4 pin 5 pin 8
DSR-DTR pin 6 pin 20 pin 20 pin 4
Recv-Xmit pin 2 pin 3 pin 2 pin 3
CTS-RTS pin 8 pin 5 pin 4 pin 7
DTR-DSR pin 4 pin 20 pin 6 pin 6

3.14 ROM Disk

EMBEDDED BIOS also provides a solid state version of a mechanical floppy disk drive, called a
ROM disk. Unlike most ROM disks, which operate as ROM Extensions and take up valuable
address space, the EMBEDDED BIOS ROM disk code is integrated with the core system BIOS,
and is configurable via the Setup screen system. The ROM disk driver can emulate one or
several soft and/or hard drives within a system.

The ROM disk works by intercepting INT 13h requests made by an operating system or
application program, and translating them into corresponding memory moves from a ROM area
to the application-supplied data buffer. The EMBEDDED BIOS ROM disk takes advantage
MMU support provided by the BIOS chipset or CPU personality modules to window ROM
memory as needed, all transparently to the application.

ROM disk data transfers originate from a 32-bit media address supplied by the adaptation
engineer at the time the BIOS is configured with the FILE_SYSTEM macro in the project file.
This address can be a physical address space, or it can be a logical one associated with PC Cards
or chip select lines supported by a high integration CPU or chipset.

The data stored at this address is simply a linear array of 512-byte sectors retrieved from any
IBM PC-compatible floppy disk. Supplied with your Adaptation Kit is a utility called
DISKIMAG.EXE (in the TOOLS directory) that can copy the contents of any DOS-formatted
floppy disk or hard drive partition to a file, so that it can be burned into ROM as an image of the
disk suitable for use by the ROM disk.

For complete details about the operation of the ROM disk component of EMBEDDED BIOS,
consult Chapter 12.

3.15 Watchdog Timer

EMBEDDED BIOS provides a watchdog timer feature that allows operating systems and
applications to instruct the hardware to automatically reset in the event that the hardware does
not receive regular "check-ins" from the operating system or application.

Watchdog timer hardware comes in several different forms. Some high-integration CPUs, such
as the 80C186-EC or 80386-EX processors from Intel, contain a watchdog timer that even starts
out armed, so that the POST software is under watchdog control. In cases where the CPU does

Chapter 3 EMBEDDED BIOS Adaptation Guide 57

General Software EMBEDDED BIOS Adaptation Guide

not contain a watchdog timer device, an external count-down timer can be rigged-up to strobe the
reset line on the CPU if desired. In some cases, this type of mechanism is already provided by
high-integration chipsets.

To program the watchdog timer, the operating system or application makes calls to the general
functions BIOS service interrupt, INT 15h, function C3h. A subfunction code is placed in the
AL CPU register by the caller; 00h disables the watchdog timer and 01h enables it. Complete
programming details can be found in Chapter 21.

3.16 Power Management and APM

EMBEDDED BIOS provides support for power-sensitive applications by being compatible with
the Microsoft Advanced Power Management (APM) Specification. The BIOS power manager
uses a sophisticated power management device tree to manage power-down and power-up
sequences in an orderly fashion for cooperating devices within power groups.

If APM is not to be used in the system, the power manager can assign device inactivity timeouts
to devices and automatically manage the system’s power by transitioning devices through APM-
compatible states.

If APM is enabled in the system with the OPTION_SUPPORT_APM configuration option, the
operating system and application may access APM BIOS services that can be used to control the
power-consumption state of the system. These requests are routed by module POWER.ASM to either
the CPU Personality Module or the Chipset Personality Module to actually interact with the
hardware, as power management support is being provided in most of today’s chipsets and high-
integration CPUs such as the Intel 80C186-EC.

APM services are requested by the operating system or application through INT 15h function
53h. The complete programming details surrounding the system BIOS power management API
are presented in Chapter 15.

3.17 Cache Management

EMBEDDED BIOS provides comprehensive support of single-level and two-level caches in the
target in multiple ways. First, CPUs such as Intel’s i486 and Pentium processors have on-board
caches that are disabled at processor reset and can be enabled for substantially improved
performance. The on-board CPU cache is controlled through the manipulation of special CPU
registers, and the cache status must be restored when the processor is reset during steady-state
operation of the system.

Systems with external caches are also supported by EMBEDDED BIOS through the Board
Personality Module (BPM) and Chipset Personality Module (CSPM). Although external cache
is almost always controlled with an actual chipset, the BPM and CSPM paradigms work well
even when an actual piece of VLSI is not present. External cache must be manually enabled and
disabled at various points during the operation of the BIOS. For example, cache must be
disabled during the POST memory test, whereas it must be enabled when applications are
running.

Both internal and external caches are controlled by the CACHE.ASM module, and can be managed
through the INT 16h function F4h BIOS service. For complete programming details, see
Chapter 21.

58 EMBEDDED BIOS Adaptation Guide Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

3.18 Protected Mode Support

On 80386 and above processors, EMBEDDED BIOS uses the protected mode of the CPU to
access extended memory. To configure EMBEDDED BIOS to support protected mode, the
OPTION_SUPPORT_PROTMODE option must be enabled. Support for the 80286 CPU has
been discontinued due to the CPU’s architectural limitations and end-of-life.

When configured, protected mode is used during POST and during steady-state operation of the
system. During POST, the BIOS determines the amount of extended memory available by
performing memory tests in protected mode. During steady-state, the operating system or
application program can request that the BIOS switch to protected mode with INT 15h function
89h, and move memory while in protected mode with INT 15h function 87h.

Protected mode support is complicated by the various ways in which the processor can be
instructed to resume execution in real mode after a protected mode operation. In 80286-based
systems, there was no "switch to real mode" CPU instruction. Therefore, these systems had an
outboard hardware solution that involves any of several components: the 8042 keyboard
controller, I/O port 92h, or the chipset. These methods are supported by EMBEDDED BIOS in
the event that systems continue to use them even though they are not 80286-based.

On 80386 and above systems, the CPU contains a "MOV CR0, EAX" instruction that allows the
BIOS to return to real mode without the use of external hardware. The adaptation engineer can
select that this option be used when it is known that the target will be using an 80386 or better
CPU.

It remains common for the outboard hardware reset techniques to be used in designs that use
80386 or better CPUs, simply because these features have been added to chipsets for full
compatibility with the IBM PC/AT standard machine. Thus, the adaptation engineer should
review the methods by which the target hardware can be switched back into real mode, and select
the one with the lowest overhead.

Chapter 4 EMBEDDED BIOS Adaptation Guide 59

General Software EMBEDDED BIOS Adaptation Guide

Chapter 4

SETTING UP YOUR DEVELOPMENT TOOLS

This chapter will help you to set up your development environment to build the 16-bit
EMBEDDED BIOS core and related programs, such as the Manufacturing Mode HOST utility
program. It will also help you to build the 32-bit BIOS components, such as 32-bit PCI services
and 32-bit BIOS directory services.

NOTE: This chapter documents all of the General Software build tools, even though the build
process is automated with the GSMAKE utility or BIOStart for Windows. It is not necessary to
learn how to use all of the tools until you have a need for them.

Be sure to read the next section on configuring for Borland or Microsoft tool sets, and setting
environment variables. Then, we suggest that you begin learning about the build process in
Chapter 5. Refer to this chapter as you need to learn about specific tools from time to time.

4.1 Configuring for Borland or Microsoft Tools

You may use either Borland or Microsoft development tools to build the EMBEDDED BIOS
Adaptation Kit software, although you should be able to use any development tools to develop
your applications that will be running on EMBEDDED BIOS.

There are three components of the BIOS software that need building in the source kit. The 16-bit
core BIOS is the main part of the product, and is really the software that boots the target. This
software is built using 16-bit assemblers and linkers (either TASM or MASM). The 16-bit
utilities in the UTIL and COW directories are built with 16-bit assemblers, C compilers, and
linkers (TASM/Borland C++ or MASM/MSVC1.52). Separate from these builds is a set of
optional 32-bit BIOS components that enable certain BIOS features, such as 32-bit PCI services
or 32-bit BIOS directory services. If these features are desired by the OEM, then this build must
be performed with 32-bit tools (TASM32/TLINK32 or MASM and a special linker obtained
from your Microsoft Developer Studio package that can support 32-bit linking).

4.1.1 Obtaining Borland 32-bit Tools

60 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

The 32-bit Borland tools are included with TASM. The assembler is named TASM32.EXE, and
the linker is named TLINK32.EXE. These are automatically selected by the MAKEFILE used
by GSMAKE when the 32-bit build is run. If you are using Borland tools, this should be
automatically handled for you.

4.1.2 Obtaining Microsoft 32-bit Tools

For users of Microsoft toolsets, the issue of finding a 32-bit linker (not the incremental linker,
but just the 32-bit segmented one) is important. The LINK.EXE that comes with MASM cannot
recognize the 32-bit object records generated by the 32-bit BIOS build. You’ll need to find a
copy of Microsoft’s 32-bit linker, and rename that copy “LINK32.EXE”, and place it in your
path (as a location, we suggest BIOS43\TOOLS). Then, you’ll need a few DLLs that are
required by that Microsoft linker. These files have been found on the Microsoft web site in the
Windows 98 DDK.

If you have already installed VC++ 5.0, the necessary files are:

10/15/98 04:01p 359,424 LINK32.EXE
10/15/98 04:02p 117,520 MSDIS100.DLL
10/15/98 04:01p 167,424 MSPDB50.DLL

To get LINK32.EXE, you should find a file of the same length and date/time stamp as that
shown above for LINK32.EXE, named LINK.EXE, and copy it to LINK32.EXE.

If you have not already installed VC++ 5.0, you should find all of the above files in the Windows
98 DDK, and in addition, you’ll need to copy the following file from the
C:\WINNT\SYSTEM32 to your path:

01/22/97 09:26p 565,760 MSVCP50.DLL

4.1.3 Build Control Environment Variables

Described later, the GSMAKE.EXE program is supplied with this Adaptation Kit to eliminate
the dependency on your compiler vendor's (possibly incompatible) MAKE programs. For
example, Microsoft's MAKE.EXE program shipped with its MSC V5.1 and earlier compilers
does not correctly build a hierarchical dependency tree, although its NMAKE.EXE does.
NMAKE.EXE, however, does not handle larger MAKEFILEs needed by this Adaptation Kit, and
it supports different syntax than the Borland MAKE program does.

The General Software GSMAKE utility supports conditionals that allow it to test for the
existence of symbols in your environment space. The most important variable you need to set (to
anything, actually) in your environment space is the string, BORLAND. If this variable is
defined, then all the MAKEFILEs in this Adaptation Kit will define macros that enable use of
BCC, TASM, and TLINK. If this variable is not defined, then the builds will use Microsoft CL,
MASM, and LINK.

IMPORTANT: To use Borland tools with EMBEDDED BIOS, insert the
following in your development machine’s AUTOEXEC.BAT file:

C> SET BORLAND=YES

Chapter 4 EMBEDDED BIOS Adaptation Guide 61

General Software EMBEDDED BIOS Adaptation Guide

To use Microsoft tools with EMBEDDED BIOS, insert the following in your
development machine’s AUTOEXEC.BAT file:

C> SET BORLAND=

Specifying BORLAND= without anything after the ’=’ causes the symbol to be
undefined (removed) from your environment space.

If you are using MASM 6.1, 6.11, or 6.14 with EMBEDDED BIOS, insert the
following in your development machine’s AUTOEXEC.BAT file:

C> SET MASM61=YES

Another pair of important variables used by the MAKEFILE in the build process are NOPCI32
and NOGSMERGE. As with BORLAND=, these environment variables can be set to any text
string value to enable the action, and to the empty string to remove them from the environment
and thereby disable their action. In the case of these two variables, setting them to some value
actually causes a feature in the build to be disabled; namely, 32-bit PCI build for NOPCI32, and
the whole GSMERGE step for NOGSMERGE.

Disabling the 32-bit PCI services build:

If you will need to have 32-bit PCI services or 32-bit BIOS directory services as a
part of the final output of the build, then you must not define NOPCI32. If you
define NOPCI32, then these 32-bit components will not be built. For example, to
disable the 32-bit PCI build:

C> SET NOPCI32=YES

To enable the 32-bit PCI build:

C> SET NOPCI32=

Specifying NOPCI32= without anything after the ’=’ causes the symbol to be
undefined (removed) from your environment space.

Disabling the whole merge process:

The output of the core 16-bit BIOS build is an .ABS file. This file is by default
merged with other ancilliary files, such as the 32-bit PCI services module (if
NOPCI32 is not defined), and other files, such as VGA BIOS extensions, or
external SMI code. To disable this merge process entirely, you can set the
NOGSMERGE environment variable to some value (YES is recommended). If the
environment variable is removed from the environment space, then the merge is
run. To disable the merge process at the end of the build:

C> SET NOGSMERGE=YES

To enable the merge process:

62 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

C> SET NOGSMERGE=

Specifying NOGSMERGE= without anything after the ’=’ causes the symbol to be
undefined (removed) from your environment space.

To see how the vendor selection mechanism works, review EBIOS43\PROJECTS\MAKEFILE and
observe the .IFDEF, .ELSE, and .ENDIF constructs.

4.2 Standard System/Toolset Environment Variables

If you are using Microsoft tools, you will need to set the following environment variables to
point to their associated directories. Borland’s tools read .CFG files located in the directory from
where they are loaded.

PATH=EBIOS43\TOOLS;...

TEMP=<scratch directory>

LIB=C800\LIB

INCLUDE=C800\INCLUDE

INIT=C800\INIT

Edit your PATH statement in CONFIG.SYS or AUTOEXEC.BAT to cause the TOOLS subdirectory of the
EMBEDDED BIOS software directory to be searched for tools first. Otherwise, the GSMAKE
utility might not be invoked properly.

4.3 Using Other Compilers, Assemblers, and Linkers

You may use other vendors’ tools to compile, assemble, and link the EMBEDDED BIOS
Adaptation Kit components; however, General Software only directly supports Borland and
Microsoft development environments. The base code has been sufficiently tested with enough
versions of the Borland and Microsoft tools that it should port reasonably well to other
environments.

You should be able to use any development tools for writing applications to run on EMBEDDED
BIOS.

4.4 GSMAKE, the Program Maintenance Utility

The General Software GSMAKE utility is used to automate the compilation, assembly, linkage,
and other processes necessary to build the components of the EMBEDDED BIOS Adaptation Kit
software. It is not necessary that you use GSMAKE for building your own application software.

GSMAKE accepts as input a file, called a MAKEFILE, containing a description of how the
source and object files of the system components are processed to produce the finished
components. GSMAKE uses the information in the MAKEFILE to produce a dependency tree
that shows the dependence of finished or intermediate components of the build on the
corresponding earlier or source components. For example, an EXE file is dependent on one or
more OBJ files, and an OBJ file might be dependent on a C, CPP, or ASM source file and

Chapter 4 EMBEDDED BIOS Adaptation Guide 63

General Software EMBEDDED BIOS Adaptation Guide

associated include or header files. MAKE traverses the dependency tree, causing compilers and
other tools to be invoked at each step in the tree, in order to properly build the finished product.

4.4.1 Starting GSMAKE

To build a component of the EMBEDDED BIOS Adaptation Kit software, simply move into the
associated directory of the software and type:

C> GSMAKE

The GSMAKE utility automatically invokes the proper build tools in order to rebuild any pieces
of the component that are out-of-date. If all the pieces are up-to-date, then GSMAKE responds:

GSMAKE: ’all’ is up-to-date.

GSMAKE’s dependency tree mechanism keeps its building process as short as possible; it does
not re-invoke compilers, assemblers, linkers, or other utilities unless a file’s date/time stamp is
changed, and other pieces of the component depend on that file.

4.4.2 Command Line Options

The actual command-line syntax for GSMAKE is the following:

GSMAKE [targetname [targetname...]]

[-f makefilename]

[-d symbol=value]

[-x [newmakefilename]]

[-i] [-z] [-n] [-s]

The MAKEFILE read by GSMAKE contains one or more target definitions; these targets are
usually interdependent. By default, the first target is the one GSMAKE assumes will be the final
product (output) of the build process it is to perform. In the MAKEFILEs in the EMBEDDED
BIOS Adaptation Kit software, this target is usually ’all’. By specifying an alternate (or set of
alternate) target names on the command line, you can add your own targets to the MAKEFILE,
or selectively rebuild only a subtree of the entire dependency tree.

GSMAKE can be used to support multiple projects within the same EMBEDDED BIOS
component directory. For example, if you are working on two EMBEDDED BIOS adaptations,
you may wish to have two MAKEFILEs called PROJECT1 and PROJECT2, and ask GSMAKE
to read input specifically from them:

C> GSMAKE -f PROJECT1

or,

C> GSMAKE -f PROJECT2

GSMAKE will stop its build process if it encounters an error, if one of the tools it executes
encounters an error (not just a warning), or if you press Control-Break. This allows you to
incrementally fix a problem without rebuilding everything each time a build is attempted.

64 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

Specifying -i on the command line causes GSMAKE to continue processing even when it
executes a tool during a step that returns an error. This allows you to continue through the build
process to see what other activities are ahead.

Specifying -n on the command line causes GSMAKE to not execute the commands listed under
each target; instead, they are simply printed to STDOUT. This allows you to build a DOS batch
file to perform substantially the same thing with a command similar to the following:

C> GSMAKE -n > DOIT.BAT

Specifying -s on the command line disables GSMAKE’s echoing of commands to STDOUT.
This can help keep the screen tidy during lengthy GSMAKEs.

Specifying -d symbol=value on the command line defines the specified symbol to be equal to the
specified value, so that they may be used in macro expansions in the MAKEFILE.

Specifying -z on the command line causes GSMAKE to stop if a listed dependency on a target is
not listed explicitly as a target as well in the MAKEFILE. Ordinarily, a source file (say,
TEST.ASM) has no file that it depends on, and should therefore be assumed to be current.

GSMAKE can also examine a basic MAKEFILE and scan the source files specified in the
MAKEFILE for include (or header) files. The names of the include and header files are then
inserted into the MAKEFILE as additional dependencies with a special option (-x). This option
even automates this updating process with a target called "depend:", so all that is necessary to
rebuild all of the MAKEFILE’s dependencies is to run the command:

C> GSMAKE depend

4.4.3 Types of MAKEFILE Statements

A MAKEFILE is a simple ASCII file consisting of one or more lines of text. Blank lines are
ignored by GSMAKE, as are comment lines beginning with ’#’.

Lines starting with a tab are action lines; they are commands to be executed by GSMAKE when
bringing a dependency node up-to-date.

Lines not starting with tabs are either intrinsic commands or targets. Targets have the following
format:

targetname: [dependency [dependency...]]

If no dependencies are specified after the colon that follows the target name, then the target is
assumed by GSMAKE to be up-to-date automatically.

If dependencies follow, then they name other targets in the MAKEFILE that must be brought up-
to-date before the action list can be executed for that target.

If the dependencies are not explicitly defined as targets in the MAKEFILE, then they are
assumed by GSMAKE to be the names of files on which the target depends. During its

Chapter 4 EMBEDDED BIOS Adaptation Guide 65

General Software EMBEDDED BIOS Adaptation Guide

dependency tree traversal, GSMAKE compares the date/time stamps of the dependency files with
the date/time stamps of the targets, and if the targets are older than the dependency files, the
action list is executed.

4.4.4 Intrinsic GSMAKE Commands

When GSMAKE reads a MAKEFILE, it scans it line-by-line. Lines starting with a period are
assumed to be an intrinsic (built-in) GSMAKE command), as follows:

The .IFDEF intrinsic command is used to conditionally read a portion of a MAKEFILE (usually,
a set of symbol definitions) based on whether a symbol is defined in the environment or earlier in
the MAKEFILE itself. This is the mechanism used to conditionally define symbols for Borland
or Microsoft environments in the EMBEDDED BIOS Adaptation Kit MAKEFILEs.

For example, to define the symbol ASM to point to either a Borland or Microsoft assembler, the
following syntax could be used:

.IFDEF BORLAND

ASM=tasm

.ELSE

ASM=masm

.ENDIF

The .ELSE intrinsic command causes the case of the .IFDEF command to be inverted, effecting a
C-like ELSE command during reading of the MAKEFILE.

The .ENDIF intrinsic command causes the processing of an .IFDEF or .ELSE block to be
terminated, so that the lines that follow the .ENDIF command will be read.

The .DISPLAY intrinsic command causes output to be written to the display as the MAKEFILE
statements are read, not as the dependency tree is being traversed (that happens later, after the
MAKEFILE is entirely read and the dependency tree generated). Let’s augment our example
above to indicate clearly which tools are being used:

.IFDEF BORLAND

.DISPLAY Using Borland TASM for Assembly

ASM=tasm

.ELSE

.DISPLAY Using Microsoft MASM for Assembly

ASM=masm

.ENDIF

The .STOP intrinsic command can be used to terminate the reading of the MAKEFILE without
MAKE itself returning an error to its caller (usually, COMMAND.COM, although GSMAKE can call
on itself to build a step). For example, we could cause MAKE to stop immediately if using
Microsoft tools:

.IFDEF BORLAND

.DISPLAY Using Borland TASM for Assembly

ASM=tasm

.ELSE

66 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

.DISPLAY We don’t have Microsoft MASM in our shop.

.STOP

.ENDIF

The .ERROR intrinsic command can be used to terminate the reading of the MAKEFILE with an
error code, so that a MAKE calling the current copy of GSMAKE can terminate its build process.
For example, we could use .ERROR instead of .STOP in our example above to cause a parent
GSMAKE to error as well:

.IFDEF BORLAND

.DISPLAY Using Borland TASM for Assembly

ASM=tasm

.ELSE

.DISPLAY We don’t have Microsoft MASM in our shop.

.ERROR

.ENDIF

4.5 GSMERGE, the Merge Utility

The General Software GSMERGE utility is used by the build process if the NOGSMERGE
environment variable is not defined. This utility combines all the pieces of a composite BIOS
build, including the 16-bit core BIOS, any 32-bit components such as 32-bit PCI and 32-bit
BIOS directory services, perhaps a VGA BIOS, and maybe an external SMI BIOS, and writes the
resultant output to another file, suitable for programming the boot device.

The goal of this utility is to automate the merging of the Embedded BIOS core image with other
option ROM images used in various boards. Such option ROM images may include VGA ROM
images, network card images, or BIOS 32 extension images as well as other binaries and
extensions, the full listing of which is beyond the scope of this document.

4.5.1 Overview of GSMERGE Operation

GSMERGE works by following a series of commands specified in an image definition file (IDF).
This file will be raw text, listing the binaries that will be included as well as the types of the
binaries and auxiliary information required to produce a correct final image. The IDF file should
be located in the project directory for the specific board being built, along with the other project
files and binaries involved in the build. GSMERGE will be called upon to processes the IDF file
as part of the build process to produce a final binary image. Part of this process will be the
generation of a special binary that describes what binaries are in the final image, and may be
placed anywhere or at some defined location within the final image.

4.5.2 IDF File Syntax

The basic syntax for IDF files is simple. Blank space and line feeds are treated the same, except
in the case of comments. Blank space is used as a means of separation between keywords and
parameters. GSMERGE will also process the IDF file in a linear manner. There are no
conditionals or loops in IDF files. All comments begin with a #, and end at the end of that line.
Case is also ignored on keywords.

Chapter 4 EMBEDDED BIOS Adaptation Guide 67

General Software EMBEDDED BIOS Adaptation Guide

4.5.3 IDF Keywords

In most cases, when a keyword has a numeric field, that value may be supplied in a number of
different formats. Valid formats include decimal, hexadecimal, number of kilobytes, number of
megabytes or a reference to a map file. All decimal numbers will consist of the numbers 0-9.
All hexadecimal numbers will consist of the numbers 0-9, the letters A-F and will have the letter
‘h’ appended to the end to mark them as hexadecimal. To specify a number of kilobytes, you
would append a ‘k’ to the end of a decimal number and to specify a number of megabytes, you
would append an ‘m’. Unless otherwise specified, all values provided to keywords are treated as
32 bit unsigned integers.

If you have loaded a map file, you may also specify a symbol from that map file and it will be
translated into an appropriate reference value. The syntax for this is:

[MapIdentifier]:[SymbolName]

MapIdentifier is specified when the map file is included, and SymbolName is the symbol to look
up in the map file. See the INCLUDEMAP keyword for details on defining the MapIdentifier.
Of special interest is that GSMERGE has context sensitive translation of the SymbolName.
When referring to a location within the file being generated, there is an offset that is added to the
address extracted from the map file. However, when referring to a location within some external
file, the offset is assumed to be from the beginning of that file.

Almost anywhere within an IDF file, you may choose to make reference to a DOS environment
variable by using the syntax $(Name). This allows the ability to produce generic .IDF files that
may be applied with little or no modification to a large number of situations. You may also add
new variables at the command line for GSMERGE. At this time, there is no plan to add the
ability to define variables within an IDF file. Note that there are a few places where these
variables may not be used. The exceptions will be noted.

4.5.3.1 IMAGEDEF Keyword

IMAGEDEF FileName, FileSize, InitialValue

Function:
This keyword is used to create and define the image that GSMERGE will produce. It may only
be used once, and it must be the first meaningful keyword the GSMERGE reads from the .IDF
file. The entire file starts out defined as “free”. This means that from the beginning, images may
be loaded to any portion of the file. As images are loaded into the binary, sections will be
reserved to prevent and detect overlapping. Other keywords are provided to manage this
behavior.

Options:
FileName The path/name of the file that GSMERGE will generate.
FileSize The size of the file that GSMERGE will generate in bytes (Constant).
InitialValue A byte that GSMERGE will initialize the file to (Constant).

4.5.3.2 AT Keyword

AT Location

Function:

68 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

This keyword is used to set the location at which our next operation will take place. All normal
IDF keywords work around the concept of an operational pointer. This keyword is useful for
setting that pointer to a specific location. Note that in effect, this keyword acts as a modifier for
operations that follow it.

Options:
Location The offset from the beginning of the file at which following operations start at.

4.5.3.3 ALIGN Keyword

ALIGN SizeInBytes

Function:
This keyword is used to align the location of the current file offset to a boundary that aligns from
the beginning of the file. This is useful for ensuring that automatically loaded option ROMs are
aligned on the correct boundaries. Note that like the AT keyword, align also acts as a modifier
for operations that follow it.

Options:
SizeInBytes Used to specify the granularity of the alignment desired.

4.5.3.4 RESERVE and RESERVETO Keywords

RESERVE Length
RESERVETO EndLocation

Function:
The RESERVE keyword is used to reserve space in the image file, and is used in conjunction
with a RESERVETO keyword. When you use this keyword, you signal to GSMERGE that you
do not want any future loads to overlap with the specified section of the image. This prevents
GSMERGE from loading compressed images and other binaries into this space. Note that once
this operation is done, the output file offset will be set to the end of the reserved zone, and all
further operations will continue to modify the file from that point on.

Options:
Length How much space you wish to reserve from current location pointer (Constant).
EndLocation The end of a specific section you wish to reserve.

4.5.3.5 FREE and FREETO Keywords

FREE Length
FREETO EndLocation

Function:
The FREE keyword is used to define space that may already be reserved as free space so that it
may be used by GSMERGE for freely allocated binary images. It is used in conjuction with the
FREETO keyword. Any section that is free may be loaded into, or may be randomly allocated
for use in storing compressed images.

Options:
Length How much space to mark as free from the current location pointer (Constant).
EndLocation The end of a specific section to mark free.

Chapter 4 EMBEDDED BIOS Adaptation Guide 69

General Software EMBEDDED BIOS Adaptation Guide

4.5.3.6 SET and SETTO Keywords

SET Length, Value
SETTO EndLocation, Value

Function:
The SET keyword is used to set a portion of the image to a specific value. It is used in
conjunction with the SETTO keyword to initialize portions of image that must for whatever
reason be set to a specific value other then the default initial value specified by IMAGEDEF.

Options:
Length How much space to set to Value (Constant).
EndLocation The end of a specific section you want to set.
Value What byte value to set each byte in the range to.

4.5.3.7 FROM Keyword

FROM SourceFileOffset

Function:
This keyword sets the offset from the beginning of a source file for the next image to load. This
is used if you don’t want to load the entire binary. For example, if you only want to load the last
96k of a BIOS image that has 32k of filler attached to the beginning, you could use FROM
8000h or FROM 32k. After that image is loaded, the offset value will be reset to 0 for the next
image load, so you should use FROM for every image load that must skip a certain number of
bytes. Note that if a symbol from a map file is specified, it will be assumed for this particular
use that the offset is from the beginning of the file being loaded and not from the offset in the
destination file defined when the map file was loaded. Note that this keyword acts as a modifier
for the next file to be loaded.

Options:
SourceFileOffset The offset of the first byte of the next file to be loaded.

4.5.3.8 TO Keyword

TO SourceFileEnd

Function:
This sets a specific end to a section for the next file loaded into the image. This allows you to set
an end boundary to a file section so that you only have to load some of it. Note that this keyword
acts as a modifier for the next file to be loaded. Note that this operation is like the FROM
keyword, in respect to it’s treatment of map files.

Options:
SourceFileEnd The last byte of the source file to be loaded.

4.5.3.9 INCLUDEMAP Keyword

INCLUDEMAP MapType, MapIdentifier, FileName

70 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

Function:
This function includes a map file for a specific binary. It is assumed by the function that the
current file offset will be the first address for the elements specified in the map. All addressing
will be relative to the start of the image being generated, and address calculation will be
automatic. This allows symbols from map files to be used to specify specific locations for AT,
FILL or FREE keywords, or any other keyword that requires a location in the binary file.
Several types of map file may be supported, specifically including 16 and 32 bit map files. If
other formats for map files become available, these may be supported as well.

Options:
MapType The map file type. Current defined types are 16 bit and 32 bit.
MapIdentifier A string that will be used to identify the map file being referred to.
FileName The file name of the map file.

4.5.3.10 LOCATEPE Keyword

LOCATEPE PhysicalAddress]

Function:
This function sets the physical address for the base of the binary file being produced, for the
purposes of locating portable executable binaries. All actual PE locations will be calculated
when that PE file is loaded. All further location will happen automatically. Therefor, this option
should be used once, at the top of the file. However, specific overrides can be done if required
because the image being stored will later be moved to some other location before usage. Note
that this address is also used to resolve what value to use for SETADDRESS.

Options:
PhysicalAddress The physical address from which the beginning of the image will be

visible in memory.

4.5.3.11 LOCATERES Keyword

LOCATERES MediaAddress

Function:
This keyword sets up the head pointer to a list of resources at the current location. It is assumed
that the current image will be made available by the media layer within the BIOS at the specified
MediaAddress. In Embedded BIOS 5.0, there is an API for accessing this list, and extracting
binary resources from it. In normal usage, this keyword is used to patch that interface so that it
can locate the beginning of the list.

Options:
MediaAddress - The media address of the beginning of the binary image being produced.

4.5.3.12 PLACEDIR32 Keyword

PLACEDIR32 MaxLength

Function:
This keyword sets the actual location in the output file where the BIOS 32 directory service will
be placed. If this function is used, an attempt will be made to patch any BIOS image that has

Chapter 4 EMBEDDED BIOS Adaptation Guide 71

General Software EMBEDDED BIOS Adaptation Guide

been loaded with the location of this table. This table will also be manually generated by
GSMERGE, rather then patched from a .DLL file.

Options:
MaxLength The maximum amount of space the table could take up.

4.5.3.13 LOAD Keyword

LOAD Filename]

Function:
This function loads a binary image. If there is no compression defined, the file will get added
directly to the image, and space reserved for it. Otherwise, the location pointer will be advanced,
and the image will be checked to be sure that everything will fit if the image were extracted, but
no reservation of space will be made for the image.

Options:
FileName The name of the file to load.

4.5.3.14 COMPRESSTO Keyword

COMPRESSTO Filename

Function:
This keyword alters the normal functioning of the LOAD keyword by redirecting its output to
another file that will be data compressed. This is done because the final size of that file is not
known in advance, so it is not possible to simply compress directly into a defined image. The
next load after this keyword is used will be effected. After that load has completed, the newly
compressed file will be considered finished and no further LOAD keywords will be processed
until the next time COMPRESSTO is used.

Options:
FileName The name of the file to compress to.

4.5.3.15 LOADPE Keyword

LOADPE ServiceName, Filename

Function:
This keyword loads and locates a portable executable, and then adds a special header to the file
that defines it as a BIOS 32 module. The BIOS 32 service will also be added to the BIOS 32
service directory, provided that ServiceName is not EXCLUDE. Only one PE module may be
loaded as TABLE, and that module must be loaded and located before any other PE module
included in the BIOS 32 service directory can be loaded. Any PE module may also be excluded
from the service directory by using the EXCLUDE keyword. Note that no module may have a
service identifier of more than 4 letters.

Options:
ServiceName The service identifier to use for the BIOS 32 service directory.

Note that ServiceName may NOT be defined in an environment variable.
FileName The name of the portable executable to add to the BIOS.

72 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

4.5.3.16 CONVERTBMP Keyword

CONVERTBMP SourceFile, DestinationFile

Function:
This keyword converts a standard Windows style bitmap file to a special data compressed format
used by Embedded BIOS 5.0. It is used for converting a graphic prior to inclusion as a resource.

Options:
SourceFile The name of the windows .BMP file to convert.
DestinationFile The name of the final converted file.

4.5.3.17 LOADRES Keyword

LOADRES ClassValue, ResourceId, ResourceType, FileName

Function:
This keyword is used to add binary resources to an Embedded BIOS 5.0 build. These resources
need not necessarily be contiguous in the final image. LOADRES is used to load resources into
the image in small pieces in order to save space and make use of otherwise unusable areas of the
final image map. The parameters supplied are used later for locating and extracting the image.
ResourceType is especially significant in that it will determine the policy the extractor uses to get
at the binary. This type field will be used to tell the extractor if data compression has been used,
and if so, what type. This data compression is defined as a process that happens in addition to
any data compression inherent within the actual type of binary being added. For example, an
RLE image is not data compressed under this definition since RLE compression is inherent in the
format and would be decoded by the graphics library. However, if the same file were
compressed using the COMPRESSTO keyword and LOAD, you would need to specify the type
of compression so that the resource extractor in the BIOS would know to decompress the image
before handing it off to the graphics library.

Options:
ClassValue A 16 bit value that expresses the class of the resource being inserted.
ResourceId A 16 bit value that individually identifies the resource being inserted.
ResourceType An 8 bit value that defines the behavior to be used by the resource extractor.
FileName The name of the binary file that will be included as a resource for extraction.

4.5.3.18 INCLUDE Keyword

INCLUDE FileName

Function:
This keyword is used to include an external .IDF file. Such external .IDF files may include
standard sections that are identical no matter what project is being merged, such as PCI address
patches or standard areas defined as unused. The specified file is opened and processed exactly
as if it were part of the current .IDF file in progress.

Options:
FileName The name of the .IDF file to include.

4.5.3.19 SETADDRESS Keyword

Chapter 4 EMBEDDED BIOS Adaptation Guide 73

General Software EMBEDDED BIOS Adaptation Guide

SETADDRESS OffsetValue

Function:
This keyword is used to manually link binary files together. This is done because sometimes it is
not possible to directly generate a reference to an external binary within another binary that
requires such a reference. An example of this is in PCI32, where a reference to the PCIIRQ
mapping table is required but generating such a reference within the assembly proved difficult if
not impossible. In that circumstance, this keyword is used to patch the PCI32 image so that it is
able to reference the 16 bit version of the PCIIRQ table. It places the specified OffsetValue
(usually taken from a map file) at the current location within the file. This is always considered
to be a 32 bit physical address, based on the value specified by LOCATEPE.

Options:
OffsetValue An address within the image that needs to be referred to.

74 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

4.5.4 Example IDF File

The following example is provided for illustrative purposes only, so that the keywords can be
seen in the context of their typical use. The actual current image definition file for the named
board may actually be different from what is listed here as an example.

#
Binary Image definition file for the MS5169 board.
(C) 2000 General Software, Inc. All Rights Reserved.
#
###
The following commands initialize the output binary image, and
define where in the machine it will exist.
###

 ImageDef $(PROJ).BIN, 128k, FFh # Create 128k binary image.
 LocatePe 0E0000h # The image starts at E0000h.

###
Load the actual BIOS binary file at the correct location in the
output image, as well as loading the map file and all external
binaries that will be included in the image.
###

 At 0 # Starting at byte 0 of the image.
 IncludeMap 16bit, BIOS16, $(PROJ).MAP # Include the map file.
 load $(PROJ).ABS # Also load the project binary.

###
The following section defines all parts of the image that are
unused and are free for general usage.
###

 At BIOS16:EndOfE000 # Start at the first unused byte.
 FreeTo 00ffffh # Free to the end of the fill area.
 At BIOS16:FarRetF000 # Start at the last used byte.
 Reserve 1 # Skip to the first byte of filler.
 FreeTo 01FFFFh # Free to the end of the BIOS.
 Include ..\resource\idf\meta.idf# Reserve used sections.

###
The following section defines a section of the final image that
is un-used and may contain the PCI 32 BIOS services and directory.
###

The following block of code places the image in the F000h segment.

At BIOS16:FarRetF000 # Start at the last used byte.
Reserve 1 # Skip to the first byte of filler.
Align 16 # Align on a paragraph.
PlaceDir32 128 # Reserve 128 bytes for the directory.
IncludeMap 32bit, PCI32, $(GSPROJ)\PCIAPI32.MAP # Include the map.
LoadPe $PCI, $(GSPROJ)\PCIAPI32.DLL # Include the service.

The following block of code places the image in the E000h segment.

 At BIOS16:EndOfE000 # Start at the first unused byte.
 Align 16 # Align on a paragraph.
 PlaceDir32 128 # Reserve 128 bytes for the directory.
 IncludeMap 32bit, PCI32, $(GSPROJ)\PCIAPI32.MAP # Include the map.
 LoadPe $PCI, $(GSPROJ)\PCIAPI32.DLL # Include the service.

 Include ..\system32\pci\pciapi32.idf # Patch the service binary.

###
Include splash screen and other graphics.

Chapter 4 EMBEDDED BIOS Adaptation Guide 75

General Software EMBEDDED BIOS Adaptation Guide

###

 At BIOS16:ExtResListHead # Place the location at the list head.
 LocateRes 0000E0000h # Location of starting media address.

At 0h Include ..\resource\idf\standard.idf # include standard graphics.

The following graphics are not part of the standard set, but may
be needed by some board modules.

LoadRes # Load a resource into the image.
BIOS16:RESOURCE_CLASS_GIMAGE, # The class is a graphic image.
BIOS16:RESOURCE_ID_FS_FLASH, # The ID is for Flash Drive icon.
0, # The image is not data compressed.
..\RESOURCE\ICONS\RFD.RLE # Add Flash Drive test icon.

4.6 DISKIMAG, the Disk Image Generator

The General Software DISKIMAG utility transfers raw sectors from any floppy disk or hard disk
partition to a binary (unformatted) file suitable for use as input to a PROM programmer.

To create a ROM-based image of a hard drive partition (not a floppy disk), carefully follow the
procedure below.

1. Copy the files you wish to the hard disk partition.

2. Run DEFRAG (an MS-DOS defragmentation utility program) to condense the
contents of the partition to the front of the partition. Make sure from the map displayed
by DEFRAG that the contents of the disk will fit into the size of image you are making.
Just because you can see directory entries for files doesn’t mean that the actual contents of
those files (recorded in clusters elsewhere on the disk) will actually fit in the size you
select.

3. Run the General Software INSTBOOT utility on the hard disk partition if it is to boot
Embedded DOS. Beware Windows 95 and Windows NT users: While this utility
performs its work correctly, Windows may patch the boot record again and destroy it
unless this is the last thing you write to the disk before running DISKIMAG. If you copy
more data to the disk, make sure you repeat this step.

4. Run DISKIMAG on the floppy to create a file that contains its image, or the first
portion of the partition. Use the /P option to cause DISKIMAG to create an MBR with a
partition table in it, so that the partitioning structure is created in your output file.

To create a ROM-based image of a floppy disk (not a hard drive partition), carefully follow the
procedure below.

1. Format a floppy (even if it has been previously formatted and used for other things).
Your desktop DOS will not always start writing files at the beginning of the floppy, and
this can cause problems if you are only making an image file that is half or a quarter of
the size of the floppy, as these files will be missed.

76 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

2. Copy (without any intervening deletes) the files you wish to the floppy.

3. Run the General Software INSTBOOT utility on the floppy if it is to boot Embedded
DOS. Beware Windows 95 and Windows NT users: While this utility performs its work
correctly, Windows may patch the boot record again and destroy it unless this is the last
thing you write to the disk before running DISKIMAG. If you copy more data to the
disk, make sure you repeat this step.

4. Run DISKIMAG on the floppy to create a file that contains its image, or the first
portion of the floppy.

Starting DISKIMAG

DISKIMAG is run from the command line with at least two, and sometimes a third, argument, as
follows:

C> DISKIMAG d: filename [kb_to_copy] [/P]

The d: operand specifies the drive letter from which to read raw sectors. This must be A: or B:.

The filename operand specifies the name of the output file to copy the raw sectors into as a
contiguous byte stream.

The kb_to_copy operand is optional. If omitted, DISKIMAG assumes that you wish to copy
1MB of data from the floppy. Otherwise, if specified, it is a number of kilobytes (1024 byte
units) of data to transfer from the floppy. Note that 1K is two sectors for 512-byte sectors.

The /P switch is optional. If omitted, DISKIMAG will create an image of a floppy or hard disk
partition by itself. If specified, DISKIMAG will create the partition table necessary for creating
images of hard drive partitions, so that the ROM disk driver will be able to present this
information to the operating system running on the target.

For example, to copy 1.44MB from your drive A: to a file called OUTPUT.BIN, you would use the
following command:

C> DISKIMAG B: OUTPUT.BIN 1440

4.7 BIOSLOC, the ROM BIOS Extension Locator

The General Software BIOSLOC utility functions as a simple EXE relocation program, allowing
you to locate your EXE-based application code and ROM extensions to any fixed segment
address.

Starting BIOSLOC

BIOSLOC is run from the command line with two operands.
To convert an EXE into an ABS file, simply specify as operands the name of the EXE file
(without the EXE extension) and the relocation segment address (optional). If you do not specify
a relocation address, BIOSLOC chooses f000h (the normal segment used by the BIOS).

Chapter 4 EMBEDDED BIOS Adaptation Guide 77

General Software EMBEDDED BIOS Adaptation Guide

To relocate a sample application program called TEST.EXE to a fixed segment address at D000h,
use the following command:

C> BIOSLOC TEST d000

To relocate your linked BIOS called BIOS.EXE to the default segment for a BIOS at F000h
(recommended), use the following command:

C> BIOSLOC BIOS

4.8 BIOSSUM, the ROM BIOS Extension Checksum Utility

The General Software BIOSSUM utility is used to checksum a binary file formatted as a ROM
extension, and to edit a reserved byte in the header from 00h to a value that is the logical
complement of the checksum of the rest of the file. In this way, all the bytes in the file are made
to add to 00h so that when the image is burned into ROM, it is eligible to be recognized as a
BIOS extension.

CODE SEGMENT

RomSig db 55h, 0aah

 db 4 ; number of blocks.

 db 0eah ; FAR JMP instruction.

 dw OFFSET CODE:InitRomDisk

 dw CODE

 db ’CHECKSUM.BYTE-->’ ; searched for by BIOSSUM.

CheckSum db 0 ; modified by BIOSSUM.

 ...

CODE ENDS

Figure 4.1. Typical ROM BIOS Extension Header.

The code fragment shown in Figure 4.1 illustrates how a typical ROM BIOS extension module
might begin with a ROM header.

The first two bytes of a ROM extension are always 55h and aah. The BIOS scans in 2KB
increments through memory starting at C000h through ED00h (this is configurable depending on
the underlying BIOS) and looks for these signatures on 2KB boundaries.

The third byte (4) in our example specifies the number of 512-byte blocks to scan when
performing a checksum of the ROM BIOS extension. The BIOS multiplies the number by 512
and scans that many bytes starting with the first byte of the header. If all the bytes add up to
zero, then the ROM BIOS extension is actually called during initialization.

In order to make this ROM BIOS extension checksum work properly, the BIOSSUM utility is
needed to perform a checksum on the blocks just as though the BIOS were doing it, and calculate
what needs to be done to the image to bring its checksum to 0. This value is computed (a byte),
and is stored in the zero field that follows the magic string, "CHECKSUM.BYTE-->".
BIOSSUM will not work unless this string is present.

Starting BIOSSUM

78 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

BIOSSUM is run from the command line with only one operand, the name of the file to be
checksummed and patched.

Suppose we had a ROM BIOS extension written in EXTEND.ASM. We would assemble and link the
module to form EXTEND.EXE, which is not yet relocated to the proper address. Then we would run
BIOSLOC to locate it to the proper address:

C> BIOSLOC EXTEND C000

and then run BIOSSUM to compute the checksum on the relocated file. It is important to run
BIOSSUM after running BIOSLOC in this procedure or the BIOSSUM program will sum an
EXE file, not an ABS file. Example:

C> BIOSSUM EXTEND

4.9 BIOSMAP, the EMBEDDED BIOS Map File Analyzer

The BIOSMAP utility is used during the EMBEDDED BIOS system build to determine how to
pad the BIOS image with data so that the resulting file is exactly 64KB in length. This is
necessary because the BIOS is linked together from many separately-assembled modules
containing multiple segments, and there is no way to ORG to an absolute location in MASM or
TASM.

BIOSMAP works by closely examining the MAP file produced during the assembly of module
POST. When run without operands, BIOSMAP does not look at this MAP file, but instead
produces a file called BIOSFILL.INC, which is included in POST. After reassembly, BIOSMAP is
run again with a command line argument "BIOS", specifying the MAP file to inspect. During its
pass through the BIOS.MAP file, it looks for the symbol, OFFSET_FF00, and determines the actual
offset that this symbol is associated with. Then, it modifies its BIOSFILL.INC file to contain DB
statements that would correctly position the OFFSET_FF00 symbol to the proper offset.

4.10 PERF, the File System Performance Analyzer

The General Software PERF utility is a file system performance analysis tool that can be used to
benchmark your build of EMBEDDED BIOS. This can help you to understand how various
open modes, record sizes, and file sizes will constrain the overall throughput of your embedded
application before writing any code.

4.10.1 Starting PERF

PERF is executed from the DOS command line with a carefully-selected set of switches
(switches can be prefixed by the ’/’ or ’-’ characters as desired).

Fundamentally, PERF performs selected options on a specified number of files. The files may
automatically be named 0.DAT, 1.DAT, 2.DAT, and so on, or may include your selected prefix; i.e.,
TEST0.DAT, TEST1.DAT, TEST2.DAT, and so on. By default, only one file is used during the test.
These files are called the data files.

Chapter 4 EMBEDDED BIOS Adaptation Guide 79

General Software EMBEDDED BIOS Adaptation Guide

PERF can create a new data file or open an existing one. By default, it attempts to open an
existing file, unless the -c is specified. PERF leaves the data file on the medium unless
specifically asked to delete the file at the end of its run with the -d switch.

PERF’s main function is to perform reads, writes, or both reads and writes; either randomly or
sequentially; and with varying record sizes; within a file size of your choosing. These options
are all configured with command line switches. If you do not select to have PERF read or write
data, then it will simply perform any creation and deletion functions you specified (see above,
creating new data files).

4.10.2 Command Line Options

The actual command-line syntax for PERF is the following:

PERF [-r] [-w] [-k] [-c] [-d] [-i]

[-x[:skip]]

[-s:recsize]

[-l:filesize]

[-f:nfiles]

[-o:filename]

[-v:ON|OFF]

[-m:passes]

[-n:repetitions]

The -r switch specifies that PERF should perform reads from the file into a read buffer
(automatically allocated by PERF). Unless -x is specified, the reads will be sequential without
intervening random seeks.

The -w switch specifies that PERF should perform writes to the file from a write buffer
(automatically allocated and initialized by PERF to a known pattern). Unless -x is specified, the
writes will be sequential without intervening ramdom seeks.

The -k switch specifies that PERF should apply locking around each I/O to the file. By default,
no lock or unlock operations are performed. Note: You must have the SHARE.EXE program
loaded under generic DOS to support record locking; however, Embedded DOS contains this
support in the FAT FSD.

The -c switch specifies that PERF should create the file before operating on it on each pass (the
file is destroyed if it already exists). This switch is required if the file doesn’t already exist.

The -d switch specifies that PERF should delete the file after each pass.

The -i switch specifies that PERF should compare the contents of each record read from the file
with the data it expects as a data integrity check. Normally, both reading and writing are enabled
when this option is selected.

The -x:skip option specifies that random I/O should be performed. By default, sequential I/O is
performed instead. The -x switch can be specified alone or with a colon followed by a skip factor
that dictates how the file pointer is to be advanced after each I/O. A skip factor of zero does not
move the file pointer. A skip factor of one advances the file pointer by 1. A skip factor equal to
the selected record size effectively performs sequential I/O. The default skip value is 1KB.

80 EMBEDDED BIOS Adaptation Guide Chapter 4

General Software EMBEDDED BIOS Adaptation Guide

The -s:recsize option specifies the number of bytes to read or write on each I/O operation. The
size may be any value from 0 to 65534. The default recsize is 1KB.

The -l:filesize option specifies the total number of bytes in the file to be used for I/O. If the file
is being written, then this will be the resulting size of the file. If the file is being read, then only
this many bytes of the file will be processed. The filesize should be a multiple of the recsize
value. The default filesize is 64KB.

The -f:nfiles option specifies the number of files to simultaneously interact with on each pass.
The default number of files is one; this value may be extended to 15 (due to the handle limitation
in DOS).

The -o:filename option specifies an optional name prefix for the file(s) to be operated on. By
default, files are named 0.DAT, 1.DAT, and so on.

The -v:ON|OFF option specifies whether PERF should set the DOS VERIFY flag (and therefore
enable/disable the Embedded DOS cache) before running passes. By default, PERF leaves the
VERIFY setting alone. If ON is selected, then PERF sets VERIFY=ON (thereby disabling the
cache), and then performs I/O. If OFF is selected, then PERF sets VERIFY=OFF (thereby enabling
the cache), and then performs I/O.

4.10.3 Multiple Passes

The PERF program performs all of the selected I/O within a given pass. At the end of the pass,
the statistics (start time, duration in milliseconds, and calculated KB/sec for that pass are
displayed, along with averaged statistics for multiple passes. By default, PERF performs just one
pass.

To specify multiple passes, use the -m:nnnn switch. For example, to perform 10 passes of the
same I/O type, use the following command:

C> PERF [...other options here...] -m:10

4.10.4 Multiple Repetitions per Pass

PERF can be programmed to perform multiple repetitions of your I/O per pass through the file.
If selecting multiple repetitions (the default is just one repetition per pass), then PERF does the
following:

• Opens/Creates the data file(s) for Pass #1
• Repetition #1
• Repetition #2
• Repetition #3
• Closes/Deletes the data file(s) for Pass #1
• Prints a single summary line representing all three repetitions of Pass #1

• Opens/Creates the data file(s) for Pass #2
• Repetition #1
• Repetition #2

Chapter 4 EMBEDDED BIOS Adaptation Guide 81

General Software EMBEDDED BIOS Adaptation Guide

• Repetition #3
• Closes/Deletes the data file(s) for Pass #2
• Prints a single summary line representing all three repetitions of Pass #2

This allows you to keep the data file(s) open during testing so that the operating system
DosOpen, DosClose, DosCreate, and DosDelete functions are not exercised (causing them not to
affect the file system cache, for example).

Multiple repetitions are specified with the -n:nnnn switch. For example, to program PERF to run
two passes of three repetitions, use the following command:

C> PERF [...other options here...] -m:2 -n:3

4.10.5 Some Examples

The following command creates a 256KB file called 0.DAT with 1KB writes, and leaves it on
disk:

C> PERF -c -l:256k -s1k

The following command performs 10 passes of sequential 32KB reads from the file created,
above.

C> PERF -r -l:256k -s32k

The following command creates ten 1KB files called TEST0.DAT, TEST1.DAT, and so on) with 4-
byte writes:

C> PERF -f:10 -o:test -s:4 -l:1k -m:10

The following command performs 10 passes of five repetitions each, creating 3 files, doing
random reads and writes to each file, closing them, and deleting them, with VERIFY OFF:

C> PERF -v:OFF -f:3 -m:10 -n:5 -c -r -w -d

Chapter 5 EMBEDDED BIOS Adaptation Guide 83

General Software EMBEDDED BIOS Adaptation Guide

Chapter 5

BUILDING EMBEDDED BIOS

This chapter describes the process by which a System BIOS is made using the EMBEDDED
BIOS Adaptation Kit software, often in conjunction with code written for the specific board.

5.1 Building the System BIOS

The primary product of using the EMBEDDED BIOS Adaptation Kit is a file that contains a
binary image that can be burned into EPROM or programmed into a Flash ROM. The file’s
name is BIOS.ABS. The file’s size is rounded up to the next 64KB required to support the
requested build size; i.e., 64KB, 128KB, 196KB, or 256KB. Called the System BIOS or Core
BIOS to distinguish it from other BIOS components such as VGA BIOS Extension, this file is
built by the following process.

This system BIOS file is often combined with other components, such as 32-bit PCI services
modules and VGA BIOS extensions. Called by the MAKEFILE, and operating under the
direction of commands in an .IDF file in the project directory, the GSMERGE utility produces
the final output file from these many sources, one of which is the output from the system BIOS
build with its .ABS extension. Commonly, the final output file with all of these components
combined actually has a .BIN extension. The merge step, or even the building of 32-bit
components, can be disabled with environment variables. For more information, see section
5.1.8 in this Chapter. The remainder of this chapter deals with the 16-bit system BIOS build.

5.1.1 Configuring Build Options and Parameters

First, the options and OPTIONS.INC and CONFIG.INC files must be reviewed so that any changes to
these defaults can be recorded in the project file. BIOStart automatically reads these files and
gives the OEM point-and-click graphical access to these parameters, and changes are
automatically recorded to the project file. If you’re manually changing the parameters, you’ll be
creating a project file yourself with a text editor, and adding lines that contain redefinitions of the
symbols in these two files.

5.1.2 Selecting the CPU Personality Module

84 EMBEDDED BIOS Adaptation Guide Chapter 5

General Software EMBEDDED BIOS Adaptation Guide

Next, make sure you have a CPU Personality Module (CPM) for the CPU Class you have
selected in the project file. The NOCPU CPM provided with EMBEDDED BIOS knows about
the generic line of Intel 8086, 80286, 80386, i486, Pentium, Pentium II, Pentium III, and similar
processors. It doesn’t know how to use the advanced features of related processors, such as the
486-SLC, for example, but in many cases a 486-SLC can be treated like any other i486
processor. Similarly, Pentium, Pentium II, Pentium III, Celeron, and K6 Processors do not need
a special CPU module, although they do require support from board and chipset modules to be
supported by the BIOS adaptation.

If you have a CPU that cannot be supported with the provided CPMs, then you’ll need to clone
the provided TEMPLATE.ASM and TEMPLATE.INC files in the CPUS\TEMPLATE subdirectory, and create
a new subdirectory under CPUS that corresponds to the new CPU name. For example, if your
CPU was named ROVER, then you would create a ROVER subdirectory under CPUS, and copy
CPUS\TEMPLATE\TEMPLATE.ASM to CPUS\ROVER\ROVER.ASM, and copy CPUS\TEMPLATE\TEMPLATE.INC
to CPUS\ROVER\ROVER.ASM. Finally, change the INCLUDE directive in ROVER.ASM to point to the
correct file (ROVER.INC), and then change the routines you need changing. After making
modifications, be sure you remove all unchanged routines from this file. This keeps the file
small, and ensures that the BIOS default routines are used, even in the situation where you’ve
updated the core BIOS source code from General Software, and some of those default routines
have changed for the better.

Finally, in any case, insert a line in your project file that defines the CPU CPM as follows (note
this is just an illustrative example, that would need to be changed, depending on what CPU type
you’re actually using).:

CPUCLASS EQU <NOCPU> ; or substitute ROVER for NOCPU.

5.1.3 Selecting the Chipset Personality Module

Next, make sure you have a Chipset Personality Module (CSPM) for the chipset you have
selected in the project file. The NOCHPSET CSPM provided with EMBEDDED BIOS is an
empty placeholder module that performs no special chipset programming. It is used in designs
without chipsets or VLSI blocks with chipset-like qualities.

If you have a chipset that cannot be supported with the provided CSPMs, then you'll need to
clone the provided TEMPLATE.ASM and TEMPLATE.INC files in the CHIPSETS\TEMPLATE subdirectory,
and create a new subdirectory under CHIPSETS that corresponds to the new chipset name. For
example, if your chipset was named AIRFOIL, then you would create a AIRFOIL subdirectory under
CHIPSETS, and copy CHIPSETS\TEMPLATE\TEMPLATE.ASM to CHIPSETS\AIRFOIL\AIRFOIL.ASM, and
copy CHIPSETS\TEMPLATE\TEMPLATE.INC to CHIPSETS\AIRFOIL\AIRFOIL.ASM. Finally, change the
INCLUDE directive in AIRFOIL.ASM to point to the correct file (AIRFOIL.INC), and then change the
routines you need changing. After making modifications, be sure you remove all unchanged
routines from this file. This keeps the file small, and ensures that the BIOS default routines are
used, even in the situation where you’ve updated the core BIOS source code from General
Software, and some of those default routines have changed for the better.

Finally, in any case, insert a line in your project file that defines the chipset CSPM as follows
(note this is just an illustrative example, that would need to be changed, depending on what
chipset you’re actually using).:

CHIPSET EQU <NOCHPSET> ; or substitute AIRFOIL for NOCHPSET.

Chapter 5 EMBEDDED BIOS Adaptation Guide 85

General Software EMBEDDED BIOS Adaptation Guide

5.1.4 Selecting the Board Personality Module

Next, make sure you have a Board Personality Module (BPM) for the board design you have
selected in the project file. The NOBOARD BPM provided with EMBEDDED BIOS is an
empty placeholder module that performs no special board (Super I/O, etc.) programming. It is
used in designs without much glue or special-purpose devices present.

If you have a design that cannot be supported with the provided BPMs, then you’ll need to clone
the provided TEMPLATE.ASM and TEMPLATE.INC files in the BOARDS\TEMPLATE subdirectory, and
create a new subdirectory under BOARDS that corresponds to the new board design’s name. For
example, if your board was named FROG, then you would create a FROG subdirectory under BOARDS,
and copy BOARDS\TEMPLATE\TEMPLATE.ASM to BOARDS\FROG\FROG.ASM, and copy
BOARDS\TEMPLATE\TEMPLATE.INC to BOARDS\FROG\FROG.ASM. Finally, change the INCLUDE directive
in FROG.ASM to point to the correct file (FROG.INC), and then change the routines you need
changing. After making modifications, be sure you remove all unchanged routines from this file.
This keeps the file small, and ensures that the BIOS default routines are used, even in the
situation where you’ve updated the core BIOS source code from General Software, and some of
those default routines have changed for the better.

Finally, in any case, insert a line in your project file that defines the BPM as follows (note this is
just an illustrative example, that would need to be changed, depending on what board you’re
actually using).:

BOARD EQU <NOBOARD> ; or substitute FROG for NOBOARD.

5.1.5 Type GSMAKE in DOS or in a DOS Box Under Windows

Everything is automatic—do not try to do any of the build steps by hand. Remember that if
you're using Borland tools, you must use the "SET BORLAND=YES" DOS command prior to running
GSMAKE, so that it isn’t using Microsoft tools. Then, use the “SET GSPROJ=projectfilename”
DOS command to tell GSMAKE which project to build.

Before we try it, there are actually two more set-up items, one to create the project subdirectory
and project file underneath the PROJECTS subdirectory, and then again to create a subdirectory
by the same project name under the SYSTEM\OBJ subdirectory. For the sake of illustration,
let’s use MYPROJ as the project name in the following example and text that discusses it.

Here's how to build the BIOS from the beginning:

C:\> CD \EBIOS43\PROJECTS

C:\EBIOS43\PROJECTS> MD MYPROJ

C:\EBIOS43\PROJECTS> MD ..\SYSTEM\OBJ\MYPROJ

C:\EBIOS43\PROJECTS> EDIT MYPROJ\MYPROJ.INC

C:\EBIOS43\PROJECTS> SET BORLAND=YES

C:\EBIOS43\PROJECTS> SET GSPROJ=MYPROJ

C:\EBIOS43\PROJECTS> GSMAKE

... all files are assembled and then linked ...

C:\EBIOS43\PROJECTS> [you’re finished]

5.1.6 Inspecting the Binary 16-Bit System BIOS File

86 EMBEDDED BIOS Adaptation Guide Chapter 5

General Software EMBEDDED BIOS Adaptation Guide

The output of the 16-bit build process described in 5.1.5 is a file called
C:\EBIOS43\PROJECTS\MYPROJ\MYPROJ.ABS, assuming you really used MYPROJ as a project name.
You may wish to inspect the file with a hex viewer such as one provided by Norton, for example.

Lacking any fancy PC tools, you can use the MS-DOS DEBUG utility to see the contents of the
file. The only debugger commands you need to know are ’d’ for dump out more bytes, and ’q’ for
quit. You will need to use a slightly different procedure depending on the size of the BIOS you
have built, depending on your setting of the OPTION_BIOS_KBSIZE parameter.

Assuming you’ve created a 64KB BIOS, you can use the following DEBUG sequence to display
the BIOS header at the beginning of the MYPROJ.ABS file:

C:\EBIOS43\PROJECTS> DEBUG MYPROJ\MYPROJ.ABS

- d 100

... Hex dump follows here, you should see EMBEDDED BIOS

... Copyright message.

- q [exit to DOS]

C:\EBIOS43\PROJECTS>

If you specified an 8KB size, the MYPROJ.ABS image is padded at the beginning with 56KB of 0xff
bytes before the real BIOS image starts. You’ll need to use the following DEBUG sequence to
display the BIOS header at that location:

C:\EBIOS43\PROJECTS> DEBUG MYPROJ\MYPROJ.ABS

- d e100

... Hex dump follows here, you should see EMBEDDED BIOS

... Copyright message.

- q [exit to DOS]

C:\EBIOS43\PROJECTS>

If you specified a 16KB BIOS, then the MYPROJ.ABS image is padded at the beginning with 48KB
of 0xff bytes before the real BIOS image starts. You’ll need to use the following DEBUG
sequence to display the BIOS header at that location:

C:\EBIOS43\PROJECTS> DEBUG MYPROJ\MYPROJ.ABS

- d c100

... Hex dump follows here, you should see EMBEDDED BIOS

... Copyright message.

- q [exit to DOS]

C:\EBIOS43\PROJECTS>

Chapter 5 EMBEDDED BIOS Adaptation Guide 87

General Software EMBEDDED BIOS Adaptation Guide

If you specified a 32KB BIOS, then the MYPROJ.ABS image is padded at the beginning with 32KB
of 0xff bytes before the real BIOS image starts. You’ll need to use the following DEBUG
sequence to display the BIOS header at that location:

C:\EBIOS43\PROJECTS> DEBUG MYPROJ\MYPROJ.ABS

- d 8100

... Hex dump follows here, you should see EMBEDDED BIOS

... Copyright message.

- q [exit to DOS]

C:\EBIOS43\SYSTEM>

5.1.7 Programming a Boot ROM with MYPROJ.ABS

As previously mentioned, projectname.ABS is a binary file that contains a binary image of the 16-
bit BIOS to be programmed into a boot Flash part. It does not contain "hex records" or other
formats used by older ROM burners.

Take precautions when burning ROMs or programming flash. Make sure that all of the leads of
your parts are clean, straight, and are handled with the proper static controls. Also make certain
that the parts are plugged into their sockets in the right direction; it is easy to create a fire with
EPROMs plugged in backwards in some system boards!

5.1.8 The 32-bit BIOS Build, and Composite BIOS Files

For many simple designs, a simple 16-bit system BIOS suits the requirements for pre-boot
firmware. However, if your design requires 32-bit BIOS directory services, 32-bit PCI services,
Microcode Update modules, or embedded VGA and/or VSA ROM extensions, you will need to
create these components and merge them together into one big output file, which includes not
only these components, but the 16-bit system BIOS as well. The utility that performs this
function is GSMERGE (described in Chapter 4) and its operation is governed by a special .IDF
script file in the project directory.

The production of a composite output file (typically, with a .BIN extension) is automatic if an
IDF file is present. The MAKEFILE that directs GSMAKE to build all of the 16-bit system
BIOS components will automatically invoke the build of the 32-bit BIOS components, such as
the 32-bit PCI services module, and run GSMERGE to combine everything as directed by the
IDF file.

To defeat the 32-bit BIOS builds, or to defeat the execution of GSMERGE as a part of the
standard build process, see the instructions in Chapter 4 for setting the appropriate environment
variables. It should be noted that, if GSMERGE does not find an IDF file, it will perform no
action, so that a merge process will not take place. IDF files are provided for all standard project
files supplied by General Software for which composite builds are needed. For example, those
that have special SMI extensions (VSA) or those that have 32-bit PCI services (all standard PCI-
based reference designs).

As with the .ABS files, projectname.BIN, the output of the GSMERGE activity, is a binary file
that contains a binary image of a ROM to be burned. It already includes the .ABS file data, so

88 EMBEDDED BIOS Adaptation Guide Chapter 5

General Software EMBEDDED BIOS Adaptation Guide

you should consider the .ABS file to be more of a temporary file used during the build. Like the
.ABS file, the .BIN file has no internal structure-- it does not contain "hex records" or other
formats used by older ROM burners.

5.1.9 Booting the System

Your ROMs are installed in their sockets and you are ready to apply power to the motherboard.
Make sure that your work area is free of screws, tools, and bits of wire that can create shorts
when you least want them to.

Also check to see that you’ve plugged in all the peripherals that are being supported by the BIOS.
If you are working with a motherboard, connect the PC keyboard and add a VGA monitor and
VGA card if possible, so that a maximum amount of status can be determined when the system
boots for the first time. Then, apply power to the target.

If you are working with a target that closely resembles an ISA desktop PC, your chances of
booting DOS at this point are excellent. Within a few hours, a non-booting system will become
bootable by carefully reviewing the configuration parameters, and making sure you have the
right Chipset, CPU, and Board Personality Modules in the build.

Finally, turn to Chapter 8 for a much more in-depth discussion of the kinds of issues that may
need to be addressed in your BIOS build.

5.2 Building Auxilliary Components

All of the EMBEDDED BIOS tools come precompiled in the TOOLS directory, so there is no need
to run GSMAKE in the TOOLS directory. Any additional components of EMBEDDED BIOS
that are not a part of the core System BIOS however, are built in the UTIL directory.

Before building the utilities themselves, you’ll need to build the Character Oriented Window
package used by the HOST.EXE program that demonstrates Manufacturing Mode. Do the
following before going into the UTIL directory to build the software that uses COW:

C:\> CD \EBIOS43\COW

C:\EBIOS43\COW> SET BORLAND=YES

C:\EBIOS43\COW> GSMAKE

... all files are assembled and then linked ...

C:\EBIOS43\COW> [you’re finished]

To be certain that COW compiled correctly, the output of this build produced a TEST.EXE
program that can be run right away. It has no functional purpose other than to paint the screen
and exercise the list boxes and dialog boxes. Once this is done, you’re ready to move on to
building the real utility programs below.

To build the auxilliary components (such as the Remote disk server that runs host-side and test
HOST program used with the Manufacturing Mode), change into the UTIL directory and run
"GSMAKE". Again remember that if you’re using Borland tools, you must use the "SET
BORLAND=YES" DOS command prior to running GSMAKE, so that it doesn’t using Microsoft tools.
Here’s how to build the UTIL components from the beginning:

Chapter 5 EMBEDDED BIOS Adaptation Guide 89

General Software EMBEDDED BIOS Adaptation Guide

C:\> CD \EBIOS43\UTIL

C:\EBIOS43\UTIL> SET BORLAND=YES

C:\EBIOS43\UTIL> GSMAKE

Here, all files are assembled and then linked.

C:\EBIOS43\UTIL> [you’re finished]

To see if the HOST program was compiled correctly, run the HOST program. It will display a
full screen menu that does not require Manufacturing Mode to run until an option is selected.

Chapter 6 EMBEDDED BIOS Adaptation Guide 91

General Software EMBEDDED BIOS Adaptation Guide

Chapter 6

CONFIGURING THE BIOS WITH BIOSTART

EMBEDDED BIOS offers so many configurable options that configuration automation is almost
essential for the adaptation engineer with little BIOS adaptation experience. BIOStart provides
guided access to BIOS source-level configuration options in a hierarchical manner in a Windows
environment.

6.1 Overview of BIOStart

The real purpose of BIOStart is to provide the engineer with easy, high-level access to the
EMBEDDED BIOS configuration process. Within the BIOStart environment, the engineer can
manage projects, customize options and operating parameters, and build a binary ready-to-ROM
version of the BIOS from the source code with these customized options without ever leaving
Windows and without ever having to modify a .INC file by hand with a text editor.

92 EMBEDDED BIOS Adaptation Guide Chapter 6

General Software EMBEDDED BIOS Adaptation Guide

BIOStart makes this process easy and simple for the casual user, but provides more depth to
customization for the engineer with special needs. Especially useful for the experienced BIOS
adaptation engineer is the on-line descriptions of options and the links to other options that
interact with one another.

Prior to BIOStart’s introduction, configuration of any BIOS was performed by hand, using a text
editor. Actually, most BIOS adaptation kits use configuration symbols embedded directly in the
source code; a handful of symbols is common. Because of the explosive growth of EMBEDDED
BIOS’s complexity in terms of supported features (today with over 400 configuration options), a
method of managing the options and coordinating their relationships was necessary.

This condition can be likened to modern jet fighters requiring on-board computers to keep them
flying; without the flight computers, the jets would quickly stop flying, but with the computers,
precision flying and flying to the limits imposed by the pilot, not the equipment, are all possible.
In modern fighter aircraft, the pilot doesn’t control the fine details of getting there, but is assisted
to a large extent by computers. BIOStart provides the management tool for this complexity in
the BIOS configuration process, so that its full capabilities can be harnessed.

The BIOStart user interface therefore, has a special design; a cross between a wizard and a
Windows help browser. During the customization phase, the interface has some hypertext
elements found in WEB browsers that offers the user different views of associated configuration
options and parameters.

BIOStart allows the BIOS adaptation engineer to hit the ground running, rather than reading
thick manuals. EMBEDDED BIOS is a complex product, and while there may be time to review
all of its documentation before building the first BIOS, it can provide a shortcut that allows real
BIOS adaptations to be produced in a manner of minutes. It does this by eliminating common
configuration problems that can occur when conflicting configuration options are used, or when
parameters have not been properly selected for some options.

For example, a specific version of the BIOS may not support all of the hardware features of the
board for which it was designed (i.e., cache memory control enabled but no cache memory
available on the board). BIOStart will warn its user of such potential problems, and although the
engineer will be allowed to enable such features, a warning is generated. BIOStart will fix all
settings that generate a warning, setting them to what engineers at General Software have coded
as the best value for that board.

Despite its power, BIOStart is not a substitute for good planning, or for actually writing the
customization code that may be necessary as a part of the CPU Personality Module, the Chipset
Personality Module, or more commonly, the Board Personality Module.

BIOStart cannot help someone who knows nothing about the hardware design a working BIOS.
Basic knowledge of BIOS and hardware terminology is required to use it. However, provided
the engineer has this basic knowledge, BIOStart is powerful enough to make the source code
configuration process an easy task. No knowledge of assembly language or the actual structure
of the source code is required to use BIOStart. Nor is it necessary to know about all of the 400
parameters, because BIOStart will guide you to the settings that you need while shielding you
from the settings that may cause problems if set by a novice, or are irrelevant to the hardware you
are designing.

Chapter 6 EMBEDDED BIOS Adaptation Guide 93

General Software EMBEDDED BIOS Adaptation Guide

6.2 Installing the Adaptation Kit with BIOStart

BIOStart also doubles as the Windows installation utility for the Adaptation Kit itself. It lets you
specify which directory you wish to expand the source tree in and it executes a batch file that
installs the BIOS. It then allows you to specify if you are using Borland tools or not. At the time
of this writing, if you are using MASM 6.1, 6.11, or 6.14, you will need to manually set the
MASM61 environment variable in your AUTOEXEC.BAT file. If you specify that you use Borland
tools, then BIOStart will ask if you wish to update your AUTOEXEC.BAT file. On reboot, the
AUTOEXEC.BAT will set the appropriate environment variable for you. BIOStart currently requires
that that variable be set. Finally, BIOStart will create a General Software program group in the
program manager, or on the Start menu.

When setup has finished installing everything, it will attempt to find the source directory again.
If it can, BIOStart starts, and if you didn’t have to modify the AUTOEXEC.BAT, you can proceed
with the BIOS design process. If the AUTOEXEC.BAT was modified, you will need to exit BIOStart,
and reset the computer.

If you are re-installing Embedded BIOS, or you need to run BIOStart as setup again, go into the
Windows directory and delete the file BIOStart.INI. This is where BIOStart stores the location
of the source code tree. If you delete this file, BIOStart will be unable to find the source code,
and will enter into install mode. If you wish to specify a pre-existing installation of Embedded
BIOS 4.3, tell BIOStart that you wish to install Embedded BIOS and then specify the path of the
source tree for Embedded BIOS. Then ignore or answer no to all of the other installation
questions. You can also modify the BIOStart.INI file directly with a text editor.

6.3 Creating and Editing a Project

BIOStart is a configuration utility designed to allow the adaptation engineer to modify existing
EMBEDDED BIOS projects or even create new projects from scratch. We recommend that
whenever possible, engineers start with a pre-existing project. When extensive modifications are
likely to be made to the board, the chipset or the CPU, the engineer should clone pre-existing
modules using BIOStart. Here is how you do this:

1. Open BIOStart. Windows 3.1 users should click on the BIOStart icon in the
General Software program group in program manager. Windows 95 and Windows NT
users can click on the [Start] button, and select BIOStart from the General Software list
under applications.

2. Start a new Embedded BIOS 4.3 Project. Click on the Start a new Project button,
select and clone a board module. Click on the listed board module that most closely
resembles your project (see Figure 6.1). Click on the button labeled [Clone Selected
Module]. This will open up the Clone New Module dialog box.

94 EMBEDDED BIOS Adaptation Guide Chapter 6

General Software EMBEDDED BIOS Adaptation Guide

Figure 6.1. Board Personality Module selection.

From this project screen, all of the main components will be selected. Enter the title of the new
board module in the upper text box. This is the text that will appear on the button every time you
wish to create a new project, so enter something that will distinguish the module from the other
entries in the list (see Figure 6.2).

Figure 6.2. Module cloning.

Enter an 8 character module name in the lower text box. This file name will be used to name the
sub-directory under the BOARDS directory, as well as the names of any .ASM or .INC files that
will be copied from the original module. You should enter a unique directory identifier.

Finally, click on [OK] at the top of the Clone New Module dialog box. BIOStart will generate
and execute a batch file that will clone the modules. A File not found message is normal if
there are no .ASM files for BIOStart to clone, so ignore that message. If there are .ASM files for
BIOStart to clone, the message will not appear. When the batch file is finished, press any key,
and be sure the DOS box closes. BIOStart will not continue as long as the DOS box remains
open (see Figure 6.3).

Chapter 6 EMBEDDED BIOS Adaptation Guide 95

General Software EMBEDDED BIOS Adaptation Guide

Figure 6.3. DOS box launched by BIOStart.

Select the newly cloned module from the list and press [Next] at the top of the window.

3. Repeat the above Board selection procedure for the Chipset and CPU modules.

4. Specify a title and filename for the BIOS adaptation. The title of the BIOS will appear at
the top of the screen when the completed BIOS boots on your target hardware. The file name is
used to determine the name of the project directory where the .INC file and the final .ABS file
will go as well as the name of those files. To preserve compatibility with DOS and with
GSMAKE, BIOStart limits the project file name to 8 characters. The default settings as well as
the screen that you set them on is displayed in Figure 6.4.

Figure 6.4. Main project control screen.

6.4 Customizing a Project

When you are actually creating a project from scratch, there are some additional steps you need
to take. BIOStart cannot anticipate how the hardware will be arranged and what parts of the
BIOS you will want enabled, so you will have to specify this yourself.

To begin the customization process, click on Customize Embedded BIOS 4.3. This will allow
you access to all of the source code configuration parameters. You should click on the button
labeled [Basic Configuration] (Figure 6.5) and click on each sub-category in turn, insuring that
all the settings are correct for the hardware you are designing. Be aware that if you choose new

96 EMBEDDED BIOS Adaptation Guide Chapter 6

General Software EMBEDDED BIOS Adaptation Guide

modules, or return to the module selection process, the settings will be completely reset, and you
will have to go through this process again.

Figure 6.5. Top-level BIOS customization screen.

Also, unlike the initial BIOStart windows, the configuration windows may be re-sized or
maximized. There may also be more than one open at once. The previous menu is usually
hidden behind the one you are currently working with, so if you wish to see options set in the
previous menu without closing the current one, you can move the current window, or re-size it.
If you find the menu to be cramped, or you wish to see as many options as possible at the same
time you can also maximize the window.

The [Find Options] button allows you to open a custom menu with all the options relating to a
specific topic. If you are searching for one of the configuration options listed in this manual, you
can enter it as well, and BIOStart will display its equivalent data field in the menu (see Figure
6.6). You could, for example, enter FLASH, and only the top menu item in Figure 6.6 would be
displayed.

Figure 6.6. Special screen produced with Find command.

Also shown in Figure 6.6 are several [More] buttons. These buttons allow access to more
configurations options that are related to that option.

Clicking on the [Previous Menu] button will take you back to the last menu. If you move all of
the top menus aside, until you see the bottom menu, you could click on [Previous Menu] and
BIOStart would take you back to a screen similar to the one in Figure 6.4.

As you set these values, BIOStart may generate warnings. If you really want to try using the
feature BIOStart warns you about, you can enable it anyway. The BIOS may or may not work.
You may also need to modify the source code for that feature to work. BIOStart will display all

Chapter 6 EMBEDDED BIOS Adaptation Guide 97

General Software EMBEDDED BIOS Adaptation Guide

options that generate a warning in the Automatic Change Log and Warning List shown in Figure
6.7. If any option was changed by BIOStart in an attempt to repair potential problems, this will
be listed there as well. The changes are displayed in the order they were made. You can clear
this list, as well as resetting possible problem values, by clicking on the [Fix Problems] button
located directly bellow the list.

Figure 6.7. Main project control screen with logged conflicts.

At the top of the list, the selected modules are also displayed, thereby insuring that you always
know which modules are being used with this project.

6.5 Printing Project Customization Settings

The [Print Settings] button is used primarily for debugging purposes. It prints out every
EMBEDDED BIOS 4.3 option, and what BIOStart thinks it is set to. This can take a fair
amount of paper, and is intended for tech support. However, it can be used to double check your
work, as a means of insuring that you know what all the options are set to. It also provides a
hard copy of the option settings.

The [Browse] button allows you to see what other projects have been created, and select one of
them as the name of this project. Be aware that if you chose to save the project after having done
so, the old project will be overwritten, and its .INC file will be lost. BIOStart will warn you if
you attempt to overwrite a pre-existing project. Note that changing the Filename does NOT save
the file. You must still click on the [Done, Save it] button at the top of the window.

6.6 Saving the Project and Settings

When you have finished modifying the options, and you wish to try and build the project, click
on the [Done, Save it] button at the top of the Window. If the project name is unique, and the
project has not been saved before, BIOStart will create a new project directory under the Projects
directory in the source code tree with the same name as the project filename. It will also create a
new .INC file.

Do not click on the [Cancel] button unless you wish to lose all the changes you have made. The
[Cancel] button will not delete cloned modules from the disk, so don’t worry about losing that
kind of change; the project simply won’t be saved.

98 EMBEDDED BIOS Adaptation Guide Chapter 6

General Software EMBEDDED BIOS Adaptation Guide

6.7 Building the Project

Once you have created a project, you can use BIOStart to build it. You do this by clicking on the
[Build a current Embedded BIOS 4.3 Project].

Then select a project from the list and click on [OK]. This list is shown in Figure 6.7, and is
similar to the list displayed when you click on [Edit a current Embedded BIOS 4.3 Project] or
[Browse] (Figure 6.7). Just click on the project you wish to build or type its name.

Figure 6.8. Selection of project to be built.

Next BIOStart will ask you if you wish to delete the old object files. This is a good idea if you
have built the project before and you wish to insure that all the source code files will be re-
compiled to reflect the new settings. BIOStart will then generate and execute a batch file that
will run GSMAKE to build your project.

When the batch file has finished, be sure the DOS box opened for the batch file is closed.
BIOStart will not continue until it is closed, so that the user can inspect the final results of the
build and observe any errors that occurred when invoking the assembler, linker, GSMAKE, or
other tools.

Once the project has been built, and BIOStart is certain the DOS box has been closed, BIOStart
will display a message acknowledging that the build has been completed.

6.8 Patching Binary System BIOS Files

Once a binary (.ABS) file has been built, BIOStart can be used to directly modify that file.
Binary configurable options are modified by the same process standard options are modified.
You click on [Edit a current Embedded BIOS 4.3 Project], select the project from the list, and
BIOStart loads the project. If there is a .ABS file, BIOStart also loads the binary configuration
portion of that file.

You then click on the [Customize Embedded BIOS 4.3] button shown in the opening screen shot
at the beginning of this Chapter. Find the options you wish to modify. If they are binary
configurable, then BIOStart will tell you (see Figure 6.9). All binary configurable options have
the text “This is a Binary configurable option” added to the bottom of its help field.

Chapter 6 EMBEDDED BIOS Adaptation Guide 99

General Software EMBEDDED BIOS Adaptation Guide

Figure 6.9. Configuration of Binary-Only parameters.

If you are an OEM, and you wish to release a binary patch only version of BIOStart, you will
need to make modifications to the .WIZ files located in TOOLS subdirectory of your source code
tree. Contact General Software for information describing the format and language used in these
files.

6.9 Upgrading BIOStart

Most upgrades to BIOStart will be to the .WIZ files that control it. You can obtain the latest
version of the .WIZ files by contacting General Software. As time goes on, new .INC and new
.WIZ files will be produced that will fix potential configuration problems. Just copy the new
files over the old ones. Do not attempt to modify these files yourself unless you know how they
work. They are integral to BIOStart, and improper changes to them may damage the interface.
Instructions on customizing the BIOStart interface can be obtained from General Software, if it
becomes necessary for your project.

Chapter 7 EMBEDDED BIOS Adaptation Guide 101

General Software EMBEDDED BIOS Adaptation Guide

Chapter 7

BIOS BUILD OPTIONS

This chapter presents all of the BIOS source-level build options, which can be configured in the
project file, either with BIOStart or with a text editor.

The defaults for these configuration options, parameters, and in some cases tables, are defined in
the INC\OPTIONS.INC and INC\CONFIG.INC files. Do not modify these files; instead create a
project file of your own, and modify it by copying lines from these other files to your project file,
and then change the copied lines. Editing INC\OPTIONS.INC and INC\CONFIG.INC will make it
difficult for you to upgrade the core BIOS software to new releases, and can make debugging
new adaptations very diffcult. Please note: we cannot support customers who modify these files.

You can imagine that it would be quite difficult to scan through over 100,000 lines of source
code and make changes to it just to be sure that you have made all the changes that are necessary
to make the BIOS work on your target. Fortunately, this is not necessary with EMBEDDED
BIOS.

Configuration of the BIOS takes five steps:

1. Create a project file to define the configuration.

2. Add options to the project file that override defaults found in INC\OPTIONS.INC and
INC\CONFIG.INC. Do not edit INC\OPTIONS.INC and INC\CONFIG.INC directly. Three
important options specify the CPM, CSPM, and BPM for the build.

3. Supply a CPU Personality Module (CPM) if necessary (see Chapter 19).

4. Supply a Chipset Personality Module (CSPM) if necessary (see Chapter 20).

5. Supply a Board Personality Module (BPM) if necessary (see Chapter 21).

This chapter describes the options and parameters that may be specified in the project file.
Please take some time to review these options. General Software has already set the defaults to
standard values that make sense for IBM PC/AT-compatible systems.

102 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1 Options Found in OPTIONS.INC

This section explains the purpose of the options defined in the INC\OPTIONS.INC file. Remember,
do not modify INC\OPTIONS.INC directly. Instead, copy the lines you want to change from this
file into your project file, and change them in the project file.

Note that some configuration options are closely related. Turning on the
OPTION_SUPPORT_SETUP option, for example, makes the build sensitive to the
OPTION_SETUP_CUSTOM and OPTION_SETUP_DIAGNOSTICS options to enable
specific components of Setup in the system.

7.1.1 BIOS_MAJOR_VERSION Constant

The BIOS_MAJOR_VERSION constant is set by General Software to identify the release. Do
not modify this constant.

Values:

4 - Indicates EMBEDDED BIOS 4.x architecture.

Related Parameters:

BIOS_MINOR_VERSION.

7.1.2 BIOS_MINOR_VERSION Constant

The BIOS_MINOR_VERSION constant is set by General Software to identify the release. Do
not modify this constant.

Values:

3 - Indicates EMBEDDED BIOS 4.3 architecture.

Related Parameters:

BIOS_MAJOR_VERSION.

7.1.3 OPTION_BIOS_KBSIZE Option

The OPTION_BIOS_KBSIZE option determines the size of the BIOS image itself. The
highest value for this option is 256; the lowest is determined by how many features and options
are enabled in the BIOS build.

All builds of the core BIOS create a file called BIOS.ABS that is a multiple of 64KB in size. The
actual size of the file produced by the build is rounded up to the next 64KB based on the value of
this parameter. This, if 29, 48, 63, or 64 were specified, the build would produce a 64KB file.
Similarly, if 65, 100, 127, or 128 were specified, the build would produce a 128KB file. The

Chapter 7 EMBEDDED BIOS Adaptation Guide 103

General Software EMBEDDED BIOS Adaptation Guide

build pads the bottom portion of each 64KB “group” within the BIOS image with FFh, allowing
other software to be merged-in with a BIOS build in a PROM programmer. By increasing this
parameter to 64, no filler will be generated for the top 64KB group. By reducing the parameter
to lower values, such as 32, 20, or less, it is possible to pack the BIOS into a smaller area in the
top of BIOS.ABS, and therefore the BIOS may require a smaller area of ROM to run from.

A suggested value to start with is 64 for simpler targets with fewer features enabled, or 128 for
higher-end targets or those builds with lots of features enabled. Then, the value should be
reduced after building a BIOS with the intended features.

After the BIOS is built, take a look at the file called PROJECTS\myproj\BIOSFILL.INC; this file will
contain symbol definitions used by the 16-bit BIOS build to create padding in the system. In the
sample BIOSFILL.INC file below, note that the BIOS has two full segments for a 128KB build; the
E000h and F000h segment. The F000h segment is commonly called the Last segment. Segment
E000h has 35935 bytes free that have been padded by this build. The Last segment at F000h has
only 3920 bytes free that have been padded. The total amount of space unused in the 128KB raw
file is 39855, as indicated by a comment at the bottom of the file.

Clearly, this file indicates that it does not use all of the first segment in the BIOS image at
E000h. The size of this segment could be reduced by 35935 bytes, but must be done on a 1KB
basis. Therefore, OPTION_BIOS_KBSIZE might be set to (128-(35935/1024))=(128-35)=93
to achieve a perfect footprint for this build. This would pad the beginning of the E000h segment
with FFh bytes, making it available for other uses.

;*** BIOSFILL.INC -- Embedded BIOS Padding Include File.
;
;1. Functional Description.
; This include file is built with the BIOSMAP.EXE utility to define
; padding bytes that position the symbol OFFSET_FF00 to offset ff00h.
; Doing this allows us to correctly position the bootstrap code within
; the assembly, because the assembly ORG statement can’t do this.
;
;2. Modification History.
; S. E. Jones 92/06/02. Manufactured by BIOSMAP.
; S. E. Jones 93/09/05. Moved to C 8.0.
; K. C. Taylor 98/08/12. Upgraded for multi-segment.
;
;3. NOTICE: Copyright (C) 1992-2000 General Software, Inc.

SEGE000_FILL_SIZE = 35935 ; Pad E000 to 64k.
LASTSEG_FILL_SIZE = 3920 ; locate OFFSET_FF00 to ff00h.

; Total unused space: 39855

It is necessary to specify which components of the BIOS should be moved into segments C000h,
D000h, or E000h from the standard F000h segment, in order to make use of BIOS build sizes
greater than 64. This is accomplished with the RELOCATE_FEATURE table in the project
file.

Values:

n - A number between 1 and 256, inclusive. Start with 64 or 128.

Related Parameters:

RELOCATE_FEATURE – Moves features to segments E000h, D000h, and C000h.

7.1.4 OPTION_SUPPORT_PCODE Option

104 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SUPPORT_PCODE option enables or disables code that implements the Pseudo
Code (PCODE) Interpreter in the core BIOS. This option causes some common sequences of
machine code in the BIOS to be converted to special Intel opcodes which generate an invalid
instruction trap. The PCODE emulator handles these exceptions on the fly and executes the
intended operation. The result is a small space savings at some expense in compatibility and
performance.

Do not enable this option and the corresponding OPTION_SUPPORT_PCODE option in the
Embedded DOS-ROM build. If you are running application software or other system software
that uses a similar technique, then the EMBEDDED BIOS PCODE interpreter may not be given
the chance to properly handle the exceptions, which could lead to wrong results. It is important
to use this option only to save space in completely closed systems where all the software to be
run in the system is known and tested in advance.

Values:

1 - Enable PCODE interpreter, saving code space wherever possible.
0 - Disable PCODE interpreter.

Related Parameters:

None.

7.1.5 OPTION_SUPPORT_SETUP Option

The OPTION_SUPPORT_SETUP option enables or disables code that implements the SETUP
menu and related screens.

Enabling this option does not enable specific screens in SETUP. These must be enabled with the
OPTION_SETUP_xxx parameters.

SETUP works with or without an actual CMOS part. If no CMOS is present in a design, then the
factory default values for SETUP are used, as built-up from build parameters.

SETUP can perform other things besides CMOS configuration. For example, it allows access to
the Integrated BIOS Debugger, Manufacturing Mode, Standard Diagnostics suite, Power
Management functions, and Flash disk formatter.

Values:

1 - Enable SETUP menu.
0 - Disable SETUP menu.

Related Parameters:

OPTION_SETUP_DEMO - Enable GS demo Setup screen.
OPTION_SETUP_CUSTOM - Enable chipset Setup screen.
OPTION_SETUP_PASSWORD - Enable password Setup screen.
OPTION_SETUP_DIAGNOSTICS - Enable user diagnostics Setup screen.
OPTION_SETUP_DEBUGGER - Enable debugger entry in Setup menu.

Chapter 7 EMBEDDED BIOS Adaptation Guide 105

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SETUP_IDE - Enable OEM IDE utilities Setup screen.
OPTION_SETUP_SHADOWCACHE - Enable ROM shadowing Setup screen.
OPTION_SETUP_PWR_FEATURES - Enable power mgt features Setup screen.
OPTION_SETUP_PWR_TIMEOUTS - Enable power mgt timeouts Setup screen.
OPTION_SETUP_MFGMODE - Enable Manufacturing Mode Setup access.
OPTION_SETUP_RAMDISK - Enable RAM disk formatting Setup screen.
OPTION_SETUP_RFDDISK - Enable low-level RFD formatting Setup screen.

7.1.6 OPTION_SUPPORT_CONFIGBOX Option

The OPTION_SUPPORT_CONFIGBOX option enables or disables code that implements the
configuration box displayed during POST right before booting the operating system.

Values:

1 - Enable configuration box.
0 - Disable configuration box.

Related Parameters:

CONFIG_CFGBOX_MONO_ATTRIB - Monochrome attribute used for box.
CONFIG_CFGBOX_COLOR_ATTRIB - Color attribute used for box.

7.1.7 OPTION_SUPPORT_POSTCODES Option

The OPTION_SUPPORT_POSTCODES option enables or disables code in POST that writes
progress codes to the manufacturing port (normally, I/O port 80h). This is a useful feature that is
used during development to debug the hardware, and is also used during Q/A of production units.

The I/O port address can be changed by changing the CONFIG_POST_PROGRESS_PORT
parameter, for systems that do not have a progress port in the traditional sense, or that have a
progress port that is not wired to the default address.

Sometimes it may be useful to employ another register, such as a scratch register on a 16550
UART, as the POST progress port. If a read/write port such as this (2ffh, 3ffh, etc.) is selected,
then the Manufacturing Mode can be used to remotely determine what the last POST code was.

Some chipsets, such as the RadiSys R380, provide support for “snooping” I/O bus accesses. The
EMBEDDED BIOS R380EX Chipset Personality Module can be programmed to route these
POST codes to a 7-segment display, for example.

Values:

1 - Enable POST codes written to manufacturing port.
0 - Disable POST codes written to manufacturing port.

Related Parameters:

CONFIG_POST_PROGRESS_PORT - Select I/O port for POST codes.

106 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.8 OPTION_SUPPORT_POSTCODES_COM Option

The OPTION_SUPPORT_POSTCODES_COM option enables or disables code in POST that
writes a special set of progress codes over an RS232 link via an 8250-compatible UART. This
allows debugging of POST on targets that do not have an I/O port 80h monitor, or when no logic
analyzer is available to record the sequence of POST activities that occurs.

The actual output is routed through the BPM’s BoardPostCodeCom routine, so that the OEM
can use any hardware to display or capture the codes. The device is initialized by the core BIOS
by calling the BPM’s PostCodeComInit routine, so the OEM can initialize any custom
hardware required by this function. The default BPM routines support standard 8250-compatible
UARTs, for the convenience of most designers who already have those parts on their targets.

The base I/O port address of the UART can be changed by changing the
CONFIG_POST_PROGRESS_COM parameter. Values such as 3f8h and 2f8h can be used to
access standard UART addresses, but alternates can also be chosen.

By default, output over this port occurs at 9600 baud, no parity, and 1 stop bit. The baud rate can
be adjusted with the CONFIG_POST_PROGRESS_BAUD parameter.

COM port progress codes are simple alphanumeric characters that are generated with the
POSTCODECOM macro calls in module SYSTEM\POST.ASM. If you need to debug other
modules, simply add POSTCODECOM statements as needed; keeping in mind that (a) the
POSTCODECOM macro destroys some registers (see INC\MACROS.INC) and (b) the
POSTCODECOM macro cannot be called until after the UART has been made available via
Super I/O programming or Chipset programming to enable the UART.

Values:

1 - Enable alphanumeric progress codes written to COM port.
0 - Disable alphanumeric progress codes written to COM port.

Related Parameters:

CONFIG_POST_PROGRESS_COM - Select base I/O port for UART.
CONFIG_POST_PROGRESS_BAUD - Select baud rate for UART.

7.1.9 OPTION_SUPPORT_MFGCODES Option

The OPTION_SUPPORT_MFGCODES option enables or disables code in POST that copies
incoming Manufacturing Mode command codes to an I/O port so that it can be viewed on a 7-
segment hex LED display.

Commonly, this is enabled during debugging of a system, and the standard I/O port 80h is used
for both this purpose and for the purpose of displaying BIOS POST codes.

Values:

1 - Enable Manufacturing Mode progress codes.
0 - Disable Manufacturing Mode progress codes.

Chapter 7 EMBEDDED BIOS Adaptation Guide 107

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

CONFIG_MFG_PROGRESS_PORT - I/O port to which the command codes will be
written. Usually, this is 80h, but can be modified to support any I/O port.

7.1.10 OPTION_SUPPORT_POSTMSGS Option

The OPTION_SUPPORT_POSTMSGS option enables or disables code in POST that displays
progress or error messages during system initialization. Desktop PC targets should have this
option enabled, while embedded targets without a display should have this option disabled
during production.

It is possible for embedded hardware that doesn’t have a display to route POST messages over a
serial port. This is not the same thing as routing POST codes over a COM port; here I/O refers to
actual messages such as the sign-on banner, memory count-up display, and so on.

Keyboard input for prompts during POST is also conditionalized with this option. When the
option is enabled, the prompts are enabled. When the option is disabled, the code continues as
though the operator supplied the answer most likely to allow POST to continue to boot the
operating system.

To redirect POST’s messages over an RS232 line, choose a serial port assignment for
CONFIG_CON_REDIR_STD other than 0, where its value indicates the COM port number.

Values:

1 - Enable POST messages.
0 - Disable POST messages.

Related Parameters:

CONFIG_CON_REDIR_STD - Standard video I/O redirection.

7.1.11 OPTION_SUPPORT_POWERON_DELAY Option

The OPTION_SUPPORT_POWERON_DELAY option enables or disables code in POST that
pauses after a power-on condition to wait for the power supply to come up to the required
voltage. While the CPU may be executing properly, peripherals being programmed by POST
may require extra time immediately after power-on to reset and come up to operating condition.

This can especially be a problem with targets that have lots of components to power-up, that are
powered by light-duty power supplies. If it seems that it takes a couple of pushes of the RESET
button on a board to get it to boot, inadequate supply may be the problem.

Often the main component that does not receive enough power quickly enough to begin servicing
CPU requests is the 8042 keyboard controller. If you have an 8042-compatible keyboard
controller, this parameter should be enabled, and you should set the
CONFIG_POWER_ON_DELAY parameter to something around 20. This parameter can be
adjusted after the entire BIOS is running on the final hardware with its final power supply.

108 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Enable power-on delay.
0 - Disable power-on delay.

Related Parameters:

CONFIG POWER_ON_DELAY - Delay length (in units of "CPU loops").

7.1.12 OPTION_SUPPORT_DEBUGGER Option

The OPTION_SUPPORT_DEBUGGER option enables or disables code in the BIOS that
implements the integrated BIOS debugger. If this option is enabled, then the BIOS will
automatically route CPU traps and faults to the debugger.

If you want the debugger to intercept the CTRL-SHIFT key chord as a request to enter the
debugger asynchronously, then you must explicitly set OPTION_DEBUG_HOTKEY to 1.

You may also want to enable OPTION_DEBUG_FLASH if you will be using the EFL, RFL,
WFL, SFL, or UFL debugger commands to manipulate Flash devices interactively.

The OPTION_DEBUG_WATCHINT option can be enabled to support software interrupt
watchpoints at all of the common BIOS service routines when traces of BIOS interrupt requests
are needed to debug a new operating system.

The OPTION_DEBUG_NMI option can be enabled to allow the NMI interrupt to break into the
debugger with a hardware request. This is useful when supporting breakout switches on ISA
designs.

The debugger’s PCMCIA CIS decoding commands are enabled with the
OPTION_DEBUG_PCMCIA option. This allows debugging of custom BIOS code to enable
certain PCMCIA cards for embedded applications.

The OPTION_DEBUG_ASSEMBLY option controls the support for disassembly of CPU
instructions in the debugger. Normally, this is enabled, but it can be disabled to save space.

The OPTION_DEBUG_EDOSROM option enables a special back-door debugging service that
permits internal debugging statements in Embedded DOS-ROM to be conditionally executed and
their output routed through the BIOS. This is normally used at General Software for debugging
system software that runs with Embedded DOS-ROM.

The OPTION_DEBUG_CHIPSET option controls the support for reading and writing chipset-
specific registers with CSR and CSW commands. Normally, this is enabled, but it can be
disabled to save space.

Values:

1 - Enable integrated BIOS debugger.
0 - Disable integrated BIOS debugger.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 109

General Software EMBEDDED BIOS Adaptation Guide

OPTION_DEBUG_HOTKEY - Enable Ctl-Left-Shift debugger entry.
OPTION_DEBUG_FLASH - Enable Flash debugging commands.
OPTION_DEBUG_WATCHINT - Enable BIOS interrupt watchpoints.
OPTION_DEBUG_NMI - Enable NMI debugger entry.
OPTION_DEBUG_PCMCIA - Enable PCMCIA debugger commands.
OPTION_DEBUG_ASSEMBLY - Enable opcode disassembler in debugger.
OPTION_DEBUG_EDOSROM - Enable Embedded DOS-ROM backdoor I/O.
OPTION_DEBUG_CHIPSET - Enable chipset read/write register commands.

7.1.13 OPTION_SUPPORT_SHADOW Option

The OPTION_SUPPORT_SHADOW option enables or disables code in the BIOS that
supports the shadowing of slow ROMs with fast DRAM or SRAM.

The support for ROM shadowing must be provided by the Board Personality Module (BPM) or
Chipset Personality Module (CSPM) for this option to function properly. Additionally, the
Shadowing Configuration Setup screen must be enabled so that the user can specify which areas
to shadow.

If you intend for the system to support PCI properly, then this option must be enabled, since PCI
uses shadow RAM to map PCI ROM extensions.

Values:

1 - Enable ROM shadowing.
0 - Disable ROM shadowing.

Related Parameters:

OPTION_SUPPORT_CHIPSET - Enable CSPM code to provide shadowing support.
The actual shadowing function is implemented in the Chipset Personality Module,
and the CSPM code is only enabled by this option.

OPTION_HARDERR_DISSHADOW - Cause critical POST error if shadow disabling
doesn’t work.

OPTION_CMOS_SHADOW_ENABLE - Enable shadowing in CMOS.
OPTION_CMOS_SHADOW_C000 - Enable shadowing of segment C000h.
OPTION_CMOS_SHADOW_C400 - Enable shadowing of segment C400h.
OPTION_CMOS_SHADOW_C800 - Enable shadowing of segment C800h.
OPTION_CMOS_SHADOW_CC00 - Enable shadowing of segment CC00h.
OPTION_CMOS_SHADOW_D000 - Enable shadowing of segment D000h.
OPTION_CMOS_SHADOW_D400 - Enable shadowing of segment D400h.
OPTION_CMOS_SHADOW_D800 - Enable shadowing of segment D800h.
OPTION_CMOS_SHADOW_DC00 - Enable shadowing of segment DC00h.
OPTION_CMOS_SHADOW_E000 - Enable shadowing of segment E000h.
OPTION_CMOS_SHADOW_E400 - Enable shadowing of segment E400h.
OPTION_CMOS_SHADOW_E800 - Enable shadowing of segment E800h.
OPTION_CMOS_SHADOW_EC00 - Enable shadowing of segment EC00h.
OPTION_CMOS_SHADOW_F000 - Enable shadowing of segment F000h.

110 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.14 OPTION_SUPPORT_CACHE Option

The OPTION_SUPPORT_CACHE option enables or disables code in the BIOS that supports a
level 2 (L2) cache that is external to the processor.

This option does not specify how the cache is supported, but does enable the code to initialize the
cache and route requests to control it during normal system operation.

To control the L2 cache with the Chipset Personality Module, use the
OPTION_CACHE_CHIPSET option. To control the cache with special hardware on the board
itself, use OPTION_CACHE_BOARD.

The above methods are L2 cache controls. The level 1 (L1) cache controller, if present, resides
in the CPU. This feature is enabled for CPUs with internal caches by enabling
OPTION_CACHE_CPU. This option may be used in conjunction with one of the L2 cache
enablers. The L1 cache control logic is not affected by the OPTION_SUPPORT_CACHE
option.

Values:

1 - Enable L2 cache controls.
0 - Disable L2 cache controls.

Related Parameters:

OPTION_SUPPORT_CHIPSET - Enable Chipset Personality Module.

OPTION_CACHE_CHIPSET - Enable chipset cache controls.

OPTION_CACHE_BOARD - Enable Board Personality Module cache controls.

OPTION_CACHE_CPU - Enable L1 cache, independent of this L2 support.

7.1.15 OPTION_SUPPORT_8250 Option

The OPTION_SUPPORT_8250 option enables or disables code in the BIOS that supports PC-
compatible 8250, 8251, 16450, or 16550 UARTs in the serial port BIOS.

This option provides generic PC-compatible UART support, even when the UARTs are actually
PC-compatible UARTs implemented in a chipset or on-board a high-integration CPU.

Values:

1 - Enable 8250 UART support.
0 - Disable 8250 UART support.

Related Parameters:

OPTION_SERIAL_8250 - Enable 8250 serial ports.

Chapter 7 EMBEDDED BIOS Adaptation Guide 111

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SERIAL_CPU - Enable on-board CPU serial ports.

OPTION_SERIAL_WAIT_DSR - Wait for DSR before receiving.

OPTION_SERIAL_WAIT_DSRCTS - Wait for DSR & CTS before transmitting.

OPTION_SUPPORT_8250 - Enable 8250-compatible UARTs.

OPTION_SERIAL_FIFO - Enable 8250-compatible FIFO.

OPTION_SERIAL_HALT - Enable HLT in spin-wait for character available.

OPTION_SERIAL_9600_BAUD - Force all INT 14h initialization requests to always
initialize the UART at 9600 baud, no parity, and 1 stop bit.

CONFIG_SERIAL_TIMEOUT - COM port timeout in seconds. This timeout is used
in INT 14h requests.

COM1_BASE - I/O port address for COM1 UART.
COM2_BASE - I/O port address for COM2 UART.
COM3_BASE - I/O port address for COM3 UART.
COM4_BASE - I/O port address for COM4 UART.

COM1_INIT - Initialization setting for COM1 UART.
COM2_INIT - Initialization setting for COM2 UART.
COM3_INIT - Initialization setting for COM3 UART.
COM4_INIT - Initialization setting for COM4 UART.

7.1.16 OPTION_SUPPORT_8254 Option

The OPTION_SUPPORT_8254 option enables or disables code in the BIOS that supports the
PC/AT compatible 8253/ 8254 programmable interval timer chip. This part contains three timers
that are used by the BIOS to maintain the time of day, to manage DRAM refresh when used in
conjunction with an 8237A, and to beep the speaker.

Some high-integration CPUs and chipsets provide this timer system, and usually, the replicas
operate the same as the original 8253/8254. Therefore, even though the timer silicon may reside
in the CPU or the chipset, the OPTION_SUPPORT_8254 is enabled, and
OPTION_TIMER_8254 is enabled instead of enabling OPTION_TIMER_CPU.

The only time when OPTION_TIMER_CPU is used is on targets based on nonstandard
processors such as the Intel 80C186-EC (that CPU’s timer is not compatible with the 8254).

Values:

1 - Enable 8254 timer.
0 - Disable 8254 timer.

Related Parameters:

112 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_TIMER_8254 - Use 8254 as primary timer source. If you have an 8254, this
should be enabled except for unusual circumstances.

OPTION_TIMER_CPU - Use CPU integrated timer as the primary timer source. If you
have an 8254, this should be disabled except for unusual circumstances.

OPTION_TIMER_BOARD - Use timer hardware on the board itself as the primary
timer source. If you have an 8254, this should be disabled except for unusual
circumstances.

7.1.17 OPTION_SUPPORT_8255 Option

The OPTION_SUPPORT_8255 option enables or disables code in the BIOS that supports the
PC and PC/XT compatible 8255 peripheral interface controller, used to interface with the PC
configuration switches, the NMI controls, the PC speaker, and the PC keyboard.

There is a distinction between raw 8255 support used to control the PC/XT keyboard and PORT
B, which is not present on all designs. If the target has a PC or PC/XT keyboard controller (i.e.,
an 8255), then you must enable OPTION_SUPPORT_8255.

As a separate consideration, whether or not your target has an 8255 keyboard controller interface,
you should enable OPTION_SUPPORT_PORT_B if your target supports PORT B. Almost all
AT-class platforms have a PORT B, and most PC/XT-class platforms have this port as well.

Values:

1 - Enable 8255 peripheral interface controller.
0 - Disable 8255 peripheral interface controller.

Related Parameters:

OPTION_SUPPORT_PORT_B - Enable PORT B support.

OPTION_SUPPORT_KEYBOARD - Enable INT 16h keyboard support.

OPTION_KEYBOARD_PCAT - Enable PC, PC/XT, or PC/AT keyboard support logic.

7.1.18 OPTION_SUPPORT_PORT_B Option

The OPTION_SUPPORT_PORT_B option enables or disables code in the BIOS that supports
I/O PORT B. This port can be implemented by the 8042 keyboard controller in PC/AT-class
machines, the 8255 peripheral controller in PC/XT-class machines, the CPU itself in V51-class
machines, or in many cases, the chipset.

Port B is actually the name for the byte-wide I/O port at address 61h. Its bits are defined as
follows:

Bit 7 r = 1 RAM parity error.

Chapter 7 EMBEDDED BIOS Adaptation Guide 113

General Software EMBEDDED BIOS Adaptation Guide

 w = 1 Clear IRQ timer latch (MCA only).
6 r = 1 I/O parity error.
5 r = x Output of Timer 2 (8254 or equivalent).
4 r = x Refresh request clock divided by 2.
3 r/w = 0 Enable I/O parity check.
2 r/w = 0 Enable RAM parity check.
1 r/w = 1 Speaker data enabled.
0 r/w = 1 Gate Timer 2 enabled.

As can be seen, PORT B is tied to a number of features in PC/XT and PC/AT-class designs.
PORT B is involved in RAM parity support, DRAM refresh detection, and speaker control.

Values:

1 - Enable PORT B support.
0 - Disable PORT B support.

Related Parameters:

OPTION_SUPPORT_8255 - Enable PC & PC/XT keyboard controller support (PORT
B can be implemented with an 8255).

OPTION_SUPPORT_8042 - Enable PC/AT keyboard controller support (PORT B can
be implemented with an 8042).

7.1.19 OPTION_SUPPORT_8259 Option

The OPTION_SUPPORT_8259 option enables or disables code in the BIOS that supports the
PC compatible 8259 programmable interrupt controller.

PC/AT systems have two 8259s, so this option and the OPTION_SUPPORT_8259_2 should be
enabled for ISA-type targets.

Your target might not have a real, discrete, 8259 interrupt controller. Instead, the same
functionality could be implemented in the chipset, or may reside in the CPU itself.

When implemented in the chipset, interrupt controllers are almost always identical with the 8259,
and so the BIOS should be told that an 8259 (or two as the case may be) exist(s).

When the interrupt controller is implemented in a high-integration CPU, it may or may not
emulate an 8259. If it does, then OPTION_SUPPORT_8259 should be enabled, and then no
code needs to be placed in the CPU Personality Module. If the interrupt controller is not 8259-
compatible, then OPTION_SUPPORT_8259 should be disabled, along with
OPTION_INT_8259, and then OPTION_INT_CPU should be enabled.

In the rare case where an external 8259 interrupt controller is cascaded to a CPU interrupt
controller, then the following three parameters should be enabled: OPTION_SUPPORT_8259,
OPTION_INT_8259, and OPTION_CPU_8259.

Values:

114 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable primary 8259 interrupt controller.
0 - Disable primary 8259 interrupt controller.

Related Parameters:

OPTION_SUPPORT_8259_2 - Enable secondary interrupt controller.

OPTION_INT_8259 - Use 8259’s for BIOS interrupt control. If
OPTION_SUPPORT_8259 is enabled, this should also be enabled, except in
rare circumstances.

OPTION_INT_CPU - Use CPU integrated interrupt controller (such as the CIC on an
Intel 80C186-EC). This can be used in conjunction with OPTION_INT_8259
and OPTION_SUPPORT_8259 in the event that the external 8259 is cascaded to
the CPU CIC.

OPTION_INT_BOARD - Use external hardware on the board itself to manage
interrupts.

7.1.20 OPTION_SUPPORT_8259_2 Option

The OPTION_SUPPORT_8259_2 option enables or disables code in the BIOS that supports
the PC/AT compatible secondary 8259 programmable interrupt controller. PC/AT systems have
two 8259s, so this option must be enabled for ISA-type targets.

See additional comments about interrupt controller options with the OPTION_SUPPORT_8259
option.

Values:

1 - Enable secondary 8259 interrupt controller.
0 - Disable secondary 8259 interrupt controller.

Related Parameters:

OPTION_SUPPORT_8259 - Enable primary interrupt controller.

OPTION_INT_8259 - Use 8259’s for BIOS interrupt control. If
OPTION_SUPPORT_8259_2 is enabled, this should also be enabled, except in
rare circumstances.

OPTION_INT_CPU - Use CPU integrated interrupt controller (such as the CIC on an
Intel 80C186-EC). This can be used in conjunction with OPTION_INT_8259,
OPTION_SUPPORT_8259, and OPTION_SUPPORT_8259_2 in the event
that there are two external 8259s cascaded to the CPU CIC.

OPTION_INT_BOARD - Use external hardware on the board itself to manage
interrupts.

Chapter 7 EMBEDDED BIOS Adaptation Guide 115

General Software EMBEDDED BIOS Adaptation Guide

7.1.21 OPTION_SUPPORT_8237 Option

The OPTION_SUPPORT_8237 option enables or disables code in the BIOS that supports the
PC compatible primary 8237A DMA controller. PC/AT systems have two 8237As, so the
OPTION_SUPPORT_8237_2 option must be enabled for ISA-type targets.

In many cases, high-integration CPUs will contain 8237A-compatible DMA controller(s).
Chipsets may also contain these components. If either the CPU or the chipset contains an
8237A, then OPTION_SUPPORT_8237 should be enabled, so that no code in the CPU or
Chipset Personality Modules need be written. Note this is the case for the Intel 80C386-EX and
AMD SC300- and SC400-series Elan CPUs.

Values:

1 - Enable primary 8237A DMA controller.
0 - Disable primary 8237A DMA controller.

Related Parameters:

OPTION_SUPPORT_8237_2 - Enable secondary interrupt controller.

OPTION_DMA_8237 - Use 8237A in core BIOS functionality. If you have enabled
OPTION_SUPPORT_8237, then this parameter should also be enabled, except
in rare circumstances.

OPTION_DMA_CPU - Use the CPU’s integrated DMA controller in core BIOS
functionality. If you have enabled OPTION_SUPPORT_8237, then this
parameter should be disabled, except in rare circumstances.

OPTION_DMA_BOARD - Use external DMA hardware on the board to handle DMA
requests from the BIOS. This is sometimes necessary if the DMA controllers in
the CPU are nonstandard, and some reordering of the DMA channel numbers are
necessary (as might be the case with a RadiSys R380 and Intel 386-EX
combination). If you have enabled OPTION_SUPPORT_8237, then this
parameter should be disabled, except in rare circumstances.

7.1.22 OPTION_SUPPORT_8237_2 Option

The OPTION_SUPPORT_8237_2 option enables or disables code in the BIOS that supports
the PC/AT compatible secondary 8237A DMA controller. PC/AT systems have two 8237A
parts, so this option must be enabled for ISA-type targets.

See additional comments about DMA controller options with the OPTION_SUPPORT_8237
option.

Values:

1 - Enable secondary 8237A DMA controller.
0 - Disable secondary 8237A DMA controller.

116 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_8237 - Enable primary interrupt controller.

OPTION_DMA_8237 - Use 8237A in core BIOS functionality. If you have enabled
OPTION_SUPPORT_8237_2, then this parameter should also be enabled,
except in rare circumstances.

OPTION_DMA_CPU - Use the CPU’s integrated DMA controller in core BIOS
functionality. If you have enabled OPTION_SUPPORT_8237_2, then this
parameter should be disabled, except in rare circumstances.

OPTION_DMA_BOARD - Use external DMA hardware on the board to handle DMA
requests from the BIOS. This is sometimes necessary if the DMA controllers in
the CPU are nonstandard, and some reordering of the DMA channel numbers are
necessary (as might be the case with a RadiSys R380 and Intel 386-EX
combination). If you have enabled OPTION_SUPPORT_8237, then this
parameter should be disabled, except in rare circumstances.

7.1.23 OPTION_SUPPORT_8042 Option

The OPTION_SUPPORT_8042 option enables or disables code in the BIOS that supports the
PC/AT compatible 8042 keyboard controller. This controller is actually a general-purpose
microcontroller part that not only interacts with the keyboard, but it also provides access to
cache, A20, and CPU speed controls.

Although the 8042 nomenclature is still used today, the actual 8042 microcontroller and its
control program are now implemented in many different ways, including hardware state
machines on high-integration CPUs, and other packages such as the 8051.

The 8042 external architecture is often emulated by chipsets, so it is important to enable this
option if your chipset emulates the 8042 so that EMBEDDED BIOS will program it properly.

It is also important that the 8255 support not be enabled if the 8042 option is enabled. The 8042
emulates much of what the 8255 does, so these modules would conflict if enabled together.

If your target has an 8042, then it is likely to also have a PORT B defined. If so, you should
enable OPTION_SUPPORT_PORT_B.

There are a few 8042 control parameters in CONFIG.INC that deal with 8042 timing issues,
since it operates asynchronously to the CPU’s clocking. The parameters are
CONFIG_WAIT_8042, CONFIG_WAIT_8042_INIT, and CONFIG_SETTLE_8042.

More 8042 parameters deal with the functionality of the 8042 itself, not its timing. The
parameters are OPTION_8042_TESTP22P23, OPTION_8042_READPWRSTAT,
OPTION_8042_CHECKBAT, OPTION_8042_PS2, and
OPTION_8042_WAIT_BEFORE_BAT.

Values:

1 - Enable 8042 keyboard controller support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 117

General Software EMBEDDED BIOS Adaptation Guide

0 - Disable 8042 keyboard controller support.

Related Parameters:

OPTION_SUPPORT_8255 - Enable 8255 keyboard controller.

OPTION_8042_TESTP22P23 - Test 8042 ports 2.2 and 2.3 during POST.

OPTION_8042_READPWRSTAT - Read 8042 status after power on.

OPTION_8042_CHECKBAT - Fail POST if BAT code is erroneous.

OPTION_8042_PS2 - Insert appropriate delays for PS/2-compatible 8042 keyboard
controller. Note this is for the controller, not the keyboard.

OPTION_8042_WAIT_BEFORE_BAT - Delay during POST right before BAT is read
from 8042 to allow the keyboard extra time to boot.

CONFIG_WAIT_8042 – Retry time for 8042 to accept command.

CONFIG_WAIT_8042_INIT – Retry time for 8042 to initialize during POST.

CONFIG_SETTLE_8042– Retry time for 8042 to execute command.

7.1.24 OPTION_SUPPORT_CMOS Option

The OPTION_SUPPORT_CMOS option enables or disables code in the BIOS that supports
the PC/AT compatible CMOS Configuration RAM in the battery-backed Real-Time Clock
device.

The battery-backed CMOS RAM makes it ideal for storing system configuration data; this is
how PC/AT-compatible machines maintain their state after power-down. CMOS is edited by the
Setup screen system, and may be initialized to factory default values in the project file.

CMOS is not actually necessary in systems that use SETUP. Remember that the whole point of
CMOS RAM is to maintain a battery-backed copy of the system's configuration. If this is gone,
then the machine will be forced to use factory defaults unless SETUP is entered, and the
parameters modified during that session. Thus, SETUP can be used to adjust factory defaults for
one bootstrap operation. Additionally, SETUP can be used to enter Manufacturing Mode,
Standard Diagnostics, and the Integrated BIOS Debugger.

If your target does not have CMOS, but you would like the system to maintain its state using
another device as though it did have the equivalent CMOS RAM, review the routines in the
Board Personality Module (BPM) specification in Chapter 20 to learn how to intercept internal
CMOS read/write requests in the BPM and handle them in other ways.

Values:

1 - Enable CMOS RAM support.
0 - Disable CMOS RAM support.

118 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_SETUP - Enable Setup screen system.

CONFIG_MAX_CMOS_LOCATIONS - Number of CMOS cells.

CONFIG_START_BOARD_CMOS - 1st CMOS cell assigned to board extensions.

CONFIG_START_CMOS_CACHE - 1st CMOS cell not RTC-related.

CONFIG_CMOS_INDEX - I/O port used to read/write CMOS RAM index register.

CONFIG_CMOS_DATA - I/O port used to read/write CMOS RAM data.

OPTION_CMOS_SHADOW_ENABLE - Enable shadowing in CMOS.

OPTION_CMOS_SHADOW_C000 - Enable shadowing of segment C000h.

OPTION_CMOS_SHADOW_C400 - Enable shadowing of segment C400h.

OPTION_CMOS_SHADOW_C800 - Enable shadowing of segment C800h.

OPTION_CMOS_SHADOW_CC00 - Enable shadowing of segment CC00h.

OPTION_CMOS_SHADOW_D000 - Enable shadowing of segment D000h.

OPTION_CMOS_SHADOW_D400 - Enable shadowing of segment D400h.

OPTION_CMOS_SHADOW_D800 - Enable shadowing of segment D800h.

OPTION_CMOS_SHADOW_DC00 - Enable shadowing of segment DC00h.

OPTION_CMOS_SHADOW_E000 - Enable shadowing of segment E000h.

OPTION_CMOS_SHADOW_E400 - Enable shadowing of segment E400h.

OPTION_CMOS_SHADOW_E800 - Enable shadowing of segment E800h.

OPTION_CMOS_SHADOW_EC00 - Enable shadowing of segment EC00h.

OPTION_CMOS_SHADOW_F000 - Enable shadowing of segment F000h.

OPTION_CMOS_MOUSE - Factory default for CMOS enabling support for the PS/2
mouse.

OPTION_CMOS_TEST1MB - Factory default for CMOS enabling POST’s memory
test above 1MB.

OPTION_CMOS_TESTCLICK - Factory default for CMOS enabling POST’s speaker
clicks between tested blocks during its memory tests.

OPTION_CMOS_PARITY - Factory default for CMOS POST parity enable.

Chapter 7 EMBEDDED BIOS Adaptation Guide 119

General Software EMBEDDED BIOS Adaptation Guide

OPTION_CMOS_DELETE - Factory default for CMOS POST display allowing “press
 to enter Setup” message to appear.

OPTION_CMOS_HEXLOWER - Factory default for CMOS for lower-case hex
number displays during all BIOS-level I/O through its PRINTF package.

OPTION_CMOS_F1ERROR - Factory default for CMOS enabling the prompt to press
F1 to continue when soft errors occur during POST.

OPTION_CMOS_NUMLOCK - Factory default for CMOS enabling NUMLOCK key.

OPTION_CMOS_TYPEMATIC - Factory default for CMOS enabling typematic
keyboard programming.

OPTION_CMOS_WEITEK - Factory default for CMOS enabling Weitek support.

OPTION_CMOS_FLOPPYSEEK - Factory default for CMOS enabling floppy seek
during POST.

OPTION_CMOS_EXTCACHE - Factory default for CMOS enabling external cache.

OPTION_CMOS_INTCACHE - Factory default for CMOS enabling internal cache.

OPTION_CMOS_FASTA20 - Factory default for CMOS enabling fast A20 gate.

OPTION_CMOS_HDSEEK - Factory default for CMOS enabling hard disk seek
during POST.

OPTION_CMOS_CONFIGBOX - Factory default for CMOS enabling display of
configuration box after POST.

OPTION_CMOS_EXHMEMTEST - Factory default for CMOS enabling exhaustive
memory tests during POST.

OPTION_CMOS_PASSWORD - Factory default for CMOS enabling password
checking during POST.

OPTION_CMOS_KEYBOARD - Factory default for CMOS enabling keyboard
support.

OPTION_CMOS_ROMDISK - Factory default for CMOS enabling ROM disk support.

OPTION_CMOS_SPEED - Factory default for CMOS initial CPU speed.

OPTION_CMOS_REFRESH - Factory default for CMOS DRAM refresh.

OPTION_CMOS_POWER - Factory default for CMOS power management enable.

OPTION_CMOS_ATA - Factory default for CMOS ATA support enable.

OPTION_CMOS_RFD - Factory default for CMOS RFD support enable.

120 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_CMOS_LOAD_WINCE - Factory default for CMOS Windows CE boot
enable.

CONFIG_CMOS_BOOT_0 - Factory default value for CMOS 1st boot action.

CONFIG_CMOS_BOOT_1 - Factory default value for CMOS 2nd boot action.

CONFIG_CMOS_BOOT_2 - Factory default value for CMOS 3rd boot action.

CONFIG_CMOS_BOOT_3 - Factory default value for CMOS 4th boot action.

CONFIG_CMOS_BOOT_4 - Factory default value for CMOS 5th boot action.

CONFIG_CMOS_BOOT_5 - Factory default value for CMOS 6th boot action.

CONFIG_CMOS_FLOPPY_0 - Factory default device assignment for 1st floppy.

CONFIG_CMOS_FLOPPY_1 - Factory default device assignment for 2nd floppy.

CONFIG_CMOS_FLOPPY_2 - Factory default device assignment for 3rd floppy.

CONFIG_CMOS_FLOPPY_3 - Factory default device assignment for 4th floppy.

CONFIG_CMOS_IDE_0 - Factory default value for CMOS hard drive type for 1st hard
drive, when high nibble of OEM_INIT_CMOS_HARD is f0h.

CONFIG_CMOS_IDE_1 - Factory default for CMOS hard drive type for 2nd hard
drive, when low nibble of OEM_INIT_CMOS_HARD is 0fh.

CONFIG_CMOS_IDE_2 - Factory default value for CMOS hard drive type for 3rd hard
drive.

CONFIG_CMOS_IDE_3 - Factory default for CMOS hard drive type for 4th hard drive.

CONFIG_CMOS_IDE0_CYL - Factory default for CMOS fixed disk 0 cylinders (16
bits).

CONFIG_CMOS_IDE0_HDS - Factory default for CMOS fixed disk 0 heads (8 bits).

CONFIG_CMOS_IDE0_SPT - Factory default for CMOS fixed disk 0 sectors per track
(8 bits).

CONFIG_CMOS_IDE1_CYL - Factory default for CMOS fixed disk 1 cylinders (16
bits).

CONFIG_CMOS_IDE1_HDS - Factory default for CMOS fixed disk 1 heads (8 bits).

CONFIG_CMOS_IDE1_SPT - Factory default for CMOS fixed disk 1 sectors per track
(8 bits).

CONFIG_CMOS_IDE2_CYL - Factory default for CMOS fixed disk 2 cylinders (16
bits).

Chapter 7 EMBEDDED BIOS Adaptation Guide 121

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CMOS_IDE2_HDS - Factory default for CMOS fixed disk 2 heads (8 bits).

CONFIG_CMOS_IDE2_SPT - Factory default for CMOS fixed disk 2 sectors per track
(8 bits).

CONFIG_CMOS_IDE3_CYL - Factory default for CMOS fixed disk 3 cylinders (16
bits).

CONFIG_CMOS_IDE3_HDS - Factory default for CMOS fixed disk 3 heads (8 bits).

CONFIG_CMOS_IDE3_SPT - Factory default for CMOS fixed disk 3 sectors per track
(8 bits).

CONFIG_CMOS_TYPEMATIC_DELAY - Factory default for CMOS keyboard
typematic delay.

CONFIG_CMOS_TYPEMATIC_RATE - Factory default for CMOS keyboard
typematic repeat rate.

CONFIG_CMOS_FLOPPY_RETRY - Factory default for CMOS floppy disk I/O
retry.

CONFIG_CMOS_EQUIP - Factory default for CMOS equipment byte.

7.1.25 OPTION_SUPPORT_NPX Option

The OPTION_SUPPORT_NPX option enables or disables code in the BIOS that supports on-
board (i486-Pentium III) or outboard (287 or 387) numeric coprocessors.

If you have numeric coprocessor hardware in your target, it is necessary to enable this option to
ensure that the hardware is initialized to a well-defined state and that the status bits in the CR0
register (i486-Pentium III only) are set appropriately for floating point emulators to work
properly.

Values:

1 - Enable numeric coprocessor support.
0 - Disable numeric coprocessor support.

Related Parameters:

None.

7.1.26 OPTION_SUPPORT_V25 Option

The OPTION_SUPPORT_V25 option enables or disables code in the time BIOS changes the
way the INT 8h and INT 1ch interrupt service routines call one another. In PC-compatible
systems, INT 8h calls INT 1ch when a timer tick occurs. In V25 systems, a CPU timer is hard-
wired to INT 1ch, which in turn calls INT 8h instead.

122 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This option does not provide instant support for V25 processors across all features of the BIOS;
that is a function of the CPU Personality Module architecture.

Values:

1 - Enable V25 support in time BIOS.
0 - Disable V25 support in time BIOS.

Related Parameters:

None.

7.1.27 OPTION_SUPPORT_XT_NMI Option

The OPTION_SUPPORT_XT_NMI option enables or disables code in the BIOS that clears
outstanding NMI interrupts during POST on PC-compatible machines. Do not set this option on
non IBM-PC platforms without thoroughly understanding the ramifications.

The XT NMI I/O port is at address a0h. This same location is used on PC/AT platforms as the
second 8259 interrupt controller’s base I/O port. Thus, OPTION_SUPPORT_8259_2 and
OPTION_SUPPORT_XT_NMI are mutually exclusive.

Values:

1 - Enable XT NMI clearing during POST.
0 - Disable XT NMI clearing during POST.

Related Parameters:

OPTION_SUPPORT_8255 - Required for this option to work.
OPTION_SUPPORT_8259_2 - Must be disabled for this option to work.

7.1.28 OPTION_SUPPORT_VIDEO Option

The OPTION_SUPPORT_VIDEO option enables or disables code in the BIOS that provides
support for video CRT controllers (such as MDA, CGA, and VGA) and LCD controllers.

This option does not specifically enable support for a certain video monitor or LCD controller;
that is handled with the OPTION_VIDEO_xxx options. Thus, if
OPTION_SUPPORT_VIDEO is enabled, one of these other options, such as
OPTION_VIDEO_6845 or OPTION_VIDEO_AMDELAN must be enabled.

This option operates independently of the console redirection feature, enabled with
OPTION_SUPPORT_CON_REDIRECTOR. If you are using I/O redirection to COM ports,
then you do not need to set OPTION_SUPPORT_VIDEO, except if you want to use both the
video subsystem and redirected I/O. In this case, you should also enable
OPTION_VIDEO_DUPLICATE, which will cause all I/O sent to the standard INT 10h video
display to also be sent to the COM port of your choosing.

Chapter 7 EMBEDDED BIOS Adaptation Guide 123

General Software EMBEDDED BIOS Adaptation Guide

For a complete video system that includes the standard 6845 video controller found in PC,
PC/XT, and PC/AT-compatible monochrome and color adapters, you must also enable
OPTION_VIDEO_6845.

Video boards, such as VGA and Super VGA cards, actually contain a ROM BIOS extension that
must be scanned. When scanned, the ROM on the card actually takes over for the EMBEDDED
BIOS video services, and only calls EMBEDDED BIOS to do simple functions. The complex
ones are all handled in the VGA ROM. To enabled this, you’ll also need to enable
OPTION_SUPPORT_VIDEO_BOARDS, and set CONFIG_VIDEO_ROM_SCAN to either
0c000h or 0e000h, depending on where the VGA ROM BIOS is located in your target. On ISA
desktop PCs, this value is 0c000h.

In addition, if you are using memory-mapped video such as that found in 6845-based designs,
you should also enable OPTION_VIDEO_VIDEOMEM so that POST can test it, and
automatically make an automatic determination about which video adapter is being used in the
system.

If you have an AMD SC300 or AMD SC400 CPU, then EMBEDDED BIOS can support its
LCD controller when you enable OPTION_VIDEO_AMDELAN in conjunction with this
option.

An alternate to 6845 CRT controller support is the Hitachi’s HD61830 LCD controller, enabled
with OPTION_VIDEO_HD61830. Please note that this code was donated to General Software
by a German customer, and the code has German comments. We regret that we are unable to
speak German well enough to support the code, but it is provided in the event that you speak
German well enough to maintain it. This code is working on the HD61830 in actual
applications.

Another customer-provided driver is HDMLCD.ASM, enabled with the INC\OPTIONS.INC
OPTION_VIDEO_HDMLCD. This driver supports a set of LCD panels with different
row/column geometries, and is known to work with EMBEDDED BIOS. Please note that this
code was also donated to General Software, and we cannot directly support it.

Customers requiring LCD support for the CPU codenamed EMERALD may obtain the code by
having the silicon vendor contact General Software in writing. Then,
OPTION_VIDEO_EMERALD enables the code. Details about EMERALD are confidential
and provided only when the silicon vendor approves release of details in writing.

If you have a special CRT or LCD controller that you plan on using in your design, enable
OPTION_VIDEO_CUSTOMER, and add your code to the already-started
SYSTEM\CUSTVID.ASM. This allows you to add your own code to just one module, instead of
editing the many modules that support the 6845 throughout the BIOS.

Other video options may have been added to EMBEDDED BIOS since this documentation was
printed; therefore, consult INC\OPTIONS.INC for a list of your video options.

If video is memory-mapped (as is the case with the 6845 controller), then you’ll need to make
sure that CONFIG_VIDEO_SEG_GRAPHIC, CONFIG_VIDEO_SEG_MONO, and
CONFIG_VIDEO_SEG_COLOR, are all set to the proper segement addresses where video
memory is to be found for the relevant video modes. On desktop PCs, these values are 0a000h,
0b000h, and 0b800h, respectively.

Values:

124 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable video controller support.
0 - Disable video controller support.

Related Parameters:

OPTION_VIDEO_6845 - Support PC-compatible 6845 CRT controller (monochrome,
color, Hercules, EGA, VGA, and SVGA designs).

OPTION_VIDEO_AMDELAN - Support SC300 and SC400 LCD controllers.

OPTION_VIDEO_EMERALD - Support EMERALD LCD controller.

OPTION_VIDEO_HD61830 - Support Hitachi HD61830 LCD controller.

OPTION_VIDEO_HDMLCD - Support another family of LCD controllers.

OPTION_VIDEO_CUSTOMER - Support OEM-written custom video driver
SYSTEM\CUSTVID.ASM.

OPTION_VIDEO_DUPLICATE - Send video output to both serial port and primary
video device.

OPTION_VIDEO_VIDEOMEM - Test video RAM during POST, and automatically
determine video board type (mono or color).

OPTION_SUPPORT_CON_REDIRECTOR - Enable support for console redirection
over RS-232 link to host’s terminal program.

CONFIG_VIDEO_SEG_GRAPHIC - Segment address of video memory when in
graphics mode.

CONFIG_VIDEO_SEG_MONO - Segment address of video memory when in
monochrome mode.

CONFIG_VIDEO_SEG_COLOR - Segment address of video memory when in color
mode.

OPTION_SUPPORT_VIDEO_BOARDS - Scan for EGA/VGA/SVGA ROM BIOS
extensions.

CONFIG_VIDEO_ROM_SCAN - Segment address of EGA/VGA/SVGA ROM BIOS
extensions.

7.1.29 OPTION_SUPPORT_KEYBOARD Option

The OPTION_SUPPORT_KEYBOARD option enables or disables code in the BIOS that
provides support for a PC, PC/XT, or PC/AT keyboard controller.

Chapter 7 EMBEDDED BIOS Adaptation Guide 125

General Software EMBEDDED BIOS Adaptation Guide

This option does not specifically enable support for a certain type of keyboard controller; that is
handled with the OPTION_KEYBOARD_xxx options. Thus, if
OPTION_SUPPORT_KEYBOARD is enabled, one of these other options, such as
OPTION_KEYBOARD_PCAT or OPTION_KEYBOARD_CUSTOMER must be enabled.

This option operates independently of the console redirection feature, enabled with
OPTION_SUPPORT_CON_REDIRECTOR. If you are using I/O redirection to COM ports,
then you do not need to set OPTION_SUPPORT_KEYBOARD, except if you want to use both
the keyboard subsystem and redirected I/O.

For a complete keyboard system that includes the standard PC/AT 8042 keyboard controller
found in PC, PC/XT, and PC/AT-compatible systems, you must also enable
OPTION_KEYBOARD_PCAT and OPTION_SUPPORT_8042. This is the default setting of
these options. Note that if you are using the 8042, you will also need to configure options
relating to the 8042 (see that section for details).

For a complete keyboard system that includes the standard PC/XT 8255 keyboard controller
(note: this is not PC/AT compatible, it is PC/XT compatible), you must enable
OPTION_SUPPORT_8255 and OPTION_KEYBOARD_PCAT.

If you have a custom keyboard (not just a keypad that will be driven by your application for a
few proprietary functions), then you can add support for it directly in the core BIOS by enabling
OPTION_SUPPORT_KEYBOARD and OPTION_KEYBOARD_CUSTOMER. Then, edit
SYSTEM\CUSTKBD.ASM, and add the required code to drive the keyboard device.

Values:

1 - Enable keyboard support (not console redirection).
0 - Disable keyboard support (not console redirection).

Related Parameters:

OPTION_SUPPORT_8255 - Use 8255 as keyboard interface.

OPTION_SUPPORT_8042 - Use 8042 keyboard controller.

OPTION_KEYBOARD_PCAT - Use PC/AT keyboard.

OPTION_KEYBOARD_PCXT - Use PC/XT keyboard.

OPTION_KEYBOARD_CHIPSET - Use keyboard driver defined in CSPM.

OPTION_KEYBOARD_CUSTOMER - Use custom controller/keyboard.

OPTION_KEYBOARD_MATRIX - Enable special key translation on matrix
keyboards.

OPTION_SUPPORT_CON_REDIRECTOR - Enable support for console redirection
over RS-232 link to host’s terminal program.

126 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.30 OPTION_SUPPORT_TESTBASEMEM Option

The OPTION_SUPPORT_TESTBASEMEM option enables or disables code in POST that
tests the lower 64KB region of memory before proceeding with system initialization. This
testing takes time and is usually not desired in embedded systems that must boot as quickly as
possible.

While desktop PCs normally test a whole 64KB at the bottom of lower memory, EMBEDDED
BIOS can be configured with the CONFIG_TESTBASE_SIZE parameter to test any size from
16KB to 64KB. For optimal boot times, it is recommended that this value be reduced to a lower
value such as 4, because this test is performed before wait states are reduced and caches are
enabled. Caution: Do not try to reduce this value below 16, since that will result in
mismanagement of the boot-time stack, causing erratic pre-boot behavior.

Values:

1 - Enable testing of bottom memory block on power-on.
0 - Disable testing of bottom memory block on power-on.

Related Parameters:

CONFIG_TESTBASE_SIZE - Specifies size of block to test.

7.1.31 OPTION_SUPPORT_PAGEREG Option

The OPTION_SUPPORT_PAGEREG option enables or disables code in POST that supports
the PC/AT-compatible page register file. All ISA-compatible motherboards support this register
file.

This option must be enabled for ISA-class targets to successfully perform DRAM refresh via the
8237A and the 8254; and to provide DMA-based floppy I/O. If neither of these functions need to
be present in your target, you should disable this option.

The page register file is used in conjunction with the two 8237A DMA controllers to extend their
addressability to the entire lower 1MB. In some systems, the page register file contains 8-bit
values instead of 4-bit values; therefore, the address range is extended by 4 bits to 16MB.

Values:

1 - Enable page register support.
0 - Disable page register support.

Related Parameters:

None.

7.1.32 OPTION_SUPPORT_XTEXPANSION Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 127

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SUPPORT_XTEXPANSION option enables or disables code in POST that
supports the PC/XT-compatible expansion box. The XT expansion box is an architectural relic
that is no longer used in ISA-class systems, but may be necessary in some PC/XT-compatible
embedded Single Board Computers.

Unless your hardware documentation explictly states that this programming is required, you
should disable this option.

Values:

1 - Enable XT expansion box support.
0 - Disable XT expansion box support.

Related Parameters:

None.

7.1.33 OPTION_SUPPORT_SCT Option

The OPTION_SUPPORT_SCT option enables or disables code in the BIOS that builds a
System Configuration Table and makes it available through the INT 15h BIOS service. The SCT
is inspected by DOS and by some application programs to determine what features are supported
by the BIOS.

Values:

1 - Enable SCT support.
0 - Disable SCT support.

Related Parameters:

None.

7.1.34 OPTION_SUPPORT_PROTECT_MODE Option

The OPTION_SUPPORT_PROTECT_MODE option enables or disables code in the BIOS
that supports switching between real mode and protected mode (80386 and above processors
only), including the memory move functions provided by the INT 15h general services BIOS
interrupt that generally support extended memory at the BIOS level.

This support is also required for POST to test extended memory during system initialization.

Do not enable this option if the target processor is not capable of operating in protected mode.
The 8088, 8086, V20, V25, 80188, and 80186 processors are not capable of supporting protected
mode programming. EMBEDDED BIOS supports protected mode on 386, 486, Pentium, and
P6-class CPUs. Support for the 80286 has been discontinued because the part’s life has ended.

Issues related to protected mode support are A20 gating and mode switching from protected
mode back to real mode. If you enable OPTION_SUPPORT_PROTECT_MODE, then you
must enable an A20 gating option, and you must enable a "to-real" option.

128 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Selecting A20 Gate Controls

In PC/AT-class targets, there exists an A20 gate that controls whether access to addresses above
1MB simply wrap around to physical address 0 or address the actual physical memory above
1MB. This mechanism is called the A20 gate, and the control over the gate is handled differently
depending on what A20 gate hardware is present in the system.

If you have an 8042 keyboard controller and the keyboard controller is providing A20 gate
control, then OPTION_A20_8042 must be enabled.

If you have a PS/2-compatible I/O port 92h, then OPTION_A20_PORT92 must be enabled.
Sometimes targets (such as the AMD SC300 Elan evaluation board) provide a wired-OR
configuration that requires both the 8042 and port 92h to control the A20 gate. In this case, set
both OPTION_A20_8042 and OPTION_A20_PORT92.

If you are using a chipset with a "fast A20 gate", and if it is not just an implementation of the
PS/2-compatible port 92h, then enable OPTION_A20_CHIPSET, enable
OPTION_SUPPORT_CHIPSET, and edit the CsEnableA20 and CsDisableA20 routines in
your Chipset Personality Module to provide the necessary manipulation of the chipset hardware
to toggle the A20 line. For more information about these chipset routines, see Chapter 19.
Warning: The SC300 and SC310 have errata regarding the A20 gating. You must have a full
understanding of these errata before proceeding along these lines.

If your specialty CPU includes a "fast A20 gate" that is not just an implementation of the PS/2-
compatible port 92h, then enable OPTION_A20_CPU, set CPUCLASS to a particular CPU
type, and edit the CpuEnableA20 and CpuDisableA20 routines in your CPU Personality
Module to provide the necessary manipulation of the CPU hardware to toggle the A20 line. For
more information about these CPU routines, see Chapter 18.

If you have a board design that employs a special discrete A20 gate, or if the A20 gating logic is
not present in your Chipset or CPU Personality Modules, then you can enable
OPTION_A20_BOARD, and add code to the board module in the BoardEnableA20 and
BoardDisableA20 routines.

Make sure that initially, you disable OPTION_A20_FAILPOST, until your BIOS is fully
running. The reason for this is that POST has an A20 test that uses a memory wraparound test to
see if the A20 gate is working. This requires memory above 1MB to be available. If this
memory is not available, the test fails, even though the A20 gate may be working. You should
enable this option only if your target will be using memory at 1MB, and you require that the A20
gate be tested.

Selecting Mode Switching Controls

On 80286 CPUs, there is no software-only procedure for the BIOS to switch back to real mode
after performing a protected mode operation. Instead, hardware must assist by saving the state of
the executing program, rebooting, and then restoring the state of the executing program so that it
can continue just as though no CPU reset had occurred. On 386 and above CPUs, this is not a
problem because a "switch to real-mode" CPU instruction is available (it is MOV CR0, EAX).

Chapter 7 EMBEDDED BIOS Adaptation Guide 129

General Software EMBEDDED BIOS Adaptation Guide

On 80286 platforms, there exist three different ways to solve this problem, depending on the
supporting hardware.

If OPTION_TOREAL_PORT92 is enabled, then the BIOS reboots the machine by
manipulating the PS/2-compatible I/O port 92h. IBM PS/2 models 60 and 70 require this
approach to rebooting.

If OPTION_TOREAL_8042 is enabled, then the BIOS reboots the machine by sending the
8042 keyboard controller a reboot command. The keyboard controller in turn enables the reset
line on the CPU, causing a reset of the CPU to occur. IBM PC/AT targets require this method.

If your target has a 386 or later CPU, then it can switch to real mode with a software instruction
alone. While you could use one of the above techniques, it would prove much slower than to
simply enable OPTION_TOREAL_CPU.

Selecting Reboot Methods

Closely related to switching to real mode is the method used to reboot the target. Essentially, the
process of rebooting is the same as switching to real mode for the 80286, except that the state of
the BIOS is not saved so that a protected mode operation returns control to the BIOS. You must
enable one of the rebooting options to support the reboot operation, depending on the mode
switching analysis you did above.

Select OPTION_REBOOT_JUMP for real-mode only targets such as the 8086, V20, or 80186.

Select OPTION_REBOOT_PORT92 if you have a PS/2-compatible I/O port 92h.

Select OPTION_REBOOT_8042 if you have an 8042 keyboard controller controlling the CPU
reset line.

Select OPTION_REBOOT_CHIPSET if your chipset provides a fast way to reboot the CPU
(and also perhaps the memory controller).

Select OPTION_REBOOT_BOARD if your board’s design provides a fast way to reboot the
CPU.

Selecting Extended Memory Limit

If you will be using Flash memory above 1MB, it is important to limit POST's extended memory
scan so that it does not attempt to write to the Flash in its test. Make sure
CONFIG_MAX_EXT_MEMORY is set properly, or POST could hang during its extended
memory test.

Values:

1 - Enable protected mode and extended memory support.
0 - Disable protected mode and extended memory support.

Related Parameters:

130 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_A20_8042 - Use 8042 to gate A20 line.

OPTION_A20_CHIPSET - Use chipset to gate A20 line.

OPTION_A20_BOARD - Use board to gate A20 line.

OPTION_A20_CPU - Use CPU to gate A20 line.

OPTION_A20_PORT92 - Use PS/2 compatible port 92h to gate A20 line.

OPTION_TOREAL_PORT92 - Use port 92h to switch to real mode.

OPTION_TOREAL_8042 - Use 8042 to switch to real mode.

OPTION_TOREAL_CPU - Use CPU instruction to switch to real mode.

OPTION_REBOOT_JUMP - Jump to reset vector to reset machine.

OPTION_REBOOT_PORT92 - Use port 92h to reset machine.

OPTION_REBOOT_8042 - Use 8042 to reset machine.

OPTION_REBOOT_CHIPSET - Use chipset to reset machine.

OPTION_REBOOT_BOARD - Use board to reset machine.

CONFIG_MAX_EXT_MEMORY - Set upper limit of extended memory.

7.1.35 OPTION_SUPPORT_SERIAL Option

The OPTION_SUPPORT_SERIAL option enables or disables code in the BIOS that supports
the serial I/O services of INT 14h.

Once INT 14h services are enabled, the specific hardware that provides serial I/O must be
selected through sub-options.

OPTION_SERIAL_8250 causes 8250-compatible UARTs (includes 16450 and 16550 UARTs
as well) to be used. If are using external standard PC-compatible UARTs, select this option. If
your CPU or chipset supports 8250-compatible UARTs, this option should also be enabled (for
example, the Intel 386-EX CPU contains 8250-compatible UARTs).

OPTION_SERIAL_CPU enables codepaths that support special UARTs that are integrated into
the CPU itself. The 80C186-EC is an example of a CPU that has nonstandard UARTs onboard
the CPU. If this option is enabled, then the CPUCLASS parameter must be configured for the
correct CPU type, and the CPU routines in the CPU Personality Module must contain the
necessary code to program the UARTs.

OPTION_SERIAL_WAIT_DSR causes INT 14h to wait for Data Set Ready to become active
before data are received. For 3-wire serial I/O cables, this option should be disabled.

Chapter 7 EMBEDDED BIOS Adaptation Guide 131

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SERIAL_WAIT_DSRCTS causes INT 14h to wait for Data Set Ready and Clear to
Send to become active before data are transmitted. This is also intended for more fully-featured
cables.

OPTION_SERIAL_FIFO causes the 8250-compatible driver code to enable the FIFO on 8250-
compatible UARTs that support FIFOs. This reduces losses due to the receive buffer being full
when another character is received. Note that BIOS does not use interrupt-driven I/O for INT
14h, although it does use interrupt-driven receive paths for Manufacturing Mode.

OPTION_SERIAL_HALT causes the 8250-compatible driver code to execute a HLT
instruction when it must spin-wait for an incoming character over a serial port on a read with
wait. This allows designs that must reduce power consumption to a minimum to switch to a very
low power mode when polling for input over the serial port.

OPTION_SERIAL_9600_BAUD causes the 8250-compatible driver code to always set the
communications parameters to 9600 baud, no parity, and one stop bit, whenever commanded to
change the parameters via INT 14h. This allows console redirection to be employed at 9600
baud even when MS-DOS attempts to reset the serial port baud rates to 2400 baud, even parity,
and one stop bit.

Values:

1 - Enable INT 14h services.
0 - Disable INT 14h services.

Related Parameters:

OPTION_SERIAL_8250 - Enable 8250 serial ports.

OPTION_SERIAL_CPU - Enable on-board CPU serial ports.

OPTION_SERIAL_WAIT_DSR - Wait for DSR before receiving.

OPTION_SERIAL_WAIT_DSRCTS - Wait for DSR & CTS before transmitting.

OPTION_SUPPORT_8250 - Enable 8250-compatible UARTs.

OPTION_SERIAL_FIFO - Enable 8250-compatible FIFO.

OPTION_SERIAL_HALT - Issue HLT if spinwait on read becomes necessary.

OPTION_SERIAL_9600_BAUD - Always use 9600 baud.

CONFIG_SERIAL_TIMEOUT - COM port timeout in seconds. This timeout is used
in INT 14h requests.

COM1_BASE - I/O port address for COM1 UART.
COM2_BASE - I/O port address for COM2 UART.
COM3_BASE - I/O port address for COM3 UART.
COM4_BASE - I/O port address for COM4 UART.

132 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

COM1_INIT - Initialization setting for COM1 UART.
COM2_INIT - Initialization setting for COM2 UART.
COM3_INIT - Initialization setting for COM3 UART.
COM4_INIT - Initialization setting for COM4 UART.

7.1.36 OPTION_SUPPORT_PARALLEL Option

The OPTION_SUPPORT_PARALLEL option enables or disables code in the BIOS that
supports the parallel I/O services of INT 17h.

If you are using PC/XT or PC/AT-compatible parallel ports, then you should enable
OPTION_PARALLEL_EXTERNAL. Enable OPTION_PARALLEL_CPU if you’re using
CPU-integrated parallel ports that are not compatible with standard PC-compatible parallel ports.

INT 17h services provide timeouts to account for equipment failures or problems such as "printer
out of paper" conditions. The timeouts are specified in seconds with the configuration
parameter, CONFIG_PARALLEL_TIMEOUT. The recommended value to start with on this
parameter is 1 second.

During initialization, POST may require some delay in order to determine if a parallel port is
functioning properly. This delay is specified with the CONFIG_WAIT_LPT parameter. The
suggested value to start with is 1000h and is CPU speed-dependent (value given is for a 386-25
class machine).

Values:

1 - Enable INT 17h services.
0 - Disable INT 17h services.

Related Parameters:

OPTION_PARALLEL_EXTERNAL - Enable external parallel ports.
OPTION_PARALLEL_CPU - Enable on-board CPU parallel ports.
CONFIG_PARALLEL_TIMEOUT - Specifies timeout for INT 17h.
CONFIG_WAIT_LPT - Specifies initialization delay for POST.

7.1.37 OPTION_SUPPORT_ROM_EXTENSIONS Option

The OPTION_SUPPORT_ROM_EXTENSIONS option enables or disables code in the BIOS
that scans for user-defined ROM extensions in the adapter area. This option does not enable the
scan for Embedded DOS-ROM or for external VGA ROM BIOS extensions.

This option should be enabled by most adaptations unless special memory maps are being used
that would be interfered with by the ROM scan.

The ROM scan is executed by POST after basic keyboard and video I/O services are available, so
that ROM extensions can use these services to display messages and otherwise interact with the
user.

Chapter 7 EMBEDDED BIOS Adaptation Guide 133

General Software EMBEDDED BIOS Adaptation Guide

There are several configuration parameters that govern the scope of the ROM scan.

CONFIG_LOW_ROM_SCAN specifies the first segment address of the scan. For desktop
PC’s, this value is C800h.

CONFIG_HIGH_ROM_SCAN specifies the last segment address of the scan; this address is
actually the first one beyond the scan and it is not scanned. The desktop PC standard is EE00h.

CONFIG_ROM_SCAN_INTERVAL specifies the number of bytes between scan addresses.
The desktop PC standard is 2048 (there is the possibility for a ROM extension every 2KB in the
address space). This can be adjusted to values such as 1KB for embedded designs to maximize
the use of the ROM scan address space.

Additional configuration parameters affect this ROM scan, because there are additional ROM
BIOS extensions that are called at different times than this general purpose scan. Because they
cannot be called twice, they are excluded from the scan.

CONFIG_VIDEO_ROM_SCAN specifies the segment address of the VGA video BIOS, if
OPTION_SUPPORT_VIDEO_BOARDS is enabled. The desktop PC standard for this
segment address is C000h, but in some embedded designs this value is E000h.

CONFIG_MINI_DOS_SCAN specifies the segment address of the last-chance boot ROM,
which traditionally held ROM BASIC in the IBM PC. Today, EMBEDDED BIOS uses
Embedded DOS-ROM as the operating system it boots from ROM, and this parameter specifies
its segment address in ROM.

Values:

1 - Enable general ROM scan.
0 - Disable general ROM scan.

Related Parameters:

CONFIG_LOW_ROM_SCAN - First segment to scan for extensions.

CONFIG_HIGH_ROM_SCAN - Last segment to scan for extensions.

CONFIG_ROM_SCAN_INTERVAL - Number of bytes to skip betwen ROM
extensions.

CONFIG_MINI_DOS_SCAN - Segment address of Embedded DOS-ROM operating
system.

CONFIG_VIDEO_ROM_SCAN - Segment address of video ROM BIOS extension.

7.1.38 OPTION_SUPPORT_VIDEO_BOARDS Option

The OPTION_SUPPORT_VIDEO_BOARDS option enables or disables code in the BIOS that
scans for an EGA or VGA ROM extension in the adapter area to supplement or take-over the
video BIOS services provided in the core system BIOS.

134 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This option should be enabled by most adaptations unless special memory maps are being used
that would be interfered with by the ROM scan.

This option does not apply to PCI-based designs. In these systems, PCI video adapters are
supported with a PCI bus scan. PCI device option ROMs are always mapped into memory at a
dynamic location, and are never found to be at a predetermined location in the address space. If
the target is PCI-based, and also supports ISA slots, then this option should be enabled so that
both PCI and ISA VGA cards can be used.

If this option is enabled, you must also specify the segment address of the ROM BIOS extension
to be scanned by setting CONFIG_VIDEO_ROM_SCAN appropriately. The desktop PC
standard for this value is C000h, but it can be set to other addresses such as E000h, if required.

The address chosen for CONFIG_VIDEO_ROM_SCAN is automatically excluded from the
general ROM BIOS extension scan.

If this option is enabled, the ROM BIOS extension that receives control will almost certainly
require that you have enabled support for a 6845 video controller, and INT 10h support. This
requires that OPTION_SUPPORT_VIDEO, OPTION_VIDEO_6845, and
OPTION_VIDEO_VIDEOMEM be enabled. Additionally,
CONFIG_VIDEO_SEG_GRAPHIC, CONFIG_VIDEO_SEG_MONO, and
CONFIG_VIDEO_SEG_COLOR must also be set to the desktop standard addresses-- A000h,
B000h, and B800h, respectively.

Values:

1 - Enable Video ROM scan.
0 - Disable Video ROM scan.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable INT 10h BIOS service.

OPTION_VIDEO_6845 - Enable 6845 video controller support.

OPTION_VIDEO_VIDEOMEM - Enable scan of video memory and autodetection of
video monitor type.

CONFIG_VIDEO_SEG_GRAPHIC - Segment of video RAM for graphic modes.

CONFIG_VIDEO_SEG_MONO - Segment of video RAM for monochrome mode.

CONFIG_VIDEO_SEG_COLOR - Segment of video RAM for color modes.

CONFIG_VIDEO_ROM_SCAN - Segment to scan for video ROM BIOS extension.

7.1.39 OPTION_SUPPORT_SOUND Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 135

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SUPPORT_SOUND option enables or disables code in the BIOS that supports
the programming of the speaker for clicks, beeps, and tones.

This feature is used during POST to signal errors before video services are available, and also
during steady state of the system to indicate that the keyboard typeahead buffer is full.

To enable the beep that occurs after POST has completed and is ready to transfer control to the
operating system, enable OPTION_BOOT_BEEP.

This feature requires the OPTION_SUPPORT_PORT_B be enabled so that the hardware can
be properly controlled.

It also requires that a timer be available (typically, OPTION_SUPPORT_8254 is enabled to
satisfy this requirement).

If you are supporting sound with a CPU timer, then you should enable OPTION_SOUND_CPU
and disable OPTION_SOUND_8254_8255, so that EMBEDDED BIOS can route sound
requests to the right hardware.

If you are using either an 8254 or the PC/XT-compatible 8255 PIO support to create sound, then
OPTION_SOUND_8254_8255 should be enabled.

If your platform has custom sound circuitry that requires special programming, the board
module’s sound functions can be called by enabling OPTION_SOUND_BOARD.

The frequency and duration of the beep sounds are controlled with three configuration options, as
follows. We recommend that you use the default values and modify them to suit your taste once
you have actually heard what tones the default values produce.

The CONFIG_BEEP_LENGTH parameter is a value that indicates how long the beep should
last, in "CPU loops." This CPU-speed-dependent value is necessarily so because the operation of
a timer in the system cannot be assumed.

The CONFIG_BEEP_CYCLE parameter is a value that is used to delay between toggling the
speaker's position when no timer is available to manually control the speaker's oscillation. This
is effectively an inverse frequency control for use at points in POST before the timer has been
initialized, or in systems without an 8254 timer.

The CONFIG_BEEP_8254_TONE parameter is a value that is loaded into the 8254 to provide
a different beep frequency, not in terms of CPU loops, but values related to the independently-
clocked 8254.

Values:

1 - Enable speaker support.
0 - Disable speaker support.

Related Parameters:

OPTION_SUPPORT_PORT_B - Support PORT B sound architecture.

136 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_8255 - Support XT-compatible peripherals.

OPTION_SUPPORT_8042 - Support AT-compatible keyboard controller.

OPTION_SUPPORT_8254 - Support AT-compatible timer controller.

OPTION_BOOT_BEEP - Enable beep upon POST completion.

OPTION_SOUND_CPU - Use CPU for sound support.

OPTION_SOUND_8254_8255 - Use 8254 or 8255 for sound support.

OPTION_SOUND_BOARD - Use board module routine for sound support.

OPTION_TIMER_CPU - Enable CPU integrated timer.

OPTION_TIMER_8254 - Enable AT-compatible timer controller.

CONFIG_BEEP_LENGTH - Duration of beep.

CONFIG_BEEP_CYCLE - Inverse beep frequency control for 8255 only.

CONFIG_BEEP_8254_TONE - Beep frequency control for 8254 only.

7.1.40 OPTION_SUPPORT_DEVICECALLS Option

The OPTION_SUPPORT_DEVICECALLS option enables or disables code in the BIOS that
supports the BIOS up-calls that tell the operating system or application software that BIOS
managed devices are waiting, or that certain keys, such as the SysReq key, are being pressed on
the keyboard.

Values:

1 - Enable BIOS device up-calls.
0 - Disable BIOS device up-calls.

Related Parameters:

None.

7.1.41 OPTION_SUPPORT_TIMEBIOS Option

The OPTION_SUPPORT_TIMEBIOS option enables or disables code in the BIOS that
supports the date/time services of INT 1ah.

The INT 1ah services can use either a CMOS Real Time Clock (RTC) part or a counter-timer to
keep time. If an RTC is used, then the date is also maintained. If no RTC is used, then the
counter-timer can be either a standard 8254 counter-timer unit or a proprietary counter-timer unit
in an integrated CPU.

Chapter 7 EMBEDDED BIOS Adaptation Guide 137

General Software EMBEDDED BIOS Adaptation Guide

There are two types of RTC parts supported in this version of EMBEDDED BIOS. You should
enable OPTION_RTC_CMOS if you have the Dallas equivalent part with CMOS RAM, and
also enable OPTION_SUPPORT_CMOS at the same time to enable its support in SETUP.

If you have the 72421 RTC instead of the Dallas part, enable OPTION_RTC_72421 instead,
and set OPTION_SUPPORT_CMOS if you have CMOS RAM.

POST initializes the RTC with a default mode byte that is used to configure the RTC. This is
configured with the CONFIG_DEFAULT_RTC parameter. The default value is 26h. Other
values may be obtained by studying the documentation for the RTC part you are using.

Values:

1 - Enable date/time services.
0 - Disable date/time services.

Related Parameters:

OPTION_SUPPORT_CMOS - Enables CMOS RAM support.
OPTION_SUPPORT_8254 - Enables 8254 counter-timer support.
OPTION_TIMER_8254 - Use 8254 for counter-timer support.
OPTION_TIMER_CPU - Use CPU for counter-timer support.
OPTION_TIMER_BOARD - Use board for counter-timer support.
OPTION_RTC_CMOS - Enables RTC support with Dallas part.
OPTION_RTC_72421 - Enables RTC support with 72421 part.
CONFIG_DEFAULT_RTC - Initialization byte for RTC.

7.1.42 OPTION_SUPPORT_APM Option

The OPTION_SUPPORT_APM option enables or disables code in the BIOS that supports the
Advanced Power Management API. The APM services (called through INT 15h function 53h)
rely on the underlying power management support provided in the CHIPSET or CPU Personality
Modules.

This option does not enable power management in the BIOS; that is done by enabling
OPTION_SUPPORT_POWERMAN. The APM option only augments the power management
subsystem by providing a standard API for operating systems and applications to communicate
requests to the BIOS.

If you intend to use the chipset’s power management functions, then enable
OPTION_POWERMAN_CHIPSET. If the CPU’s power management functions are to be used
to support APM, then enable OPTION_POWERMAN_CPU. If special platforms require
custom programming beyond simple CPU or chipset programming, then
OPTION_POWRMAN_BOARD should be enabled, and the code placed in the board module.
Please note that not all chipsets or CPUs are capable of implementing power management.

Values:

1 - Enable APM support.
0 - Disable APM support.

138 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_POWERMAN_CPU - Use CPU Personality Module to implement power
controls.

OPTION_POWERMAN_CHIPSET - Use Chipset Personality Module to implement
power controls.

OPTION_POWERMAN_BOARD - Use Board Personality Module to implement
power controls.

OPTION_SUPPORT_POWERMAN - Enable BIOS-level power management.

OPTION_SETUP_PWR_FEATURES - Enable device features power management
Setup screen.

OPTION_SETUP_PWR_TIMEOUTS - Enable device timeouts power management
Setup screen.

7.1.43 OPTION_SUPPORT_POWERMAN Option

The OPTION_SUPPORT_POWERMAN option enables or disables code in the BIOS that
supports actual device-level power management. The power management system in the BIOS
uses a power management tree created with a table in the project file to introduce an APM state
machine for each device in the system, and to sequence state transitions of various system
components in the proper order.

This option does not enable the APM API; that is done by enabling
OPTION_SUPPORT_APM. The APM option only augments the power management
subsystem by providing a standard API for operating systems and applications to communicate
requests to the BIOS.

If you intend to use the chipset’s power management functions, then enable
OPTION_POWERMAN_CHIPSET. If the CPU’s power management functions are to be used
to support APM, then enable OPTION_POWERMAN_CPU. If special platforms require
custom programming beyond simple CPU or chipset programming, then
OPTION_POWRMAN_BOARD should be enabled, and the code placed in the board module.
Please note that not all chipsets or CPUs are capable of implementing power management.

Values:

1 - Enable power management support.
0 - Disable power management support.

Related Parameters:

OPTION_POWERMAN_CPU - Use CPU Personality Module to implement power
controls.

Chapter 7 EMBEDDED BIOS Adaptation Guide 139

General Software EMBEDDED BIOS Adaptation Guide

OPTION_POWERMAN_CHIPSET - Use Chipset Personality Module to implement
power controls.

OPTION_POWERMAN_BOARD - Use Board Personality Module to implement
power controls.

OPTION_SUPPORT_POWERMAN - Enable BIOS-level power management.

OPTION_SETUP_PWR_FEATURES - Enable device features power management
Setup screen.

OPTION_SETUP_PWR_TIMEOUTS - Enable device timeouts power management
Setup screen.

7.1.44 OPTION_SUPPORT_PCI Option

The OPTION_SUPPORT_PCI option enables or disables code in the BIOS that supports the
PCI API and PCI bus initialization in PCI-based systems.

Several PCI-related parameters in the project file specify how PCI devices will be treated during
POST; see the related parameters section for the lengthy list.

Values:

1 - Enable PCI support.
0 - Disable PCI support.

Related Parameters:

OPTION_SUPPORT_PCI_POSTMSGS – Enable display of PCI messages during
POST, such as the device display.

CONFIG_PCI_ROM_SHADOW_START - First segment of available shadow RAM
to be used for storing copies of PCI device option ROMs.

CONFIG_PCI_ROM_MAP - High 16 bits of device ROM extension mapping area.

CONFIG_PCI_MEM_AVAIL - High 16 bits of 1st memory address space assignable to
PCI devices.

CONFIG_PCI_IO_PORT_BASE - Lower 10 bits of 1st I/O addresses offered to PCI
devices.

CONFIG_PCI_IO_ALLOC specifies the size of the ISA I/O address space in bytes, to
allow the PCI system to skip past the replicated ISA I/O ports during its allocation
of PCI I/O resources.

CONFIG_PCI_IO_LENGTH specifies the number of I/O locations at the base I/O
address.

CONFIG_PCI_TMP_TBL_SEG specifies the segment address of low RAM to be used
by PCI during the preboot environment for scratch purposes.

140 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_PCI_BM_OFFSET specifies the offset into the scratch RAM segment where
the PCI bus map will be built during the preboot PCI bus scan.

CONFIG_PCI_LATENCY specifies the value to be stored into each PCI device’s
latency field during initialization.

CONFIG_PCI_IRQ_BITMAP specifies a 16-bit mask containing bits that correspond
with IRQs to be assigned to PCI instead of the rest of the system.

7.1.45 OPTION_SUPPORT_PCI_POSTMSGS Option

The OPTION_SUPPORT_PCI_POSTMSGS option enables or disables code in the BIOS that
displays messages during POST when PCI is initializing, such as the PCI configuration table.

Values:

1 - Enable PCI messages in POST.
0 - Disable PCI messages in POST.

Related Parameters:

OPTION_SUPPORT_PCI - Enable PCI support.
OPTION_SUPPORT_POSTMSGS - Enable POST messages in general.

7.1.46 OPTION_SUPPORT_MCA Option

The OPTION_SUPPORT_MCA option enables or disables the assembly of MCA-compatible
identifying data structures in the core BIOS.

If this option is set, then certain system software, such as OS/2, HIMEM.SYS, and DOS
extenders will make decisions about how to gate the A20 line and access other system functions
differently than they would otherwise. Do not set this option without fully understanding its
ramifications.

Values:

1 - Enable MCA support.
0 - Disable MCA support.

Related Parameters:

CONFIG_PS2_MOUSE_IRQ – Specify IRQ used to support PS/2 mouse.

CONFIG_PS2_MOUSE_WAIT – Specify retry limit for driver to wait for PS/2
commands to be accepted by 8042.

7.1.47 OPTION_SUPPORT_PS2MOUSE Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 141

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SUPPORT_PS2MOUSE option enables or disables code in the BIOS that
supports the PS/2-compatible mouse through the 8042 keyboard controller.

Several PS/2 mouse-related parameters in the project file specify how to fine-tune the interaction
between the mouse and the keyboard controller, and the keyboard controller and the CPU.

CONFIG_PS2_MOUSE_IRQ specifies the system interrupt level that the keyboard controller
associates with mouse-related activities.

CONFIG_PS2_MOUSE_LOOP specifies the maximum number of loops in a timeout loop to
wait for the 8042 to report the status of the mouse before a device timeout is declared.

Values:

1 - Enable PS/2 mouse support.
0 - Disable PS/2 mouse support.

Related Parameters:

CONFIG_PS2_MOUSE_IRQ - System interrupt level associated with mouse hardware
events.

CONFIG_PS2_MOUSE_LOOP - Timeout value for information from keyboard
controller.

7.1.48 OPTION_SUPPORT_WATCHDOG Option

The OPTION_SUPPORT_WATCHDOG option enables or disables code in the BIOS that
supports the Watchdog Timer API. The watchdog timer services rely on underlying watchdog
timer support provided in the Chipset, CPU, or Board Personality Modules.

To enable chipset support for the watchdog timer, enable OPTION_WATCHDOG_CHIPSET.
To enable CPU Personality Module support for the watchdog timer, enable
OPTION_WATCHDOG_CPU. To enable Board Personality Module support for the watchdog
timer, enable OPTION_WATCHDOG_BOARD.

The watchdog timer can be configured to operate in two different ways. First, the BIOS can
automatically “kick” the dog every timer tick in its INT 8h handler, so that the application
program and operating system are relieved of this responsibility. Only in the event that interrupt
latency becomes larger than the watchdog timer’s limit, does the watchdog timer expire. In this
case, OPTION_WATCHDOG_TIMER_KICK must be enabled.

The second method for employing the watchdog timer is for the operating system or application
to assume full responsibility for kicking the dog. In this case,
OPTION_WATCHDOG_TIMER_KICK must be disabled.

Values:

1 - Enable watchdog timer support.
0 - Disable watchdog timer support.

142 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_WATCHDOG_CPU - Use CPU Personality Module to implement watchdog
controls.

OPTION_WATCHDOG_CHIPSET - Use Chipset Personality Module to implement
watchdog controls.

OPTION_WATCHDOG_BOARD - Use Board Personality Module to implement
watchdog controls.

OPTION_WATCHDOG_TIMER_KICK - Enable automatic kick of the dog on each
timer tick inside the BIOS.

7.1.49 OPTION_SUPPORT_SOFT_ERR Option

The OPTION_SUPPORT_SOFT_ERR option enables or disables code in the BIOS that
causes the POST to display errors on the screen that indicate correctable problems (these are not
critical errors that result in beep codes or that cause Manufacturing Mode to take over). If this
option is disabled, then the BIOS doesn’t report these problems and simply corrects them without
warning.

An example of a soft error encountered during POST would be a memory size mismatch; a
difference between the amount of memory detected in physical memory scan, and the amount of
memory as recorded in CMOS.

Soft errors are not displayed on the screen if OPTION_SUPPORT_POSTMSGS is disabled,
because this option’s purpose is to remove all messages from the display. Be certain that you
enable OPTION_SUPPORT_POSTMSGS if you wish to see soft errors.

Soft errors may cause the Setup screen system to be invoked by enabling
OPTION_SOFTERR_SETUP. If this option is disabled, then the Setup screen will not be
invoked on soft errors.

One soft error, the CMOS memory size mismatch, can be enabled or disabled with the
OPTION_SOFTERR_MEMMIS option. On earlier PC/AT clones, the actual size of memory
was compared against the prerecorded size in CMOS, and if these sizes didn’t match, a soft error
occurred. This was primarily intended to catch cases where the machine was reconfigured, to
allow the user to edit the configuration with the Setup system. Rarely is this behavior actually
needed in modern systems.

Soft errors are subject to the same I/O redirection as standard INT 10h I/O; therefore, you can
change CONFIG_CON_REDIR_STD to a COM port number to redirect the I/O over a serial
line. If this is done, then all further application I/O (and that from Embedded DOS-ROM) will
be routed over the same I/O port.

Values:

1 - Enable soft errors during POST.
0 - Disable soft errors during POST.

Chapter 7 EMBEDDED BIOS Adaptation Guide 143

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_POSTMSGS - Enable POST messages.
OPTION_SUPPORT_CMOS - Enable CMOS RAM support.
OPTION_SOFTERR_MEMMIS - Cause soft error if memory size mismatch.
OPTION_SOFTERR_SETUP - Enter Setup system if soft error occurs.
CONFIG_CON_REDIR_STANDARD - Console I/O redirection for standard I/O.

7.1.50 OPTION_SUPPORT_MINI_DOS Option

The OPTION_SUPPORT_MINI_DOS option enables or disables code in the BIOS that causes
the BIOS to be aware that Embedded DOS-ROM is available in ROM, and therefore to initialize
it. (The term, Mini-DOS, is sometimes used to refer to Embedded DOS-ROM because of its
small footprint: in some cases, less than 32KB).

The Embedded DOS-ROM segment address is specified with the CONFIG_MINI_DOS_SCAN
parameter; normally, this value is E000h to be compatible with its distant ancestor, ROM
BASIC. The selection of this ROM scan address causes it to be excluded from the general ROM
BIOS extension scan so that it is only called once during POST.

Embedded DOS-ROM determines, when initialized, whether to hook the INT 19h vector or the
INT 18h vector. If it hooks INT 19h, then it will become the primary operating system. If it
hooks INT 18h, then it becomes a backup operating system in case the BIOS is unable to load an
operating system from the default boot drive.

Values:

1 - Enable Embedded DOS-ROM ROM scan.
0 - Disable Embedded DOS-ROM ROM scan.

Related Parameters:

CONFIG_MINI_DOS_SCAN - Specify address of Embedded DOS-ROM ROM BIOS
extension.

7.1.51 OPTION_SUPPORT_EXHMEMTEST Option

The OPTION_SUPPORT_EXTMEMTEST option enables or disables code in the BIOS that
provides an exhaustive memory test that can be called during POST, during Manufacturing
Mode, or from the Standard Diagnostics in the Setup system.

Exhaustive memory tests basically perform an analysis of every word in the tested range of
RAM, and for each word, every bit is tested. Thus, the exhaustive memory test takes much
longer than the standard memory test, but it finds problems that the standard memory test can’t
find, such as data lines wired together or address aliasing.

Enabling the OPTION_SUPPORT_EXHMEMTEST does not instruct the BIOS to start using
the tests over the standard ones; this is accomplished with the following additional options.

144 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_MEMTEST_LOW_POST is enabled to exhaustively scan low memory during
POST, instead of the standard (quicker) scan.

OPTION_MEMTEST_HIGH_POST is enabled to exhaustively scan extended memory during
POST, instead of the standard (very quick) scan.

OPTION_MEMTEST_WAIT is enabled to cause POST to pause between block tests, so that
the user has time to press the <ESC> key to bypass memory tests.

OPTION_MEMTEST_CLEAR is enabled to cause POST to rewrite low memory with a
pattern of all 00h’s, so that bugs in MS-DOS do not surface.

OPTION_MEMTEST_CLICK is enabled to cause POST to click the speaker between block
tests, so that the user has an aural indication that progress is being made.

In addition to the above feature selectors, the exhaustive memory tests (and the standard memory
tests) do not test beyond set limits, so that they do not begin accidently manipulating devices or
Flash memory that immediately follows RAM areas to be tested. The following two parameters
control these limits:

CONFIG_MAX_LOW_MEMORY defines the number of kilobytes (often, 640) that are to be
tested for valid RAM to be used as low memory. This value can be raised or lowered, depending
on how far you wish the memory scan to reach. A caution: raising it beyond the 640k limit will
cause the memory tests to test video memory on a VGA card in graphics mode successfully,
which will result in a system crash when the video board is actually used.

CONFIG_MAX_EXT_MEMORY defines the number of kilobytes of extended memory to be
tested for valid RAM, for the same reasons.

Values:

1 - Enable exhaustive memory tests.
0 - Disable exhaustive memory tests.

Related Parameters:

OPTION_CMOS_EXHMEMTEST – Factory default for enabling/disabling exhaustive
memory test in CMOS Setup.

OPTION_MEMTEST_LOW_POST - Exhaustively test low memory during POST.

OPTION_MEMTEST_HIGH_POST - Exhaustively test high memory during POST.

OPTION_MEMTEST_WAIT - Pause between testing blocks.

OPTION_MEMTEST_CLEAR - Clear low memory to a field of 00h's for MS-DOS.

OPTION_MEMTEST_CLICK - Click the speaker after testing each block.

OPTION_MEMTEST_QUICK – Test only the first word of each 1KB block.

Chapter 7 EMBEDDED BIOS Adaptation Guide 145

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_MAX_LOW_MEMORY - Maximum low memory size in KB.

CONFIG_MAX_EXT_MEMORY - Maximum extended memory size in KB.

7.1.52 OPTION_SUPPORT_KNOWN_ENTRYPOINTS Option

The OPTION_SUPPORT_KNOWN_ENTRYPOINTS option enables or disables the special
entrypoints at specific hard-coded addresses in the BIOS so that older VGA BIOS extensions,
application programs, and other software, can call the BIOS service routines directly without
using an INT instruction to do the work.

These entrypoints span a range of 8KB of ROM in the top 64KB of the BIOS, so enabling this
option causes the size of the BIOS to grow by roughly 8KB without a large functional benefit.

Related to this option is OPTION_SUPPORT_IBM_COMPAT, which causes a special
compatibility string to be inserted at F000:E000, so that certain utility programs can detect the
BIOS as IBM-compatible. This option also wastes space.

Values:

1 - Enable hard-coded entrypoints.
0 - Disable hard-coded entrypoints.

Related Parameters:

OPTION_SUPPORT_IBM_COMPAT - Enable IBM-compatibility string.

7.1.53 OPTION_SUPPORT_IBM_COMPAT Option

The OPTION_SUPPORT_IBM_COMPAT option enables or disables the special "IBM IS A
REGISTERED TRADEMARK OF INTERNATIONAL BUSINESS MACHINES
CORPORATION" string at offset E000h in the BIOS. This string is examined by utility
programs to determine if a desktop BIOS is IBM-compatible.

Certainly, a BIOS need not contain this string in order to provide work-alike functionality to its
distant IBM relative.

Values:

1 - Enable IBM string.
0 - Disable IBM string.

Related Parameters:

OPTION_SUPPORT_KNOWN_ENTRYPOINTS - Enable backdoor entrypoints into
BIOS.

7.1.54 OPTION_SUPPORT_MFGMODE Option

146 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SUPPORT_MFGMODE option enables or disables the Manufacturing Mode
protocol engine that provides a host with remote access to EMBEDDED BIOS facilities on the
target.

Manufacturing Mode can be entered from the SETUP system by enabling
OPTION_SETUP_MFGMODE.

Manufacturing Mode can also be entered during POST if a critical error is encountered by
enabling both OPTION_CRITICAL_BOARD and OPTION_MFGMODE_CRITICAL. The
default code in the Board Personality Module invokes the Manufacturing Mode routine.

A third way to enter Manufacturing Mode is to test a special hardware device called a test mode
pin. This test mode pin’s actual physical assignment may be a line on an unused UART, such as
Carrier Detect, for example. By providing code other than the default code in the Board
Personality Module’s BoardTestMode routine, a special OEM-defined hardware circuit can be
interrogated to determine if Manufacturing Mode should be entered, or if the operating system
should continue to boot.

You can cause Manufacturing Mode to constantly check the status of your test mode pin so that
when the pin goes low, Manufacturing Mode exits and boots the operating system. This also
enables the target to wait for a timeout period (a couple seconds) until the test mode pin goes
active. To enable the timeout option, enable OPTION_MFGMODE_TIMEOUT.

If Flash is to be programmed during Manufacturing Mode, then CONFIG_FLASH_DATASEG
must be set to a segment address of a 64KB buffer that will be used as a temporary staging buffer
for data coming over the RS232 link under the host program's control.

During Flash programming, the Manufacturing Mode code automatically copies the entire BIOS
into RAM at the segment address specified by CONFIG_FLASH_CODESEG, so that it can
update the Flash containing the BIOS, if necessary.

For debugging the Manufacturing Mode on hardware that provides 7-segment hex readouts of
POST codes, or other similar hardware, you can enable OPTION_SUPPORT_MFGCODES,
and then set CONFIG_MFG_PROGRESS_PORT to the 8-bit I/O port address that
Manufacturing Mode commands should be copied to for visual inspection. This port is written
with the value 0ffh when no commands are being executed.

Values:

1 - Enable support for Manufacturing Mode.
0 - Disable support for Manufacturing Mode.

Related Parameters:

OPTION_SETUP_MFGMODE - Enable SETUP screen option to enter Manufacturing
Mode.

OPTION_MFGMODE_CRITICAL - Call the Board Personality Module's critical error
handler if a POST critical error occurs, such as a RAM parity error, or other
hardware fault.

Chapter 7 EMBEDDED BIOS Adaptation Guide 147

General Software EMBEDDED BIOS Adaptation Guide

OPTION_MFGMODE_TIMEOUT - Time-out the Manufacturing Mode if the test-
mode pin goes inactive.

OPTION_CRITICAL_BOARD - Enable path to Manufacturing Mode from critical
errors passed to Chipset Personality Module.

OPTION_SUPPORT_MFGCODES - Enable Manufacturing Mode progress codes to
be written to the port defined by CONFIG_MFG_PROGRESS_PORT.

CONFIG_FLASH_DATASEG - Segment address of Manufacturing Mode staging
buffer.

CONFIG_FLASH_CODESEG - Segment address of Manufacturing Mode scratch code
buffer.

CONFIG_MFG_PROGRESS_PORT - I/O port used to write Manufacturing Mode
progress codes to.

7.1.55 OPTION_SUPPORT_PARITY Option

The OPTION_SUPPORT_PARITY option enables or disables code in the BIOS that supports
parity checking.

Parity support is used to generate an NMI interrupt when a RAM or I/O parity errors. This
requires OPTION_SUPPORT_PORT_B to be enabled, as the parity control bits are defined in
PORT B.

If RAM parity is to be supported, then OPTION_MEMTEST_CLEAR must be enabled. This
is required because memory will have indeterminate contents (and therefore indeterminate parity)
if it boots without being initialized to some value. Note that both low memory and extended
memory must be initialized so that memory parity errors do not occur in uninitialized extended
memory.

Values:

1 - Enable parity checking support.
0 - Disable parity checking support.

Related Parameters:

OPTION_SUPPORT_PORT_B - Support PORT B architecture.

OPTION_MEMTEST_CLEAR - Initialize all of low memory to a field of 00h’s.

7.1.56 OPTION_SUPPORT_PASSWORD Option

The OPTION_SUPPORT_PASSWORD option enables or disables code in the BIOS that
supports password checking during POST.

148 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, and a password has been entered into CMOS via the SETUP screen
system’s SET PASSWORD main menu item, then the target will require the user to enter a
password before allowing the target to boot an operating system.

Password checking happens after SETUP runs, and therefore does not affect Manufacturing
Mode or the integrated BIOS debugger.

In order for this option to be useful, the OPTION_SETUP_PASSWORD option must be
enabled, so that the user can enter a new password.

Values:

1 - Enable password checking support.
0 - Disable password checking support.

Related Parameters:

OPTION_SETUP_PASSWORD - Support password entry in SETUP screen system.

7.1.57 OPTION_SUPPORT_DEMO Option

The OPTION_SUPPORT_DEMO option enables or disables a timeout in the BIOS that causes
the BIOS to stop running the system. The demo timeout happens approximately one hour after
cold boot.

Values:

1 - Enable demo timeout.
0 - Disable demo timeout.

Related Parameters:

None.

7.1.58 OPTION_SUPPORT_DEMO_MSG Option

The OPTION_SUPPORT_DEMO_MSG option enables or disables code in the BIOS that
displays messages during POST, indicating that the BIOS is an unlicensed demonstration
version. Additional messages are displayed which tell the user how to contact General Software,
Inc., for licensing details.

Values:

1 - Enable demonstration BIOS messages in POST.
0 - Disable demonstration BIOS messages in POST.

Related Parameters:

OPTION_SUPPORT_DEMO - Enable demonstration timeout in BIOS build.

Chapter 7 EMBEDDED BIOS Adaptation Guide 149

General Software EMBEDDED BIOS Adaptation Guide

7.1.59 OPTION_SUPPORT_ATA Option

The OPTION_SUPPORT_ATA option enables or disables the special dedicated ATA mode for
a Cirrus Logic 6710 or 6720 controller. This mode programs the controller into a special mode
whereby ATA PC Cards inserted into the socket are treated as IDE drives by the EMBEDDED
BIOS IDE software.

Values:

1 - Enable dedicated ATA mode.
0 - Disable dedicated ATA mode.

Related Parameters:

CONFIG_PCMCIA_IOBASE - Specifies I/O base address for CL 67x0 controller.

7.1.60 OPTION_SUPPORT_CON_REDIRECTOR Option

The OPTION_SUPPORT_CON_REDIRECTOR option enables or disables the internal core
BIOS support for routing video output from INT 10h and keyboard input from INT 16h over RS-
232 ports. Three different channels of console I/O are supported: POST and DOS, BIOS
debugger, and Setup screen system. Each channel can have a separate routing assignment.

The actual assignment of each channel is governed by a separate configuration parameter. The
values for each of these parameters specifies the COM port number to route the I/O over, or zero
(0) if I/O should be routed over the traditional keyboard and screen devices. The
CONFIG_CON_REDIR_STD parameter governs BIOS POST and DOS I/O. The
CONFIG_CON_REDIR_DEBUG parameter governs BIOS debugger I/O. The
CONFIG_CON_REDIR_SETUP parameter governs BIOS Setup screen I/O.

The OPTION_SERIAL_9600_BAUD parameter can be set when running MS-DOS or another
operating system that insists on resetting the COM port baud rates to its own value. For
example, MS-DOS initializes all INT 14h serial ports to 2400 baud, even parity, and 1 stop bit.
When run over a serial port, MS-DOS appears to start booting, and then crash, when in fact all it
has done is change the serial port’s baud rate so that it cannot properly communicate with the
host terminal software. The solution is to set this parameter so that when MS-DOS attempts to
change the baud rate, the BIOS ignores the request and sets it to 9600 baud.

Note that if you are using a VGA BIOS extension in your system at the same time as console
redirection, the VGA BIOS will probably hook INT 10h and prevent the core BIOS's console
redirection code from being called at all. Therefore, OPTION_SUPPORT_VIDEO_BOARDS
may need to be disabled for these systems.

If you want the system to use a VGA BIOS in the system if present, and use console redirection
if the VGA BIOS is not present, you'll need to do a couple things. First, you need to disable
OPTION_HARDERR_VIDEO so that if the core BIOS can't find the video RAM on a
nonexistant card, it will continue through POST. Second, you'll need to place some custom
OEM code in your board module, perhaps routine BoardInit4, to check for the existence of the
55h/aah VGA BIOS signature, and if not present, perform an INT 15h that redirects console I/O
to the serial port of your choice.

150 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

EMBEDDED BIOS also has an autoredirection feature built into the core; it may be enabled with
the OPTION_CON_REDIR_AUTO configuration option. See the BPM routine
BoardAutoRedirect for details about how to change the autoredirection policy.

Values:

1 - Enable console redirection.
0 - Disable console redirection.

Related Parameters:

OPTION_SERIAL_9600_BAUD - Force 9600 baud when MS-DOS resets UARTs.

OPTION_CON_REDIR_WAIT – Wait for TBE before outputting characters.

OPTION_CON_REDIR_DISABLE – Disable redirection on output timeout.

OPTION_CON_REDIR_CANCEL – Cancel redirection if main console keypress
detected.

OPTION_CON_REDIR_AUTO – Enable autoredirection of console I/O.

CONFIG_CON_REDIR_STD - I/O assignment for BIOS POST and DOS.

CONFIG_CON_REDIR_DEBUG - I/O assignment for BIOS debugger.

CONFIG_CON_REDIR_SETUP - I/O assignment for BIOS Setup system.

7.1.61 OPTION_SUPPORT_MCL Option

The OPTION_SUPPORT_MCL option enables or disables the Media Control Layer (MCL)
component of the BIOS when it is built. Normally, MCL is enabled automatically by the
MEDIA_REGION macro as table entries are defined. One special entry, covering the entire
media address space, is defined by default, and the MCL is therefore normally assembled even
when no OEM-specified MEDIA_REGION table entries are defined. Disabling this option
forces the MCL to be not included in the system.

Values:

1 - Enable Media Control Layer.
0 - Disable Media Control Layer.

Related Parameters:

MEDIA_REGION - Defines entries in the media region table.

7.1.62 OPTION_SUPPORT_DISKIO Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 151

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SUPPORT_DISKIO option enables or disables the File System Control Layer
(FSCL) component of the BIOS when it is built. Normally, FSCL is enabled automatically by
the FILE_SYSTEM macro as table entries are defined. Disabling this option causes the entire
INT 13h disk services subsystem, including the drivers, to be removed from the system.

Values:

1 - Enable Disk I/O Support.
0 - Disable Disk I/O Support.

Related Parameters:

FILE_SYSTEM - Defines entries in the file system table.

7.1.63 OPTION_SUPPORT_WINCE Option

The OPTION_SUPPORT_WINCE option enables or disables support in the BIOS for booting
Windows CE binaries, either from disk or directly from ROM or Flash.

If this option is enabled, and then if OPTION_CMOS_LOAD_WINCE is enabled, the BIOS
will attempt to load the Windows CE binary (NK.BIN) from the root directory of devices instead
of the boot record that loads a traditional operating system such as DOS. If the Windows CE
binary is not present on the disk, then the boot record is loaded and executed.

If this option is disabled, then the BIOS will simply load the boot record into memory and
transfer control to it. This feature is called "CE Ready."

This is not the same feature as the boot option to run Windows CE directly from ROM or Flash
in the extended memory address space. That is accomplished by setting
CONFIG_CMOS_BOOT_n to BOOT_WINCE.

Values:

1 - Enable CE Ready Support.
0 - Disable CE Ready Support.

Related Parameters:

OPTION_CMOS_LOAD_WINCE - Define default action when booting from a drive.

7.1.64 OPTION_SUPPORT_BOOT_FAR Option

The OPTION_SUPPORT_BOOT_FAR option controls the format of the first instruction in the
BIOS executed by the CPU. If this parameter is enabled, then the first instruction will be a FAR
jump instruction, causing the CS register to be reloaded according to real-mode rules (this is the
default). Some CPUs require that registers be programmed before the first reload of CS (for
example, chip selects). If this is the case, then this option should be disabled, causing the first
instruction to be executed to be a NEAR jump instead.

152 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

If this option is disabled, then CS remains untouched until after the BOARD_PREPOST macro
runs, but before the mainline POST runs. This allows the BPM’s macro to get control to perform
any special processing before CS gets reloaded.

Values:

1 - Enable FAR jump as first instruction.
0 - Disable FAR jump as first instruction.

Related Parameters:

None.

7.1.65 OPTION_SUPPORT_BIOS32 Option

The OPTION_SUPPORT_BIOS32 option enables or disables the 32-bit components of the
chipset and board personality modules, so that they can support the 32-bit BIOS build.

Values:

1 - Enable 32-bit code in board and chipset modules.
0 – Disable 32-bit code in board and chipset modules.

Related Parameters:

None.

7.1.66 OPTION_SUPPORT_SPLASHSCR Option

The OPTION_SUPPORT_SPLASHSCR option enables or disables the graphical front-end of
the BIOS, including splash screen and graphic icon management and display code.

This option needs to be enabled, along with OPTION_SUPPORT_EXTRES, for any
SPLASH_TABLE entries to be meaningful.

Values:

1 - Enable graphical front-end support.
0 – Disable graphical front-end support.

Related Parameters:

OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.
CONFIG_SPLASH_VMODE – Specify video mode for graphica front-end.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_WBYTES – Specify video frame buffer width in bytes.
CONFIG_SPLASH_HEIGHT – Specify video display height in raster lines.
CONFIG_SPLASH_COLORS – Specify number of colors supported by video mode.
CONFIG_SPLASH_SEG – Specify segment address for graphics workspace.
CONFIG_SPLASH_BOOTS – Specify limit for booting with disabled splash screen.

Chapter 7 EMBEDDED BIOS Adaptation Guide 153

General Software EMBEDDED BIOS Adaptation Guide

SPLASH_TABLE – Specify graphic resources to be used.

7.1.67 OPTION_SUPPORT_EXTRES Option

The OPTION_SUPPORT_EXTRES option enables or disables the external resource manager,
which provides APIs for finding and extracting external resources bound with the final BIOS
image by the GSMERGE utility.

Resources can be any separately-prepared binary component, including relocatable code,
bitmaps, application data, and so on.

Values:

1 - Enable external resource manager.
0 –Disable external resource manager.

Related Parameters:

None.

7.1.68 OPTION_SUPPORT_INT13_EXTENSIONS Option

The OPTION_SUPPORT_INT13_EXTENSIONS option enables or disables the support in the
File System Control Layer and IDE/ATA file system drivers for handling the industry-standard,
extended INT 13h functions.

These functions are used by some operating systems, such as Windows NT, that require access to
data on a hard drive that is greater than 8GB in size.

Values:

1 - Enable INT 13h extensions.
0 –Disable INT 13h extensions.

Related Parameters:

None.

7.1.69 OPTION_SETUP_CUSTOM Option

The OPTION_SETUP_CUSTOM option enables or disables code in the BIOS to display the
Custom Configuration SETUP screen, which is supported by the Board Personality Module
(BPM).

In order for this option to be effective, OPTION_SUPPORT_SETUP must be enabled (see that
section for more options and details).

154 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This feature should only be selected if the adaptation engineer has selected a Board Personality
Module (BPM) and has defined setup fields within the module that allow the end-user to
configure the chipset during Setup. See Chapter 20 for more details.

Values:

1 - Enable Custom SETUP screen.
0 - Disable Custom SETUP screen.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.

7.1.70 OPTION_SETUP_DEMO Option

The OPTION_SETUP_DEMO option enables or disables code in the BIOS to display the
Demonstration SETUP screen, normally only used by General Software for adaptations of
EMBEDDED BIOS for reference designs distributed by silicon vendors.

In order for this option to be effective, OPTION_SUPPORT_SETUP must be enabled (see that
section for more options and details).

Values:

1 - Enable Demo SETUP screen.
0 - Disable Demo SETUP screen.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.

7.1.71 OPTION_SETUP_PASSWORD Option

The OPTION_SETUP_PASSWORD option enables or disables code in the BIOS to display
the Password Configuration SETUP screen.

In order for this option to be effective, OPTION_SUPPORT_SETUP must be enabled (see that
section for more options and details).

OPTION_SUPPORT_PASSWORD must also be enabled in order for this option to be useful.
This option controls whether POST will check the password that is entered from the SETUP
screen.

Values:

1 - Enable password configuration SETUP screen.
0 - Disable password configuration SETUP screen.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 155

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_PASSWORD - Enable password checking in POST.

7.1.72 OPTION_SETUP_DIAGNOSTICS Option

The OPTION_SETUP_DIAGNOSTICS option enables or disables code in the BIOS to
support the Standard Diagnostics SETUP screen.

In order for this option to be effective, OPTION_SUPPORT_SETUP must be enabled (see that
section for more options and details).

Some portions of the Standard Diagnostics suite may be enabled or disabled, depending on
various other options you have enabled in the adaptation. There are so many of these options,
that they cannot be listed individually here. If "No Hdwr" is present on a particular test that you
wish to perform, its corresponding option may need to be configured properly in the project file.

The diagnostics suite is extensive, and considerable code space is used for its implementation. If
your adaptation is running short on space, disabling this option can save space that can be used
for other functions.

Values:

1 - Enable standard diagnostics SETUP screen.
0 - Disable standard diagnostics SETUP screen.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.

7.1.73 OPTION_SETUP_DEBUGGER Option

The OPTION_SETUP_DEBUGGER option enables or disables code in the BIOS to support
the Debugger SETUP option. This allows the user to enter the integrated BIOS debugger from
SETUP’s main menu without having to press the special Ctl-Left-Shift keys together.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_DEBUGGER must be enabled (see those sections for more options and
details).

Values:

1 - Enable Debugger SETUP option.
0 - Disable Debugger SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

156 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.74 OPTION_SETUP_IDE Option

The OPTION_SETUP_IDE option enables or disables code in the BIOS to support the OEM-
extensible IDE Utility SETUP screen. This screen is intended for OEM expansion, so that
special setup and diagnostics can be performed on special drives.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_DISKIO must be enabled, and a FILE_SYSTEM table entry must be
specified for the IDE driver.

Values:

1 - Enable IDE Utility SETUP screen.
0 - Disable IDE Utility SETUP screen.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_DISKIO - Enable disk support.
FILE_SYSTEM - Enable specific disk driver.

7.1.75 OPTION_SETUP_SHADOW Option

The OPTION_SETUP_SHADOW option enables or disables code in the BIOS to support the
ROM Shadowing SETUP screen.

In order for this option to be effective, OPTION_SUPPORT_SETUP must be enabled (see that
section for more options and details).

ROM shadowing is enabled with the OPTION_SUPPORT_SHADOW option, but the
shadowing work is performed in the Chipset Personality Module. All adaptations requiring
ROM shadowing require that shadowing code be implemented by the OEM in the Board
Personality Module or the Chipset Personality Module. Therefore, both
OPTION_SUPPORT_SHADOW and OPTION_SUPPORT_CHIPSET must be enabled to
support shadowing.

Values:

1 - Enable ROM Shadowing SETUP screen.
0 - Disable ROM Shadowing SETUP screen.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_SUPPORT_CHIPSET - Enable chipset support.

7.1.76 OPTION_SETUP_PWR_FEATURES Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 157

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SETUP_PWR_FEATURES option enables or disables code in the BIOS to
support the Power Management Features SETUP screen.

The power management features supported by the setup screen are dictated by the power
management device tree built in the project file by the OEM using the POWER_DEVID macro.

This screen does not address timeouts for devices, which are specified on the Power Management
Timeouts SETUP screen (see OPTION_SETUP_PWR_TIMEOUTS).

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_POWERMAN must be enabled (see those sections for more options and
details).

Power management is provided by the Chipset Personality Module, the CPU Personality
Module, and/or the Board Personality Module. Thus, these modules must contain power
management code in order for the core BIOS to perform actual power management with the
available hardware.

Values:

1 - Enable Power Management Features SETUP screen.
0 - Disable Power Management Features SETUP screen.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_POWERMAN - Enable power management support.
OPTION_SETUP_PWR_TIMEOUTS - Enable Power Management timeouts screen.

7.1.77 OPTION_SETUP_PWR_TIMEOUTS Option

The OPTION_SETUP_PWR_TIMEOUTS option enables or disables code in the BIOS to
support the Power Management Timeouts SETUP screen.

The power management timeouts supported by the setup screen are dictated by the power
management device tree built in the project file by the OEM using the POWER_DEVID macro.

This screen does not address device features, which are specified on the Power Management
Features SETUP screen (see OPTION_SETUP_PWR_FEATURES).

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_POWERMAN must be enabled (see those sections for more options and
details).

Power management is provided by the Chipset Personality Module, the CPU Personality
Module, and/or the Board Personality Module. Thus, these modules must contain power
management code in order for the core BIOS to perform actual power management with the
available hardware.

Values:

158 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable Power Management Timeouts SETUP screen.
0 - Disable Power Management Timeouts SETUP screen.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_POWERMAN - Enable power management support.
OPTION_SETUP_PWR_FEATURES - Enable Power Management features screen.

7.1.78 OPTION_SETUP_MFGMODE Option

The OPTION_SETUP_MFGMODE option enables or disables code in the BIOS to support the
SETUP option that allows the user to enter Manufacturing Mode.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_MFGMODE must be enabled (see those sections for further details).

Values:

1 - Enable Manufacturing Mode SETUP option.
0 - Disable Manufacturing Mode SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

7.1.79 OPTION_SETUP_RAMDISK Option

The OPTION_SETUP_RAMDISK option enables or disables code in the BIOS to support the
SETUP option that can reformat the core BIOS RAM disk.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_DISKIO must be enabled, and the RAM disk defined with a
FILE_SYSTEM table entry.

Values:

1 - Enable RAM disk formatting SETUP option.
0 - Disable RAM disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_DISKIO - Enable disk support.
FILE_SYSTEM - Enable specific disk driver.

7.1.80 OPTION_SETUP_RFDDISK Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 159

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SETUP_RFDDISK option enables or disables code in the BIOS to support the
SETUP option that can low-level format the core BIOS RFD disk.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_DISKIO must be enabled, and the RFD disk defined with a
FILE_SYSTEM table entry.

Values:

1 - Enable RFD disk formatting SETUP option.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_DISKIO - Enable disk support.
FILE_SYSTEM - Enable specific disk driver.

7.1.81 OPTION_SETUP_SHAD_C000 Option

The OPTION_SETUP_SHAD_C000 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment C000h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.82 OPTION_SETUP_SHAD_C400 Option

The OPTION_SETUP_SHAD_C400 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

160 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment C400h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.83 OPTION_SETUP_SHAD_C800 Option

The OPTION_SETUP_SHAD_C800 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment C800h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.84 OPTION_SETUP_SHAD_CC00 Option

The OPTION_SETUP_SHAD_CC00 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

Chapter 7 EMBEDDED BIOS Adaptation Guide 161

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment CC00h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.85 OPTION_SETUP_SHAD_D000 Option

The OPTION_SETUP_SHAD_D000 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment D000h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.86 OPTION_SETUP_SHAD_D400 Option

The OPTION_SETUP_SHAD_D400 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

162 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment D400h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.87 OPTION_SETUP_SHAD_D800 Option

The OPTION_SETUP_SHAD_D800 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment D800h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.88 OPTION_SETUP_SHAD_DC00 Option

The OPTION_SETUP_SHAD_DC00 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

Chapter 7 EMBEDDED BIOS Adaptation Guide 163

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment DC00h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.89 OPTION_SETUP_SHAD_E000 Option

The OPTION_SETUP_SHAD_E000 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment E000h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.90 OPTION_SETUP_SHAD_E400 Option

The OPTION_SETUP_SHAD_D400 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

164 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment E400h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.91 OPTION_SETUP_SHAD_E800 Option

The OPTION_SETUP_SHAD_E800 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment E800h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.92 OPTION_SETUP_SHAD_EC00 Option

The OPTION_SETUP_SHAD_EC00 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

Chapter 7 EMBEDDED BIOS Adaptation Guide 165

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment EC00h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.93 OPTION_SETUP_SHAD_F000 Option

The OPTION_SETUP_SHAD_F000 option enables or disables support for a shadowable
region in the SETUP screen. EMBEDDED BIOS’s SETUP screen provides for 16KB
granularity from segment C000h through EFFFh, and then a 64KB segment at F000h. Some
chipsets may not be capable of shadowing at this resolution (perhaps at 32KB or 64KB
increments instead).

If this option is enabled, then the Shadowing SETUP screen’s entry for the specified segment will
allow the user to enable or disable shadowing for that segment. If this option is disabled, then
the SETUP screen will not allow the user to enable or disable shadowing for that region.

In order for this option to be effective, OPTION_SUPPORT_SETUP and
OPTION_SUPPORT_SHADOW must be enabled.

Values:

1 - Enable shadow option at segment F000h.
0 - Disable RFD disk formatting SETUP option.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable SETUP menu.
OPTION_SUPPORT_SHADOW - Enable shadow memory support.

7.1.94 OPTION_REFRESH_8237 Option

The OPTION_REFRESH_8237 option enables or disables code in the BIOS to support DRAM
refresh by linking the primary 8237A DMA controller together with the 8254 programmable
interrupt timer. This is the standard method used on the IBM PC, PC/XT, and PC/AT systems.

166 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

To use OPTION_REFRESH_8237, you must also enable OPTION_SUPPORT_8237 and
OPTION_SUPPORT_8254 to specifically enable the drivers for the 8237 and 8254.

In most newer system designs, this refresh mechanism has been replaced with a DRAM refresh
controller either on the CPU or in the chipset. If you are using CPU refresh, you need to select
the CPUCLASS for the CPU type, and then enable OPTION_REFRESH_CPU instead. If you
are using chipset refresh, enable OPTION_SUPPORT_CHIPSET and
OPTION_REFRESH_CHIPSET. If you have a board that requires any refreshing mechanism
that is not included in the standard 8237A, CPU, or chipset methods, then the
OPTION_REFRESH_BOARD option should be enabled.

If the chipset, CPU, and/or board refreshing methods are selected, then code must be provided in
the associated personality module’s refresh control routines. If all the code is already supplied
by General Software, then additional coding is not necessary.

When this option is selected, the other refresh options must be disabled. When refreshing
DRAM, you may also enable OPTION_REFRESH_CHARGE, which causes low memory to
be alternately written with 1's and 0's after refresh has been enabled. This was required for the
IBM PC and PC/XT, but is not required for most modern hardware.

Values:

1 - Enable DRAM refresh using the 8237A and 8254.
0 - Disable DRAM refresh using the 8237A and 8254.

Related Parameters:

OPTION_SUPPORT_REFRESH - Enable refresh logic.

OPTION_SUPPORT_8237 - Enable 8237 DMA support.

OPTION_SUPPORT_8254 - Enable 8254 timer support.

OPTION_REFRESH_CHIPSET - Support refresh through chipset controller.

OPTION_REFRESH_CPU - Support refresh through CPU integrated refresh controller.

OPTION_REFRESH_BOARD - Support refresh though board module.

OPTION_REFRESH_CHARGE - Optionally charge the DRAMs in an IBM PC so that
refresh works properly.

7.1.95 OPTION_REFRESH_CHIPSET Option

The OPTION_REFRESH_CHIPSET option enables or disables code in the BIOS to support
DRAM refresh by programming the chipset to use its own decoupled DRAM refresh mechanism.

When this option is selected, the other refresh options must be disabled. This option does not
make use of the 8237A or 8254 hardware.

Chapter 7 EMBEDDED BIOS Adaptation Guide 167

General Software EMBEDDED BIOS Adaptation Guide

To use this option, you must enable OPTION_SUPPORT_CHIPSET, and set CHIPSET to a
chipset identifier that supports refreshing.

Values:

1 - Enable DRAM refresh via chipset.
0 - Disable DRAM refresh via chipset.

Related Parameters:

OPTION_SUPPORT_REFRESH - Enable refresh logic.

OPTION_SUPPORT_CHIPSET - Enable Chipset Personality Module.

OPTION_REFRESH_8237A - Support refresh through chipset controller.

OPTION_REFRESH_CPU - Support refresh through CPU integrated refresh controller.

OPTION_REFRESH_BOARD - Support refresh through board module.

OPTION_REFRESH_CHARGE - Optionally charge the DRAMs in an IBM PC so that
refresh works properly.

CHIPSET - Select Chipset Personality Module.

7.1.96 OPTION_REFRESH_CPU Option

The OPTION_REFRESH_CPU option enables or disables code in the BIOS to support DRAM
refresh by programming the CPU to use its own internal DRAM refresh controller.

When this option is selected, the other refresh options must be disabled. This option does not
make use of the 8237A or 8254 hardware, nor does it use a chipset for support.

To use this option, you must also set CPUCLASS to the identifier associated with the CPU that
you are using, and ensure that the CPU Personality Module supports refreshing via the CPU
DRAM refresh controller.

Values:

1 - Enable DRAM refresh via CPU.
0 - Disable DRAM refresh via CPU.

Related Parameters:

OPTION_SUPPORT_REFRESH - Enable refresh logic.

OPTION_REFRESH_8237A - Support refresh through chipset controller.

OPTION_REFRESH_CHIPSET - Support refresh through chipset integrated refresh
controller.

168 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_REFRESH_BOARD - Support refresh through board module.

OPTION_REFRESH_CHARGE - Optionally charge the DRAMs in an IBM PC so that
refresh works properly.

CPUCLASS - Select CPU Personality Module.

7.1.97 OPTION_REFRESH_BOARD Option

The OPTION_REFRESH_BOARD option enables or disables code in the BIOS to support
DRAM refresh by calling the Board Personality Module’s DRAM refresh support routines
(which may in turn call CPU or chipset routines, or perform OEM-proprietary actions.

When this option is selected, the other refresh options must be disabled. This option does not
make use of the 8237A or 8254 hardware, nor does it use a chipset for support.

To use this option, you must also set BOARD to the identifier associated with the Board
Personality Module that you are using, and ensure that the CPU Personality Module supports
refreshin.

Values:

1 - Enable DRAM refresh via board module.
0 - Disable DRAM refresh via board module.

Related Parameters:

OPTION_SUPPORT_REFRESH - Enable refresh logic.

OPTION_REFRESH_8237A - Support refresh through chipset controller.

OPTION_REFRESH_CHIPSET - Support refresh through chipset integrated refresh
controller.

OPTION_REFRESH_CPU - Support refresh through CPU module.

OPTION_REFRESH_CHARGE - Optionally charge the DRAMs in an IBM PC so that
refresh works properly.

BOARD - Select Board Personality Module.

7.1.98 OPTION_REFRESH_CHARGE Option

The OPTION_REFRESH_CHARGE option enables or disables code in the BIOS to support
charging of DRAM cells alternately with 0's and 1's to make them operational after DRAM
refresh has started.

Chapter 7 EMBEDDED BIOS Adaptation Guide 169

General Software EMBEDDED BIOS Adaptation Guide

This was only necessary on early IBM PC systems, but may be enabled if refresh appears to be
accessing the DRAM chips but from a software standpoint, appears not to work properly.

This option cannot be used alone. It must be used in conjunction with a refresh method,
described in earlier sections.

Values:

1 - Enable charging of DRAMs.
0 - Disable charging of DRAMs.

Related Parameters:

OPTION_SUPPORT_REFRESH - Enable DRAM refresh support.

7.1.99 OPTION_DMA_8237 Option

The OPTION_DMA_8237 option enables or disables code in the BIOS to support the routing of
DMA requests to external 8237A DMA controllers.

In PC and PC/XT designs, only one 8237A is used, so OPTION_SUPPORT_8237 must be
enabled when using this option.

In PC/AT systems and beyond, two 8237A’s are normally used together. If you have a target that
is similar to a PC/AT or is a 386 system or beyond, you should enable both
OPTION_SUPPORT_8237 and OPTION_SUPPORT_8237_2.

If you have an Intel 386-EX design, note that the DMA controllers on the 386-EX CPU can
closely imitate the 8237A and page register file, but not exactly. In particular, there are only 2
DMA channels on the 386-EX. Therefore, if you are using floppy disk I/O in a 386-EX design
and desire DMA-based floppy I/O, you need to select OPTION_DMA_CPU, not
OPTION_DMA_8237.

Values:

1 - Route DMA through 8237A.
0 - Don’t route DMA through 8237A.

Related Parameters:

OPTION_SUPPORT_8237 - Enable primary 8237A support.
OPTION_SUPPORT_8237_2 - Enable secondary 8237A support.
OPTION_DMA_CPU - Support DMA via CPU integrated DMA controller.
OPTION_DMA_BOARD - Route DMA requests through Board Personality Module.

7.1.100 OPTION_DMA_CPU Option

The OPTION_DMA_CPU option enables or disables code in the BIOS to support the routing of
DMA requests to an on-board DMA controller in the CPU.

170 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

A CPU Personality Module must be selected that supports CPU DMA operations in order for this
option to be supported. Set CPUCLASS to the CPU type that is to be used so that the correct
CPU Personality Module is enabled.

Floppy I/O is the only core BIOS subsystem that requires DMA for its operation (except for
refresh in older systems). If you have CPU DMA support, this will not necessary interoperate
with the floppy driver. Consult the section on OPTION_SUPPORT_FLOPPY for further
details.

Values:

1 - Route DMA through CPU.
0 - Don’t route DMA through CPU.

Related Parameters:

None.

7.1.101 OPTION_DMA_BOARD Option

The OPTION_DMA_BOARD option enables or disables code in the BIOS to route DMA
requests through the Board Personality Module, allowing the OEM to intercept DMA calls and
handle their dispatching to the CPU or chipset modules in a special way, or to manage the DMA
process in an entirely proprietary way.

A Board Personality Module must be selected that supports DMA operations in order for this
option to be supported. Set BOARD to the Board Personality Module to be used. The OEM
should review the board module code (or the default code in SYSTEM\BOARD.ASM) in order to
determine what needs to be coded in the Board Personality Module.

Values:

1 - Route DMA through board module.
0 - Don’t route DMA through board module.

Related Parameters:

BOARD - Specify Board Personality Module.

7.1.102 OPTION_INT_8259 Option

The OPTION_INT_8259 option enables or disables code in the BIOS to support the routing of
interrupt management requests to one or more external 8259 interrupt controllers.

In PC and PC/XT designs, only one 8259 is used, so OPTION_SUPPORT_8259 must be
enabled when using this option.

In PC/AT systems and beyond, two 8259’s are normally used together. If you have a target that
is similar to a PC/AT or is a 386 system or beyond, you should enable both
OPTION_SUPPORT_8259 and OPTION_SUPPORT_8259_2.

Chapter 7 EMBEDDED BIOS Adaptation Guide 171

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Route interrupts through external 8259.
0 - Don’t route interrupts through external 8259.

Related Parameters:

OPTION_SUPPORT_8259 - Enable primary 8259 support.
OPTION_SUPPORT_8259_2 - Enable secondary 8259 support.

7.1.103 OPTION_INT_CPU Option

The OPTION_INT_CPU option enables or disables code in the BIOS to support the routing of
interrupt management requests to an on-board CPU interrupt controller.

The CPU Personality Module must support the on-board interrupt controller functions for this
option to be valid. Be sure to set the CPUCLASS parameter for the type of CPU you are using
so that the CPU Personality Module is enabled.

Values:

1 - Route interrupts through CPU.
0 - Don’t route interrupts through CPU.

Related Parameters:

CPUCLASS - Select CPU Personality Module.

7.1.104 OPTION_INT_BOARD Option

The OPTION_INT_BOARD option enables or disables code in the BIOS to support the routing
of interrupt management requests through the Board Personality Module.

The Board Personality Module must contain code in its interrupt support entrypoints that handles
interrupt requests from the core BIOS. The BOARD parameter must be set to the name of the
Board Personality Module containing this support.

Values:

1 - Route interrupts through Board Personality Module.
0 - Don’t route interrupts through Board personality Module.

Related Parameters:

BOARD - Select Board Personality Module.

172 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.105 OPTION_TIMER_8254 Option

The OPTION_TIMER_8254 option enables or disables code in the BIOS to support
timekeeping in the system with an 8253/8254 programmable interval timer.

The OPTION_SUPPORT_8254 configuration option must be enabled for this option to be
valid.

Values:

1 - Route timer management through 8254.
0 - Don’t route timer management through 8254.

Related Parameters:

OPTION_SUPPORT_8254 - Enable 8254 support.

7.1.106 OPTION_TIMER_CPU Option

The OPTION_TIMER_CPU option enables or disables code in the BIOS to support
timekeeping in the system with an on-board CPU programmable timer.

The CPU Personality Module must support the management of on-board CPU timers for this
option to be valid. To select the correct CPU Personality Module, CPUCLASS must be properly
specified.

Values:

1 - Route timer management through CPU.
0 - Don’t route timer management through CPU.

Related Parameters:

CPUCLASS - Select CPU Personality Module.

7.1.107 OPTION_TIMER_BOARD Option

The OPTION_TIMER_BOARD option enables or disables code in the BIOS to support
timekeeping in the system with code in the Board Personality Module.

The Board Personality Module must contain code in its timer support entrypoints that handles
timer requests from the core BIOS. The BOARD parameter must be set to the name of the
Board Personality Module containing this support.

Values:

1 - Route timer management through Board Personality Module.
0 - Don’t route timer management through Board Personality Module.

Chapter 7 EMBEDDED BIOS Adaptation Guide 173

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

BOARD - Select Board Personality Module.

7.1.108 OPTION_SOUND_8254_8255 Option

The OPTION_SOUND_8254_8255 option enables or disables code in the BIOS that routes
sound requests to 8254 and 8255 device drivers. This option must be enabled for these
controllers to be programmed for sound support

If these controllers are not to be supported, but a high-integration CPU is to be used for sound
support, then OPTION_SOUND_CPU or OPTION_SOUND_BOARD should be enabled
instead to provide sound through those personality modules.

Values:

1 - Route sound requests through 8254 or 8255 drivers.
0 - Don’t route sound requests through 8254 or 8255 drivers.

Related Parameters:

OPTION_SUPPORT_8254 - Enable 8254 support.

OPTION_SUPPORT_8255 - Enable 8255 support.

OPTION_SOUND_CPU - Use high-integration CPU for sound generation.

OPTION_SOUND_BOARD - Route sound requests through board module.

7.1.109 OPTION_SOUND_CPU Option

The OPTION_SOUND_CPU option enables or disables code in the BIOS to support sound
generation with an on-board CPU programmable timer by routing requests through the CPU
Personality Module.

The CPU Personality Module must support the management of on-board CPU timers for this
option to be valid. To select the correct CPU Personality Module, CPUCLASS must be properly
specified.

Values:

1 - Route sound generation through CPU.
0 - Don’t route sound generation through CPU.

Related Parameters:

CPUCLASS - Select CPU Personality Module.

OPTION_SOUND_8254_8255 - Use 8254 or 8255 devices for sound generation.

174 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.110 OPTION_SOUND_BOARD Option

The OPTION_SOUND_BOARD option enables or disables code in the BIOS to support sound
generation by routing requests through the Board Personality Module.

The Board Personality Module must contain code in its sound support entrypoints that handles
sound requests from the core BIOS. The BOARD parameter must be set to the name of the
Board Personality Module containing this support.

Values:

1 - Route sound generation through the Board Personality Module.
0 - Don’t route sound generation through the Board Personality Module.

Related Parameters:

BOARD - Select Board Personality Module.

OPTION_SOUND_8254_8255 - Use 8254 or 8255 devices for sound generation.

OPTION_SOUND_CPU - Route sound requests to CPU Personality Module.

7.1.111 OPTION_WATCHDOG_CHIPSET Option

The OPTION_WATCHDOG_CHIPSET option enables or disables code in the BIOS to route
watchdog timer requests to the Chipset Personality Module.

In order for this option to work, OPTION_SUPPORT_CHIPSET must be enabled, the
CHIPSET type must be selected, and the Chipset Personality Module must be programmed to
be capable of handling watchdog timer requests.

Values:

1 - Route watchdog timer requests through chipset module.
0 - Don’t route watchdog timer requests through chipset module.

Related Parameters:

OPTION_SUPPORT_WATCHDOG - Enable watchdog timer support.
OPTION_SUPPORT_CHIPSET - Enable chipset support.
CHIPSET - Select Chipset Personality Module.
OPTION_WATCHDOG_CPU - Route requests through CPU module.
OPTION_WATCHDOG_BOARD - Route requests through board module.

7.1.112 OPTION_WATCHDOG_CPU Option

The OPTION_WATCHDOG_CPU option enables or disables code in the BIOS to route
watchdog timer requests to the CPU Personality Module.

Chapter 7 EMBEDDED BIOS Adaptation Guide 175

General Software EMBEDDED BIOS Adaptation Guide

In order for this option to work, the CPUCLASS must be selected, and the CPU Personality
Module must be programmed to be capable of handling watchdog timer requests.

Values:

1 - Route watchdog timer requests through CPU Personality Module.
0 - Don’t route watchdog timer requests through CPU Personality Module.

Related Parameters:

OPTION_SUPPORT_WATCHDOG - Enable watchdog timer support.
CPUCLASS - Select CPU Personality Module.
OPTION_WATCHDOG_CPU - Route requests through CPU module.
OPTION_WATCHDOG_BOARD - Route requests through board module.

7.1.113 OPTION_WATCHDOG_BOARD Option

The OPTION_WATCHDOG_BOARD option enables or disables code in the BIOS to route
watchdog timer requests to the Board Personality Module.

In order for this option to work, the BOARD must be selected, and the Board Personality
Module must be programmed to be capable of handling watchdog timer requests.

Values:

1 - Route watchdog timer requests through Board Personality Module.
0 - Don’t route watchdog timer requests through Board Personality Module.

Related Parameters:

OPTION_SUPPORT_WATCHDOG - Enable watchdog timer support.
BOARD - Select Board Personality Module.
OPTION_WATCHDOG_CPU - Route requests through CPU module.
OPTION_WATCHDOG_CHIPSET - Route requests through chipset module.

7.1.114 OPTION_WATCHDOG_TIMER_KICK Option

The OPTION_WATCHDOG_TIMER_KICK option enables or disables code in the BIOS to
automatically “kick the dog” on each timer tick handled by the BIOS INT 8 ISR. This provides a
way for the watchdog timer to function as an interrupt latency watchdog when the option is
enabled, and to function as a traditional application-oriented watchdog timer when the option is
disabled.

Values:

1 - Automatically kick the dog on every timer tick (appx. 55ms intervals).
0 - Don't automatically kick the dog on every timer tick.

176 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_WATCHDOG - Enable watchdog timer support.

7.1.115 OPTION_CACHE_CPU Option

The OPTION_CACHE_CPU option enables or disables code in the BIOS to route cache
control requests to the CPU Personality Module. Only 80486 CPUs and above support L1
caches, except for certain 386 chips manufactured by IBM.

In order for this option to work, the CPUCLASS must be selected, and the CPU Personality
Module must be programmed to be capable of handling cache control requests. CPU Personality
Modules, including NOCPU, shipped by General Software, support cache control requests.

This option controls L1 caches, but can be used in conjunction with L2 cache controls.

The OPTION_SUPPORT_CACHE parameter does not affect the L1 cache logic and is not
necessary for enabling this option.

Values:

1 - Route L1 cache control requests through CPU module.
0 - Don’t L1 route cache control requests through CPU module.

Related Parameters:

CPUCLASS - Select CPU Personality Module.
OPTION_SUPPORT_CACHE - Enable L2 cache support.

7.1.116 OPTION_CACHE_CHIPSET Option

The OPTION_CACHE_CHIPSET option enables or disables code in the BIOS to route L2
cache control requests to the Chipset Personality Module.

In order for this option to work, both OPTION_SUPPORT_CACHE and
OPTION_SUPPORT_CHIPSET must be enabled, the CHIPSET type must be selected, and
the Chipset Personality Module must be programmed to be capable of handling L2 cache control
requests.

Values:

1 - Route L2 cache control requests through chipset.
0 - Don’t route L2 cache control requests through chipset.

Related Parameters:

OPTION_SUPPORT_CHIPSET - Enable chipset support.
CHIPSET - Select Chipset Personality Module.
OPTION_SUPPORT_CACHE - Enable L2 cache support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 177

General Software EMBEDDED BIOS Adaptation Guide

7.1.117 OPTION_CACHE_BOARD Option

The OPTION_CACHE_BOARD option enables or disables code in the BIOS to route L2 cache
control requests to the Board Personality Module.

In order for this option to work, OPTION_SUPPORT_CACHE must be enabled, the BOARD
module must be selected, and the Board Personality Module must be programmed to be capable
of handling L2 cache control requests.

Values:

1 - Route L2 cache control requests through board module.
0 - Don’t route L2 cache control requests through board module.

Related Parameters:

BOARD - Select Board Personality Module.
OPTION_SUPPORT_CACHE - Enable L2 cache support.

7.1.118 OPTION_SPEED_CPU Option

The OPTION_SPEED_CPU option enables or disables code in the BIOS to route CPU speed
control requests to the CPU Personality Module.

In order for this option to work, the CPUCLASS must be selected, and the CPU Personality
Module must be programmed to be capable of handling CPU speed control requests.

Values:

1 - Route speed control requests through CPU.
0 - Don’t route speed control requests through CPU.

Related Parameters:

CPUCLASS - Select CPU Personality Module.

7.1.119 OPTION_SPEED_CHIPSET Option

The OPTION_SPEED_CHIPSET option enables or disables code in the BIOS to route CPU
speed control requests to the Chipset Personality Module.

In order for this option to work, OPTION_SUPPORT_CHIPSET must be enabled, the
CHIPSET type must be selected, and the Chipset Personality Module must be programmed to
be capable of handling CPU speed control requests.

Values:

1 - Route speed control requests through chipset.

178 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

0 - Don’t route speed control requests through chipset.

Related Parameters:

OPTION_SUPPORT_CHIPSET - Enable chipset support.
CHIPSET - Select Chipset Personality Module.

7.1.120 OPTION_SPEED_BOARD Option

The OPTION_SPEED_BOARD option enables or disables code in the BIOS to route CPU
speed control requests to the Board Personality Module.

In order for this option to work, the BOARD module must be selected, and the Board Personality
Module must be programmed to be capable of handling CPU speed control requests.

Values:

1 - Route speed control requests through board module.
0 - Don’t route speed control requests through board module.

Related Parameters:

BOARD - Select Board Personality Module.

7.1.121 OPTION_A20_8042 Option

The OPTION_A20_8042 option enables or disables code in the BIOS to route A20 gating
requests to the 8042 keyboard controller.

In order for this option to work, OPTION_SUPPORT_8042 must be enabled, and the 8042
keyboard BIOS must be capable of processing A20 gate control requests requests for this option
to be valid.

This is the traditional mechanism used in the original IBM PC/AT Personal Computer to gate the
A20 line when running in protected mode. For information about how A20 is used in the system,
consult the section on OPTION_SUPPORT_PROTECT_MODE.

If more than one A20 gate mechanism exists in the target, then several options may need to be
enabled, depending on whether they are wire-OR’d or wire-AND’d together.

Values:

1 - Route A20 gate requests through 8042 keyboard controller.
0 - Don’t route A20 gate requests through 8042 keyboard controller.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.
OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 179

General Software EMBEDDED BIOS Adaptation Guide

OPTION_A20_PORT92 - Enable port 92h A20 gating support.
OPTION_A20_CPU - Enable A20 gating through CPU module.
OPTION_A20_CHIPSET - Enable A20 gating through chipset module.
OPTION_A20_BOARD - Enable A20 gating through board module.

7.1.122 OPTION_A20_CHIPSET Option

The OPTION_A20_CHIPSET option enables or disables code in the BIOS to route A20 gating
requests to the Chipset Personality Module.

In order for this option to work, OPTION_SUPPORT_CHIPSET must be enabled, the
CHIPSET type must be selected, and the Chipset Personality Module must be programmed to
be capable of handling A20 gate control requests.

This is the modern mechanism used to gate the A20 line in high-density motherboard designs
when running in protected mode. For information about how A20 is used in the system, consult
the section on OPTION_SUPPORT_PROTECT_MODE.

If more than one A20 gate mechanism exists in the target, then several options may need to be
enabled, depending on whether they are wire-OR’d or wire-AND’d together.

Do not choose this method if the chipset’s fast A20 gate is just an implementation of port 92h. If
this is the case, use OPTION_A20_PORT92 instead.

Values:

1 - Route A20 gate requests through chipset.
0 - Don’t route A20 gate requests through chipset.

Related Parameters:

OPTION_SUPPORT_CHIPSET - Enable chipset support.
CHIPSET - Select Chipset Personality Module.
OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.
OPTION_A20_8042 - Enable keyboard controller A20 gating support.
OPTION_A20_PORT92 - Enable port 92h A20 gating support.
OPTION_A20_CPU - Enable A20 gating through CPU module.
OPTION_A20_BOARD - Enable A20 gating through board module.

7.1.123 OPTION_A20_CPU Option

The OPTION_A20_CPU option enables or disables code in the BIOS to route A20 gating
requests to the CPU Personality Module.

In order for this option to work, the CPUCLASS parameter must be set to the proper CPU
Personality Module identifier, and the CPU Personality Module must be programmed to be
capable of handling A20 gate control requests.

180 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This is a very new mechanism used to gate the A20 line in very high-integration CPUs when
running in protected mode. For information about how A20 is used in the system, consult the
section on OPTION_SUPPORT_PROTECT_MODE.

If more than one A20 gate mechanism exists in the target, then several options may need to be
enabled, depending on whether they are wire-OR’d or wire-AND’d together.

Do not choose this method if the CPU’s fast A20 gate is just an implementation of port 92h. If
this is the case, use OPTION_A20_PORT92 instead. For example, the Intel 80C386-EX CPU
contains a port 92h A20 gate; the port is implemented in the CPU but emulates a standard port
92h.

Values:

1 - Route A20 gate requests through CPU.
0 - Don’t route A20 gate requests through CPU.

Related Parameters:

CPUCLASS - Select CPU Personality Module.
OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.
OPTION_A20_8042 - Enable keyboard controller A20 gating support.
OPTION_A20_PORT92 - Enable port 92h A20 gating support.
OPTION_A20_CHIPSET - Enable A20 gating through chipset module.
OPTION_A20_BOARD - Enable A20 gating through board module.

7.1.124 OPTION_A20_BOARD Option

The OPTION_A20_BOARD option enables or disables code in the BIOS to route A20 gating
requests to the Board Personality Module.

In order for this option to work, the BOARD parameter must be set to the proper Board
Personality Module identifier, and the Board Personality Module must be programmed to be
capable of handling A20 gate control requests.

Routing A20 requests through the Board Personality Module makes it possible for OEMs to
customize handling of A20 gating requests for certain designs. For information about how A20
is used in the system, consult the section on OPTION_SUPPORT_PROTECT_MODE.

If more than one A20 gate mechanism exists in the target, then several options may need to be
enabled, depending on whether they are wire-OR’d or wire-AND’d together.

Do not choose this method if the board’s fast A20 gate is just an implementation of port 92h. If
this is the case, use OPTION_A20_PORT92 instead.

Values:

1 - Route A20 gate requests through CPU.
0 - Don't route A20 gate requests through CPU.

Chapter 7 EMBEDDED BIOS Adaptation Guide 181

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

CPUCLASS - Select CPU Personality Module.
OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.
OPTION_A20_8042 - Enable keyboard controller A20 gating support.
OPTION_A20_PORT92 - Enable port 92h A20 gating support.
OPTION_A20_CHIPSET - Enable A20 gating through chipset module.
OPTION_A20_CPU - Enable A20 gating through CPU module.

7.1.125 OPTION_A20_PORT92 Option

The OPTION_A20_PORT92 option enables or disables code in the BIOS to route A20 gating
requests to code that manipulates the PS/2-compatible I/O port 92h. The hardware must support
port 92h in order for this option to be valid.

Most new chipsets on the market support port 92h; they may also support a fast gate A20 option
that is separate from port 92h. If port 92h is provided, use it first, and then experiment with the
other method later to see if performance improvements are possible.

This is the modern mechanism used to gate the A20 line in high-integration CPUs or PS/2-
compatible motherboard designs when running in protected mode. For information about how
A20 is used in the system, consult the section on OPTION_SUPPORT_PROTECT_MODE.

If more than one A20 gate mechanism exists in the target, then several options may need to be
enabled, depending on whether they are wire-OR’d or wire-AND’d together.

Values:

1 - Route A20 gate requests through port 92h.
0 - Don’t route A20 gate requests through port 92h.

Related Parameters:

OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.
OPTION_A20_8042 - Enable keyboard controller A20 gating support.
OPTION_A20_CPU - Enable A20 gating through CPU module.
OPTION_A20_CHIPSET - Enable A20 gating through chipset module.
OPTION_A20_BOARD - Enable A20 gating through board module.

7.1.126 OPTION_A20_FAILMEM Option

The OPTION_A20_FAILMEM option enables or disables code in the BIOS to cause a critical
error to occur during POST if the A20 gate test fails.

If no extended memory is available, then the A20 test can fail; therefore, on targets with no
extended memory, this option should be disabled.

On targets with extended memory, the A20 test should be enabled.

182 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

For information about how A20 is used in the system, consult the section on
OPTION_SUPPORT_PROTECT_MODE.

Values:

1 - Cause A20 test failures to generate critical error during POST.
0 - Don’t cause A20 test failures to generate critical error during POST.

Related Parameters:

OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.

7.1.127 OPTION_REBOOT_JUMP Option

The OPTION_REBOOT_JUMP option enables or disables code in the BIOS to route reboot
requests to code that simply jumps to location F000:FFF0 in real mode.

Do not use this with processors that support protected mode, or any special bootstrap code at the
top of the extended memory address space may not be executed (for example, a CyberQuest
Flash loader).

Values:

1 - Route reboot requests through jump to F000:FFF0.
0 - Don’t route reboot requests through jump to F000:FFF0.

Related Parameters:

None.

7.1.128 OPTION_REBOOT_PORT92 Option

The OPTION_REBOOT_PORT92 option enables or disables code in the BIOS to route reboot
requests to code that raises a bit in the PS/2-compatible I/O port 92h.

The hardware must support port 92h in order for this option to be valid. Most newer chipsets on
the market today support this I/O port; check your technical documentation for details.

Rebooting may not function properly unless the A20 line is being properly gated as well; see
OPTION_SUPPORT_PROTECT_MODE for details.

Values:

1 - Route reboot requests through I/O port 92h.
0 - Don’t route reboot requests through I/O port 92h.

Related Parameters:

None.

Chapter 7 EMBEDDED BIOS Adaptation Guide 183

General Software EMBEDDED BIOS Adaptation Guide

7.1.129 OPTION_REBOOT_8042 Option

The OPTION_REBOOT_8042 option enables or disables code in the BIOS to route reboot
requests to the 8042 keyboard controller.

In order for this option to work, you must enable OPTION_SUPPORT_8042, and then the 8042
keyboard BIOS must be capable of responding to a reboot request.

The 8042 method used to reboot the target works in more circumstances than port 92h, but is
much slower. If you have a choice between the 8042 and port 92h, use port 92h instead.

Rebooting may not function properly unless the A20 line is being properly gated as well; see
OPTION_SUPPORT_PROTECT_MODE for details.

Values:

1 - Route reboot requests through the 8042.
0 - Don’t route reboot requests through the 8042.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.

7.1.130 OPTION_REBOOT_CHIPSET Option

The OPTION_REBOOT_CHIPSET option enables or disables code in the BIOS to route
reboot requests to the Chipset Personality Module.

In order for this option to work, OPTION_SUPPORT_CHIPSET must be enabled, the
CHIPSET type must be selected, and the Chipset Personality Module must be programmed to
be capable of handling reboot control requests.

Do not choose this method if the chipset’s reboot mechanism is just an implementation of port
92h. If this is the case, use OPTION_REBOOT_PORT92 instead.

Values:

1 - Route reboot requests through chipset.
0 - Don’t route reboot requests through chipset.

Related Parameters:

OPTION_SUPPORT_CHIPSET - Enable chipset support.
CHIPSET - Select CPU Personality Module.

7.1.131 OPTION_REBOOT_BOARD Option

184 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_REBOOT_BOARD option enables or disables code in the BIOS to route reboot
requests to the Board Personality Module.

In order for this option to work, the BOARD name must be selected, and the Board Personality
Module must be programmed to be capable of handling reboot control requests.

Do not choose this method if the board’s reboot mechanism is just an implementation of port
92h. If this is the case, use OPTION_REBOOT_PORT92 instead.

Values:

1 - Route reboot requests through board module.
0 - Don't route reboot requests through board module.

Related Parameters:

BOARD - Select Board Personality Module.

7.1.132 OPTION_TOREAL_PORT92 Option

The OPTION_TOREAL_PORT92 option enables or disables code in the BIOS to route mode
switch requests to the PS/2-compatible I/O port 92h.

This I/O port must be supported by the hardware in order for this option to be valid.

Most newer chipsets and high-integration CPUs support port 92h. Note that port 92h by itself
does not do mode switching; instead, it allows the BIOS to reset the processor, just as the IBM
PC/AT Personal Computer did with the 8042 keyboard controller. The port 92h method is faster
than the 8042 method. The fastest method is the CPU mode switch (available only on 80386 and
above CPUs).

Consult the section on OPTION_SUPPORT_PROTECT_MODE for a detailed discussion of
related issues.

Values:

1 - Route mode switch requests through I/O port 92h.
0 - Don't route mode switch requests through I/O port 92h.

Related Parameters:

OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.

7.1.133 OPTION_TOREAL_8042 Option

The OPTION_TOREAL_8042 option enables or disables code in the BIOS to route mode
switch requests to the 8042 keyboard controller.

Chapter 7 EMBEDDED BIOS Adaptation Guide 185

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_8042 must be enabled, and the reset CPU function must be supported by
the 8042 in order for this option to be valid.

Traditionally, the IBM PC/AT Personal Computer switched its 80286 processor into real from
protected mode by instructing the 8042 keyboard controller to toggle the CPU’s reset line. This
is no longer necessary with the 80386 and above processors, which can switch into and out of
protected mode with simple CPU instructions. Avoid the 8042 option if alternate methods exist.

Consult the section on OPTION_SUPPORT_PROTECT_MODE for a detailed discussion of
related issues.

Values:

1 - Route mode switch requests through the 8042.
0 - Don’t route mode switch requests through the 8042.

Related Parameters:

OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.
OPTION_SUPPORT_8042 - Enable 8042 support.

7.1.134 OPTION_TOREAL_CPU Option

The OPTION_TOREAL_CPU option enables or disables code in the BIOS to route mode
switch requests to code that uses 80386 or better instructions to switch modes directly.

This is the fastest way to switch modes, but this technique only runs on 80386 and above
processors. Use this technique above the others whenever possible.

Consult the section on OPTION_SUPPORT_PROTECT_MODE for a detailed discussion of
related issues.

Values:

1 - Route mode switch requests through the mode switch instructions on 80386s and
above.

0 - Don’t route mode switch requests through the mode switch instructions on 80386s and
above.

Related Parameters:

OPTION_SUPPORT_PROTECT_MODE - Enable protected mode support.

7.1.135 OPTION_POWERMAN_CPU Option

The OPTION_POWERMAN_CPU option enables or disables code in the BIOS to route power
management requests to the CPU Personality Module.

186 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SUPPORT_POWERMAN option must be enabled to support APM, and the
CPU Personality Module must support power management functionality in order for this option
to be valid.

Values:

1 - Route power management requests to CPU.
0 - Disable power management requests to CPU.

Related Parameters:

OPTION_SUPPORT_POWERMAN - Enable Advanced Power Management services.

CPUCLASS - Select the CPU Personality Module.

7.1.136 OPTION_POWERMAN_CHIPSET Option

The OPTION_POWERMAN_CHIPSET option enables or disables code in the BIOS to route
power management requests to the Chipset Personality Module.

To use this option, you must enable OPTION_SUPPORT_CHIPSET and set the CHIPSET
parameter to select the correct Chipset Personality Module to be used. The Chipset Personality
Module must support power management functionality in order for this option to be valid.

Values:

1 - Route power management requests to the chipset.
0 - Disable power management requests to the chipset.

Related Parameters:

OPTION_SUPPORT_POWERMAN - Enable advanced power management services.

OPTION_SUPPORT_CHIPSET - Enable chipset support.

CHIPSET - Select Chipset Personality Module.

7.1.137 OPTION_POWERMAN_BOARD Option

The OPTION_POWERMAN_BOARD option enables or disables code in the BIOS to route
power management requests to the Board Personality Module.

To use this option, you must set the BOARD parameter to select the correct Board Personality
Module to be used. The Board Personality Module must support power management
functionality in order for this option to be valid.

Values:

1 - Route power management requests to the board module.

Chapter 7 EMBEDDED BIOS Adaptation Guide 187

General Software EMBEDDED BIOS Adaptation Guide

0 - Disable power management requests to the board module.

Related Parameters:

OPTION_SUPPORT_POWERMAN - Enable advanced power management services.

BOARD - Select Board Personality Module.

7.1.138 OPTION_SERIAL_8250 Option

The OPTION_SERIAL_8250 option enables or disables code in the BIOS to provide serial I/O
services over external 8250-compatible UARTs. This mechanism is compatible with PC,
PC/XT, PC/AT and most compatible designs.

This option requires OPTION_SUPPORT_8250 to be enabled. For more information about
supporting standard PC UARTs and configuring related options, see the section on
OPTION_SUPPORT_8250.

The 8250 code can support higher-end UARTs, such as 16450 and 16550 parts. The FIFOs can
be enabled on the 16550 by setting OPTION_SERIAL_FIFO.

If OPTION_SERIAL_WAIT_DSR is enabled, then the INT 14h code will wait for DSR to be
raised before receiving data. If OPTION_SERIAL_WAIT_DSRCTS is enabled, then the INT
14h code will wait for DSR and also CTS before sending data.

This option can be used in conjunction with the OPTION_SERIAL_CPU configuration option;
external and on-board serial ports can be used in a system, and are automatically assigned
different COM port numbers by the BIOS.

Values:

1 - Enable serial I/O over 8250/16450/16550 UARTs.
0 - Disable serial I/O over 8250/16450/16550 UARTs.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O services.
OPTION_SUPPORT_8250 - Enable 8250 support.
OPTION_SERIAL_WAIT_DSR - Enable DSR support.
OPTION_SERIAL_WAIT_DSRCTS - Enable DSR & CTS support.
OPTION_SERIAL_FIFO - Enable FIFO support.

7.1.139 OPTION_SERIAL_CPU Option

The OPTION_SERIAL_CPU option enables or disables code in the BIOS to route serial I/O
requests through the CPU Personality Module.

The CPU Personality Module must be selected with the CPUCLASS parameter, and it must be
capable of performing serial I/O for this option to be valid.

188 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Many high-integration CPUs provide 8250-compatible UARTs. When this is the case, the CPU
Personality Module needs OPTION_SUPPORT_8250 to be enabled for the UART support, and
then this option must be disabled. If in doubt, consult your CPU Personality Module
documentation or review the source code to determine if the CPU has non-standard UARTs that
cannot be supported by the 8250 code.

This option can be used in conjunction with the OPTION_SERIAL_8250 configuration option;
external and on-board serial ports can be used in a system, and are automatically assigned
different COM port numbers by the BIOS.

Values:

1 - Enable serial I/O through CPU serial ports.
0 - Disable serial I/O through CPU serial ports.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O services.
CPUCLASS - Select the CPU Personality Module.

7.1.140 OPTION_SERIAL_WAIT_DSR Option

The OPTION_SERIAL_WAIT_DSR option enables or disables code in the BIOS to wait on
receive requests for DSR to become active before actually attempting to receive a character.

When transmitting, this option has no effect. Instead, OPTION_SERIAL_WAIT_DSRCTS
provides a way to wait for both DSR and CTS before proceeding to transmit.

This option does not affect UARTs supported by CPU Personality Modules. These modules are
free to implement serial I/O in whatever manner is appropriate.

Values:

1 - Enable wait for Data Set Ready.
0 - Disable wait for Data Set Ready.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O services.

OPTION_SUPPORT_8250 - Enable 8250 support.

OPTION_SERIAL_8250 - Support COM ports over 8250 devices.

OPTION_SERIAL_WAIT_DSRCTS - Enable wait for DSR and CTS on transmits.

7.1.141 OPTION_SERIAL_WAIT_DSRCTS Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 189

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_SERIAL_WAIT_DSRCTS option enables or disables code in the BIOS to wait
on transmit requests for DSR and CTS to become active before actually attempting to send a
character.

When receiving, this option has no effect. Instead, OPTION_SERIAL_WAIT_DSR provides a
way to wait for DSR before proceeding to receiving.

This option does not affect UARTs supported by CPU Personality Modules. These modules are
free to implement serial I/O in whatever manner is appropriate.

Values:

1 - Enable wait for Data Set Ready and Clear To Send.
0 - Disable wait for Data Set Ready and Clear To Send.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O services.

OPTION_SUPPORT_8250 - Enable 8250 support.

OPTION_SERIAL_8250 - Support COM ports over 8250 devices.

OPTION_SERIAL_WAIT_DSR - Enable wait for DSR on receives.

7.1.142 OPTION_SERIAL_FIFO Option

The OPTION_SERIAL_FIFO option enables or disables code in the BIOS to enable the FIFO
on UARTs that support operational FIFOs, such as the 16550.

Some UARTs cannot support FIFOs, such as 16450’s. There is a bug in these parts that causes
the receive FIFO to not notify the host that a character is available, even though it is in the FIFO.
This results in loss of data, and some times, a seemingly dead COM port.

This option does not affect UARTs supported by CPU Personality Modules. These modules are
free to implement serial I/O in whatever manner is appropriate.

Please note that not all applications are prepared to support FIFOs, and may in fact not operate
correctly because they do not receive an interrupt for every character that is received, or an
interrupt for every character that is transmitted. If you are having trouble getting
communications software to work with this option enabled, the problem may actually reside in
the application.

Values:

1 - Enable FIFO support for 16550 UARTs.
0 - Disable FIFO support for 16550 UARTs.

Related Parameters:

190 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_SERIAL - Enable serial I/O services.

OPTION_SUPPORT_8250 - Enable 8250 support.

OPTION_SERIAL_8250 - Support COM ports over 8250 devices.

7.1.143 OPTION_SERIAL_HALT Option

The OPTION_SERIAL_HALT option enables or disables code in the BIOS to execute a HLT
instruction whenever an INT 14h read with wait request is issued and there is no character
waiting in the UART’s receiver buffer.

This feature can be enabled to lower power consumption significantly on systems that use
redirected console I/O and don’t have a keyboard controller. Please note that this technique may
or may not be compatible with the power management model in your system; consult the
processor or chipset technical reference manual for details about how the CPU interprets a HLT
instruction.

This option is only valid for the 8250 core BIOS driver.

Values:

1 - Enable HLT in spin-wait for input.
0 - Disable HLT in spin-wait for input.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O services.

OPTION_SUPPORT_8250 - Enable 8250 support.

OPTION_SERIAL_8250 - Support COM ports over 8250 devices.

7.1.144 OPTION_SERIAL_9600_BAUD Option

The OPTION_SERIAL_9600_BAUD option enables or disables a special modifier to the serial
I/O INT 14h service handler that filters "set mode" functions. When the baud rate is set for
anything other than 9600 baud, the BIOS automatically changes the request to 9600 baud.

This feature is used to support operating systems such as MS-DOS, that immediately reprogram
all COM ports to other baud rates (in the case of MS-DOS, 2400,e,7,1). The problem with this is
that it reprograms the serial port used by the remote disk and by the remote console I/O, both of
which operate faster than 2400 baud.

When baud rates are changed using direct hardware access to UARTs by applications, this option
does not prevent the changes. For examples, INTERSVR.EXE and SERDRIVE.SYS are examples of
software that reprogram a UART to the maximum possible baud rate.

Values:

Chapter 7 EMBEDDED BIOS Adaptation Guide 191

General Software EMBEDDED BIOS Adaptation Guide

1 - Disallow changing of baud rates by MS-DOS.
0 - Allow changing of baud rates by MS-DOS.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable INT 14h interface.

7.1.145 OPTION_PARALLEL_EXTERNAL Option

The OPTION_PARALLEL_EXTERNAL option enables or disables code in the BIOS to
support parallel I/O requests with PC-compatible parallel port hardware.

OPTION_SUPPORT_PARALLEL must be enabled in order for INT 17h parallel I/O requests
to be processed.

This option can be used in conjunction with the OPTION_PARALLEL_CPU configuration
option; external and on-board parallel ports can be used in a system, and are automatically
assigned different LPT port numbers by the BIOS.

Values:

1 - Enable parallel I/O through PC-compatible parallel ports.
0 - Disable external parallel ports.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable INT 17h parallel I/O services.

7.1.146 OPTION_PARALLEL_CPU Option

The OPTION_PARALLEL_EXTERNAL option enables or disables code in the BIOS to route
parallel port I/O requests to the CPU Personality Module.

You must set the CPUCLASS parameter to choose the correct CPU Personality Module to be
used, and the CPU Personality Module must support parallel I/O in order for this option to be
valid.

This option can be used in conjunction with the OPTION_PARALLEL_EXTERNAL
configuration option; external and on-board parallel ports can be used in a system, and are
automatically assigned different LPT port numbers by the BIOS.

Values:

1 - Enable parallel I/O through CPU.
0 - Disable parallel I/O through CPU.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable parallel I/O services.

192 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

CPUCLASS - Select CPU Personality Module.

7.1.147 OPTION_KEYBOARD_PCAT Option

The OPTION_KEYBOARD_PCAT option enables or disables code in the BIOS to drive a PC,
PC/XT, or PC/AT-style keyboard. All of these keyboard types are supported with this one
option.

If you have a very custom keyboard that cannot just plug into a PC, PC/XT, or PC/AT computer,
then you may enable OPTION_KEYBOARD_CUSTOMER instead, and edit
SYSTEM\CUSTKBD.ASM to provide an equivalent driver for your own hardware.

OPTION_SUPPORT_8042 or OPTION_SUPPORT_8255 must be selected to provide basic
controller support, and OPTION_SUPPORT_KEYBOARD must be enabled to provide basic
keyboard controller support.

Values:

1 - Enable PC, XT, and AT keyboard support.
0 - Disable PC, XT, and AT keyboard support.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 AT keyboard controller support.

OPTION_SUPPORT_8255 - Enable 8255 XT keyboard controller support.

OPTION_SUPPORT_KEYBOARD - Enable basic keyboard controller support.

OPTION_KEYBOARD_MATRIX - Enable special key translation on matrix
keyboards.

7.1.148 OPTION_KEYBOARD_CUSTOMER Option

The OPTION_KEYBOARD_CUSTOMER option enables or disables code in the BIOS to
drive an OEM-defined keyboard controller.

If you have a very custom keyboard that cannot just plug into a PC, PC/XT, or PC/AT computer,
then you may enable OPTION_KEYBOARD_CUSTOMER, and edit SYSTEM\CUSTKBD.ASM to
provide an equivalent driver for your own hardware.

The OEM-defined keyboard driver does not require any other options unless the OEM
specifically makes references to them in the code.

Values:

1 - Enable OEM-defined custom keyboard support.
0 - Disable OEM-defined custom keyboard support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 193

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_KEYBOARD - Enable basic keyboard controller support.

7.1.149 OPTION_KEYBOARD_MATRIX Option

The OPTION_KEYBOARD_MATRIX option enables or disables code in the PCAT keyboard
driver to handle the special keys, PrtScrn, SysReq, Pause, and Break in a special manner
compatible with most matrix keyboards.

This option is not a driver selection. It should be used in conjunction with the
OPTION_KEYBOARD_PCAT option. Usually, matrix keyboards are driven with the
OPTION_SUPPORT_8255 low-level keyboard interface, rather than
OPTION_SUPPORT_8042.

Values:

1 - Enable special key translation on matrix keyboards.
0 - Disable special key translation on matrix keyboards.

Related Parameters:

OPTION_SUPPORT_KEYBOARD - Enable basic keyboard controller support.
OPTION_KEYBOARD_PCAT - Enable PC/AT keyboard driver.

7.1.150 OPTION_KEYBOARD_PCXT Option

The OPTION_KEYBOARD_PCXT option enables or disables code in the BIOS that supports
an XT keyboard interface (with raw scan codes through port 60h, not via an 8042-style AT
keyboard controller).

Values:

1 - Enable XT keyboard support.
0 - Disable XT keyboard support.

Related Parameters:

OPTION_SUPPORT_KEYBOARD - Enable keyboard support in general.
OPTION_KEYBOARD_PCAT - Enable AT keyboard support instead.
OPTION_KEYBOARD_MATRIX - Enable matrix keyboard support instead.
OPTION_KEYBOARD_CHIPSET - Enable chipset module keyboard support.

7.1.151 OPTION_KEYBOARD_CHIPSET Option

The OPTION_KEYBOARD_CHIPSET option enables or disables code in the BIOS that
supports a keyboard handled by a custom driver in the chipset module. Processors like the AMD

194 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

SC400 have special keyboard support that cannot be supported directly by the standard core
drivers.

Values:

1 - Enable keyboard support in chipset module.
0 - Disable keyboard support in chipset module.

Related Parameters:

OPTION_SUPPORT_KEYBOARD - Enable keyboard support in general.
OPTION_KEYBOARD_PCXT - Enable XT keyboard support instead.
OPTION_KEYBOARD_PCAT - Enable AT keyboard support instead.
OPTION_KEYBOARD_MATRIX - Enable matrix keyboard support instead.

7.1.152 OPTION_8042_TESTP22P23 Option

The OPTION_8042_TESTP22P23 option enables or disables code in the BIOS to test the port
2, pins 2 and 3 on the 8042 during POST. This is an esoteric function that should only be
enabled if the corresponding firmware in the 8042 is supported.

OPTION_SUPPORT_8042 must be selected to provide basic 8042 support.

Values:

1 - Enable test of P22, P23 on 8042 during POST.
0 - Disable test of P22, P23 on 8042 during POST.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.

7.1.153 OPTION_8042_READPWRSTAT Option

The OPTION_8042_READPWRSTAT option enables or disables code in the BIOS to read the
power-on status of the 8042 during POST.

Not all 8042 keyboard controllers support this function. Disable this option to start with, and
after you have a working BIOS, you may want to enable it to provide additional diagnostics
during POST.

OPTION_SUPPORT_8042 must be selected to provide basic 8042 support.

Values:

1 - Enable read of power-on status of 8042 during POST.
0 - Disable read of power-on status of 8042 during POST.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 195

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_8042 - Enable 8042 support.

7.1.154 OPTION_8042_CHECKBAT Option

The OPTION_8042_CHECKBAT option enables or disables code in the BIOS to check the
results of the controller’s Basic Assurance Test (BAT) during POST to see if it is correct.

Some 8042 keyboard controllers may not be able to respond with a valid BAT at this early point
in POST, and instead will respond with a "resend" command. Disable this option to start with,
and after you have a working BIOS, you may want to enable it to provide additional diagnostics
during POST.

OPTION_SUPPORT_8042 must be selected to provide basic 8042 support.

Values:

1 - Enable verification of BAT from 8042 during POST.
0 - Disable verification of BAT from 8042 during POST.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.

7.1.155 OPTION_8042_PS2 Option

The OPTION_8042_PS2 option enables or disables code in the BIOS to insert delays between
checking status bits and reading or writing data to the controller.

This is a necessary procedure for PS/2-compatible 8042 keyboard controllers. We suggest you
enable this option to start with, and after you have a working BIOS, you may want to disable it to
slightly (probably imperceptably) improve performance.

OPTION_SUPPORT_8042 must be selected to provide basic 8042 support.

Values:

1 - Enable PS/2 delays during 8042 read/write functions.
0 - Disable PS/2 delays during 8042 read/write functions.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.

7.1.156 OPTION_8042_WAIT_BEFORE_BAT Option

The OPTION_8042_WAIT_BEFORE_BAT option enables or disables code in the BIOS to
issue a lengthy delay before reading the BAT code from the 8042 keyboard controller.

196 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This is a necessary procedure for some controllers because they take a long time to perform their
internal diagnostics. We suggest you disable this option to start with, and only if you are unable
to get the keyboard working, you may wish to enable it to add a delay.

OPTION_SUPPORT_8042 must be selected to provide basic 8042 support.

Values:

1 - Enable delay before reading BAT during POST.
0 - Disable delay before reading BAT during POST.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.
OPTION_8042_CHECKBAT - Check BAT result.

7.1.157 OPTION_VIDEO_6845 Option

The OPTION_VIDEO_6845 option enables or disables code in the BIOS to drive a PC-
compatible, 6845 CRT controller.

This controller type is compatible with desktop monochrome cards, color cards, Hercules cards,
and VGA/SVGA cards that emulate 6845’s.

OPTION_SUPPORT_VIDEO must be enabled in order for INT 10h requests to be accepted
from the application and routed to the 6845 driver.

If you have redirected console I/O with CONFIG_CON_REDIR_STD,
CONFIG_CON_REDIR_DEBUG, or CONFIG_CON_REDIR_SETUP, then when
redirection occurs, the 6845 driver does not receive control, unless
OPTION_VIDEO_DUPLICATE is enabled. The latter option causes all output that is
redirected to also appear on the standard video display.

If you are using a standard video card that requires this option, you should also enable
OPTION_VIDEO_VIDEOMEM, since these cards all contain video RAM that can be tested
and automatically detected during POST.

The 6845 driver requires that you specify the segment addresses of video RAM for different
modes. CONFIG_VIDEO_SEG_GRAPHIC controls the graphics mode screen address,
CONFIG_VIDEO_SEG_MONO controls the monochrome mode screen address, and
CONFIG_VIDEO_SEG_COLOR controls the color screen address.

Values:

1 - Enable 6845 CRT controller support.
0 - Disable 6845 CRT controller support.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 197

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_VIDEO - Enable video controller support.

OPTION_SUPPORT_VIDEO_BOARDS - Enable ROM scan for additional video
BIOS extensions to support EGA, VGA, and SVGA.

OPTION_VIDEO_VIDEOMEM - Enable autodetection of video RAM during POST.

CONFIG_VIDEO_SEG_GRAPHIC - Selects graphic mode video RAM segment.

CONFIG_VIDEO_SEG_MONO - Selects monochrome mode video RAM segment.

CONFIG_VIDEO_SEG_COLOR - Selects color video RAM segment.

OPTION_SUPPORT_CON_REDIRECTOR - Enable console I/O redirection.

CONFIG_CON_REDIR_STD - Standard console I/O redirection assignment.

CONFIG_CON_REDIR_DEBUG - Debugger console I/O redirection assignment.

CONFIG_CON_REDIR_SETUP - Setup screen system console I/O redirection
assignment.

7.1.158 OPTION_VIDEO_HD61830 Option

The OPTION_VIDEO_HD61830 option enables or disables code in the BIOS to drive an
Hitachi HD-61830 LCD controller.

This controller type offers the same basic functionality as the 6845, but its implementation is
totally different.

OPTION_SUPPORT_VIDEO must be enabled in order for INT 10h requests to be accepted
from the user and routed to the driver.

If you have redirected console I/O with CONFIG_CON_REDIR_STD,
CONFIG_CON_REDIR_DEBUG, or CONFIG_CON_REDIR_SETUP, then when
redirection occurs, the driver does not receive control, unless OPTION_VIDEO_DUPLICATE
is enabled. The latter option causes all output that is redirected to also appear on the standard
video display.

There are no video cards that are compatible with the HD61830. Therefore, do not enable
OPTION_SUPPORT_VIDEO_BOARDS.

Also, depending on the implementation of the hardware, the controller’s RAM may not be
available to the CPU. Therefore, do not enable OPTION_VIDEO_VIDEOMEM.

The HD61830 driver requires that you specify the segment addresses of video RAM for different
modes. CONFIG_VIDEO_SEG_GRAPHIC controls the graphics mode screen address,
CONFIG_VIDEO_SEG_MONO controls the monochrome mode screen address, and
CONFIG_VIDEO_SEG_COLOR controls the color screen address.

198 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This driver was donated by a German customer. The style of the code and its comments is not
the same as the other code in the BIOS. This code is provided if it can be of help to you, but no
support is available.

Values:

1 - Enable HD61830 LCD controller support.
0 - Disable HD61830 LCD controller support.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video controller support.

OPTION_VIDEO_VIDEOMEM - Enable autodetection of video RAM during POST.

CONFIG_VIDEO_SEG_GRAPHIC - Selects graphic mode video RAM segment.

CONFIG_VIDEO_SEG_MONO - Selects monochrome mode video RAM segment.

CONFIG_VIDEO_SEG_COLOR - Selects color video RAM segment.

OPTION_SUPPORT_CON_REDIRECTOR - Enable console I/O redirection.

CONFIG_CON_REDIR_STD - Standard console I/O redirection assignment.

CONFIG_CON_REDIR_DEBUG - Debugger console I/O redirection assignment.

CONFIG_CON_REDIR_SETUP - Setup screen system console I/O redirection
assignment.

7.1.159 OPTION_VIDEO_HDMLCD Option

The OPTION_VIDEO_HDMLCD option enables or disables code in the BIOS to drive another
family of LCD controllers.

This controller type offers the same basic functionality as the 6845, but its implementation is
totally different.

OPTION_SUPPORT_VIDEO must be enabled in order for INT 10h requests to be accepted
from the user and routed to the driver.

If you have redirected console I/O with CONFIG_CON_REDIR_STD,
CONFIG_CON_REDIR_DEBUG, or CONFIG_CON_REDIR_SETUP, then when
redirection occurs, the driver does not receive control, unless OPTION_VIDEO_DUPLICATE
is enabled. The latter option causes all output that is redirected to also appear on the standard
video display.

There are no video cards that are compatible with the HDMLCD module. Therefore, do not
enable OPTION_SUPPORT_VIDEO_BOARDS.

Chapter 7 EMBEDDED BIOS Adaptation Guide 199

General Software EMBEDDED BIOS Adaptation Guide

Also, depending on the implementation of the hardware, the controller’s RAM may not be
available to the CPU. Therefore, do not enable OPTION_VIDEO_VIDEOMEM.

The HDMLCD driver requires that you specify the segment addresses of video RAM for
different modes. CONFIG_VIDEO_SEG_GRAPHIC controls the graphics mode screen
address, CONFIG_VIDEO_SEG_MONO controls the monochrome mode screen address, and
CONFIG_VIDEO_SEG_COLOR controls the color screen address.

This driver was donated by a customer. The style of the code and its comments is not the same
as the other code in the BIOS. This code is provided if it can be of help to you, but no support is
available.

Values:

1 - Enable HDMLCD LCD controller support.
0 - Disable HDMLCD LCD controller support.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video controller support.

OPTION_VIDEO_VIDEOMEM - Enable autodetection of video RAM during POST.

CONFIG_VIDEO_SEG_GRAPHIC - Selects graphic mode video RAM segment.

CONFIG_VIDEO_SEG_MONO - Selects monochrome mode video RAM segment.

CONFIG_VIDEO_SEG_COLOR - Selects color video RAM segment.

OPTION_SUPPORT_CON_REDIRECTOR - Enable console I/O redirection.

CONFIG_CON_REDIR_STD - Standard console I/O redirection assignment.

CONFIG_CON_REDIR_DEBUG - Debugger console I/O redirection assignment.

CONFIG_CON_REDIR_SETUP - Setup screen system console I/O redirection
assignment.

7.1.160 OPTION_VIDEO_AMDELAN Option

The OPTION_VIDEO_AMDELAN option enables or disables code in the BIOS to drive the
AMD SC300 and SC400 family of integrated LCD controllers.

This controller type offers the same basic functionality as the 6845, but its implementation is
different, and is handled in the Chipset Personality Module associated with the Elan CPU being
used.

OPTION_SUPPORT_VIDEO must be enabled in order for INT 10h requests to be accepted
from the user and routed to the driver.

200 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

If you have redirected console I/O with CONFIG_CON_REDIR_STD,
CONFIG_CON_REDIR_DEBUG, or CONFIG_CON_REDIR_SETUP, then when
redirection occurs, the driver does not receive control, unless OPTION_VIDEO_DUPLICATE
is enabled. The latter option causes all output that is redirected to also appear on the standard
video display.

The AMD Elan driver requires that you specify the segment addresses of video RAM for
different modes. CONFIG_VIDEO_SEG_GRAPHIC controls the graphics mode screen
address, CONFIG_VIDEO_SEG_MONO controls the monochrome mode screen address, and
CONFIG_VIDEO_SEG_COLOR controls the color screen address.

Values:

1 - Enable AMD Elan LCD controller support.
0 - Disable AMD Elan LCD controller support.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video controller support.

OPTION_VIDEO_VIDEOMEM - Enable autodetection of video RAM during POST.

CONFIG_VIDEO_SEG_GRAPHIC - Selects graphic mode video RAM segment.

CONFIG_VIDEO_SEG_MONO - Selects monochrome mode video RAM segment.

CONFIG_VIDEO_SEG_COLOR - Selects color video RAM segment.

OPTION_SUPPORT_CON_REDIRECTOR - Enable console I/O redirection.

CONFIG_CON_REDIR_STD - Standard console I/O redirection assignment.

CONFIG_CON_REDIR_DEBUG - Debugger console I/O redirection assignment.

CONFIG_CON_REDIR_SETUP - Setup screen system console I/O redirection
assignment.

7.1.161 OPTION_VIDEO_CUSTOMER Option

The OPTION_VIDEO_CUSTOMER option enables or disables code in the BIOS to drive an
OEM-defined, custom video controller.

If you have a very custom video controller, then you may enable
OPTION_VIDEO_CUSTOMER, and edit SYSTEM\CUSTVID.ASM to provide an equivalent driver
for your own hardware.

The OEM-defined video driver does not require any other options unless the OEM specifically
makes references to them in the code.

Chapter 7 EMBEDDED BIOS Adaptation Guide 201

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_VIDEO must be enabled in order for INT 10h requests to be accepted
from the user and routed to the driver.

If you have redirected console I/O with CONFIG_CON_REDIR_STD,
CONFIG_CON_REDIR_DEBUG, or CONFIG_CON_REDIR_SETUP, then when
redirection occurs, the driver does not receive control, unless OPTION_VIDEO_DUPLICATE
is enabled. The latter option causes all output that is redirected to also appear on the video
display.

Values:

1 - Enable OEM-defined video controller support.
0 - Disable OEM-defined video controller support.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video controller support.

OPTION_SUPPORT_CON_REDIRECTOR - Enable console I/O redirection.

CONFIG_CON_REDIR_STD - Standard console I/O redirection assignment.

CONFIG_CON_REDIR_DEBUG - Debugger console I/O redirection assignment.

CONFIG_CON_REDIR_SETUP - Setup screen system console I/O redirection
assignment.

7.1.162 OPTION_VIDEO_DUPLICATE Option

The OPTION_VIDEO_DUPLICATE option enables or disables code in the BIOS to echo any
output that the BIOS redirects over a serial port to also be displayed on the main video screen.

OPTION_SUPPORT_VIDEO must be enabled in order for INT 10h requests to be accepted
from the user and routed to the video driver.

If you have redirected console I/O with CONFIG_CON_REDIR_STD,
CONFIG_CON_REDIR_DEBUG, or CONFIG_CON_REIR_SETUP, then when redirection
occurs, the driver does not receive control, unless OPTION_VIDEO_DUPLICATE is enabled.
The latter option causes all output that is redirected to also appear on the video display.

Note that if you are using a VGA BIOS in your system, it may have hooked INT 10h, preventing
the core BIOS from being able to route output to the redirection device. If this option appears to
not correctly duplicate output in your system, pull the VGA BIOS to see if it corrects the
problem.

Values:

1 - Enable dual video routing support.
0 - Disable dual video routing support.

Related Parameters:

202 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_VIDEO - Enable video controller support.

OPTION_SUPPORT_CON_REDIRECTOR - Enable console I/O redirection.

CONFIG_CON_REDIR_STD - Standard console I/O redirection assignment.

CONFIG_CON_REDIR_DEBUG - Debugger console I/O redirection assignment.

CONFIG_CON_REDIR_SETUP - Setup screen system console I/O redirection
assignment.

7.1.163 OPTION_VIDEO_VIDEOMEM Option

The OPTION_VIDEO_VIDEOMEM option enables or disables code in the BIOS to test video
RAM during POST (and also in the Standard Diagnostics). The POST video RAM test is used to
autodetect the type of video controller (color or monochrome) present in the system.

OPTION_SUPPORT_VIDEO must be enabled in order for INT 10h requests to be accepted
from the user and routed to the driver.

OPTION_VIDEO_6845 must be enabled in order for the video RAM test to support 6845 video
memory.

The segment addresses of video memory must be specified with three parameters in the project
file. CONFIG_VIDEO_SEG_GRAPHIC selects the video RAM address for graphics modes.
CONFIG_VIDEO_SEG_MONO selects the address for monochrome mode, and
CONFIG_VIDEO_SEG_COLOR selects the color address.

Values:

1 - Enable video RAM testing support.
0 - Disable video RAM testing support.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable INT 10h video services.

OPTION_VIDEO_6845 - Enable 6845 video controller support.

CONFIG_VIDEO_SEG_GRAPHIC - Selects graphic mode video RAM segment.

CONFIG_VIDEO_SEG_MONO - Selects monochrome mode video RAM segment.

CONFIG_VIDEO_SEG_COLOR - Selects color video RAM segment.

7.1.164 OPTION_VIDEO_STDFONT Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 203

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_VIDEO_STDFONT option enables or disables the standard font tables for 6845-
compatible CRT controllers operating in graphics modes. Some processors may have their own
tables or may need to draw characters in different ways. In these cases, the standard fonts may
need to be disabled.

Values:

1 - Enable standard video fonts for 6845 driver.
0 – Disable standard video fonts for 6845 driver.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video support in general.
OPTION_VIDEO_6845 - Enable standard PC/XT/AT (6845) video driver.

7.1.165 OPTION_VIDEO_MODE_REDIR Option

The OPTION_VIDEO_MODE_REDIR option enables or disables code in the BIOS’s Console
Redirection feature that causes mode set requests (INT 10h function 00h) to be translated to
ASCII 0ch codes (form feed), allowing the screen to be cleared on a serial terminal.

Values:

1 - Enable redirection of set mode commands during console redirection.
0 – Disable redirection of set mode commands during console redirection.

Related Parameters:

OPTION_SUPPORT_CON_REDIRECTOR - Enable console redirection.
OPTION_SUPPORT_VIDEO – Enable video support.

7.1.166 OPTION_CRITICAL_BOARD Option

The OPTION_CRITICAL_BOARD option enables or disables code in the BIOS to pass
control to the Board Personality Module's critical error handler when a critical error occurs
during POST.

Examples of critical errors are RAM parity errors, or failures of interrupt controllers, DRAM
refresh, etc.

This option requires that BOARD be set to the appropriate Board Personality Module identifier.

The default handler in the default Board Personality Module enters Manufacturing Mode (if
enabled). See the section on OPTION_SUPPORT_MFGMODE for more information.

Values:

1 - Route critical error handling to board module.
0 - Don't route critical error handling to board module.

204 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.
BOARD - Select the Board Personality Module.

7.1.167 OPTION_CRITICAL_BEEP Option

The OPTION_CRITICAL_BEEP option enables or disables code in the BIOS to beep the
speaker when a critical error occurs during POST.

Examples of critical errors are RAM parity errors, or failures of interrupt controllers, DRAM
refresh, etc.

This option requires that OPTION_SUPPORT_SOUND be enabled, and that
OPTION_SUPPORT_PORT_B be enabled to have access to the speaker device.

The beep codes are defined in INC\POSTERR.INC.

Values:

1 - Enable speaker beep codes.
0 - Disable speaker beep codes.

Related Parameters:

OPTION_SUPPORT_SOUND - Enable sound support.
OPTION_SUPPORT_PORT_B - Enable access to speaker.

7.1.168 OPTION_CRITICAL_FLOPPY_LIGHT Option

The OPTION_CRITICAL_FLOPPY_LIGHT option enables or disables code in the BIOS to
blink the drive light on the floppy when no speaker is available to beep the speaker when a
critical error occurs during POST.

Examples of critical errors are RAM parity errors, or failures of interrupt controllers, DRAM
refresh, etc.

This option does not require that OPTION_SUPPORT_FLOPPY be enabled. Instead, it only
requires that a floppy disk controller (FDC) be available to respond to its I/O ports.

The beep codes are defined in INC\POSTERR.INC.

Values:

1 - Enable floppy light blinking codes.
0 - Disable floppy light blinking codes.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 205

General Software EMBEDDED BIOS Adaptation Guide

None.

7.1.169 OPTION_CRITICAL_MFGMODE Option

The OPTION_CRITICAL_MFGMODE option enables or disables code in the BIOS to enter
Manufacturing Mode when a critical error occurs during POST.

Examples of critical errors are RAM parity errors, or failures of interrupt controllers, DRAM
refresh, etc.

This option causes a best-effort attempt to make Manufacturing Mode work. Since a critical
error has occurred prior to Manufacturing Mode being entered, it is possible that DRAM is not
functional, or that other key system hardware components are not working.

Values:

1 - Enable invocation of Manufacturing Mode on critical errors.
0 - Disable invocation of Manufacturing Mode on critical errors.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

7.1.170 OPTION_CMOS_MOUSE Option

The OPTION_CMOS_MOUSE option specifies the factory default setting for the CMOS
parameter that enables or disables the PS/2 mouse.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable PS/2 mouse.
0 - Disable PS/2 mouse.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_PS2MOUSE - Enable PS/2 mouse support.

7.1.171 OPTION_CMOS_TEST1MB Option

The OPTION_CMOS_TEST1MB option specifies the factory default setting for the CMOS
parameter that enables or disables the testing of memory above 1MB during POST.

206 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable extended memory test during POST.
0 - Disable extended memory test during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_PROTECT_MODE - Enable extended memory test during

POST.

7.1.172 OPTION_CMOS_TESTCLICK Option

The OPTION_CMOS_TESTCLICK option specifies the factory default setting for the CMOS
parameter that enables or disables speaker clicks to indicate progress during POST memory tests.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable speaker clicks during POST memory tests.
0 - Disable speaker clicks during POST memory tests.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SOUND - Enable sound support.

7.1.173 OPTION_CMOS_PARITY Option

The OPTION_CMOS_PARITY option specifies the factory default setting for the CMOS
parameter that enables or disables memory parity checking during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

Chapter 7 EMBEDDED BIOS Adaptation Guide 207

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable memory parity checking.
0 - Disable memory parity checking.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_PARITY - Enable parity checking support.

7.1.174 OPTION_CMOS_DELETE Option

The OPTION_CMOS_DELETE option specifies the factory default setting for the CMOS
parameter that enables or disables the “Press to enter SETUP” message during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable “Press ...” message during POST.
0 - Disable “Press ...” message during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_POSTMSGS - Enable messages during POST.

7.1.175 OPTION_CMOS_HEXLOWER Option

The OPTION_CMOS_HEXLOWER option specifies the factory default setting for the CMOS
parameter that enables or disables the display of hexadecimal numbers in lower-case alphabetics.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable lower-case hex displays.
0 - Disable lower-case hex displays (always upper-case).

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

208 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.176 OPTION_CMOS_F1ERROR Option

The OPTION_CMOS_F1ERROR option specifies the factory default setting for the CMOS
parameter that enables or disables the “Press F1 to continue” message during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable “Press F1 to continue” message during POST.
0 - Disable “Press F1 to continue” message during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_POSTMSGS - Enable messages during POST.

7.1.177 OPTION_CMOS_NUMLOCK Option

The OPTION_CMOS_NUMLOCK option specifies the factory default setting for the CMOS
parameter that controls the initial state of the NumLock key during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable NumLock key during POST.
0 - Disable NumLock key during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_KEYBOARD - Enable keyboard support.

7.1.178 OPTION_CMOS_TYPEMATIC Option

The OPTION_CMOS_TYPEMATIC option specifies the factory default setting for the CMOS
parameter that enables or disables typematic programming during POST.

Chapter 7 EMBEDDED BIOS Adaptation Guide 209

General Software EMBEDDED BIOS Adaptation Guide

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable typematic programming during POST.
0 - Disable typematic programming during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_KEYBOARD - Enable keyboard support.
CONFIG_CMOS_TYPEMATIC_DELAY - Typematic delay for programming.
CONFIG_CMOS_TYPEMATIC_RATE - Typematic rate for programming.

7.1.179 OPTION_CMOS_WEITEK Option

The OPTION_CMOS_WEITEK option specifies the factory default setting for the CMOS
parameter that enables or disables support for Weitek coprocessors during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable Weitek coprocessor programming during POST.
0 - Disable Weitek coprocessor programming during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.1.180 OPTION_CMOS_FLOPPYSEEK Option

The OPTION_CMOS_FLOPPYSEEK option specifies the factory default setting for the
CMOS parameter that enables or disables the initial head seek of configured floppy drives during
POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

210 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Enable floppy disk drive head seek during POST.
0 - Disable floppy disk drive head seek during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_FLOPPY - Enable floppy support.

7.1.181 OPTION_CMOS_EXTCACHE Option

The OPTION_CMOS_EXTCACHE option specifies the factory default setting for the CMOS
parameter that enables or disables the external (L2) cache during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable L2 cache during POST.
0 - Disable L2 cache during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_CACHE - Enable L2 cache support.

7.1.182 OPTION_CMOS_INTCACHE Option

The OPTION_CMOS_INTCACHE option specifies the factory default setting for the CMOS
parameter that enables or disables the internal (L1) cache during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable L1 cache during POST.
0 - Disable L1 cache during POST.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 211

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_CACHE_CPU - Enable L1 cache support.

7.1.183 OPTION_CMOS_FASTA20 Option

The OPTION_CMOS_FASTA20 option specifies the factory default setting for the CMOS
parameter that enables or disables the fast A20 gate during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable fast A20 gate during POST.
0 - Disable fast A20 gate during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_A20_CPU - Enable CPU A20 support.
OPTION_A20_CHIPSET - Enable Chipset A20 support.
OPTION_A20_BOARD - Enable Board A20 support.
OPTION_A20_PORT92 - Enable Port 92h A20 support.

7.1.184 OPTION_CMOS_HDSEEK Option

The OPTION_CMOS_HDSEEK option specifies the factory default setting for the CMOS
parameter that enables or disables the seek of the configured hard disk heads during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable hard disk seek during POST.
0 - Disable hard disk seek during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_IDE - Enable IDE support.

7.1.185 OPTION_CMOS_CONFIGBOX Option

212 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_CMOS_CONFIGBOX option specifies the factory default setting for the CMOS
parameter that enables or disables the display of the configuration box during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable configuration box display during POST.
0 - Disable configuration box display during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_CONFIGBOX - Enable Configuration Box support.

7.1.186 OPTION_CMOS_EXHMEMTEST Option

The OPTION_CMOS_EXHMEMTEST option specifies the factory default setting for the
CMOS parameter that enables or disables the invocation of exhaustive memory tests during
POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable exhaustive memory tests during POST.
0 - Disable exhaustive memory tests during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_EXHMEMTEST - Enable exhaustive memory test support.

7.1.187 OPTION_CMOS_PASSWORD Option

The OPTION_CMOS_PASSWORD option specifies the factory default setting for the CMOS
parameter that enables or disables password checking during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

Chapter 7 EMBEDDED BIOS Adaptation Guide 213

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable password checking during POST.
0 - Disable password checking during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_PASSWORD - Enable password support.
OPTION_SETUP_PASSWORD - Enable password Setup screen.

7.1.188 OPTION_CMOS_KEYBOARD Option

The OPTION_CMOS_KEYBOARD option specifies the factory default setting for the CMOS
parameter that enables or disables keyboard tests during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable keyboard testing during POST.
0 - Disable keyboard testing during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_KEYBOARD - Enable keyboard support.

7.1.189 OPTION_CMOS_SHADOW_ENABLE Option

The OPTION_CMOS_SHADOW_ENABLE option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing during POST.

214 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

0 - Disable shadowing during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_C000 - Enable shadowing at segment C000h.
OPTION_CMOS_SHADOW_C400 - Enable shadowing at segment C400h.
OPTION_CMOS_SHADOW_C800 - Enable shadowing at segment C800h.
OPTION_CMOS_SHADOW_CC00 - Enable shadowing at segment CC00h.
OPTION_CMOS_SHADOW_D000 - Enable shadowing at segment D000h.
OPTION_CMOS_SHADOW_D400 - Enable shadowing at segment D400h.
OPTION_CMOS_SHADOW_D800 - Enable shadowing at segment D800h.
OPTION_CMOS_SHADOW_DC00 - Enable shadowing at segment DC00h.
OPTION_CMOS_SHADOW_E000 - Enable shadowing at segment E000h.
OPTION_CMOS_SHADOW_E400 - Enable shadowing at segment E400h.
OPTION_CMOS_SHADOW_E800 - Enable shadowing at segment E800h.
OPTION_CMOS_SHADOW_EC00 - Enable shadowing at segment EC00h.
OPTION_CMOS_SHADOW_F000 - Enable shadowing at segment F000h.

7.1.190 OPTION_CMOS_SHADOW_C000 Option

The OPTION_CMOS_SHADOW_C000 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at C000h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.191 OPTION_CMOS_SHADOW_C400 Option

The OPTION_CMOS_SHADOW_C400 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at C400h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

Chapter 7 EMBEDDED BIOS Adaptation Guide 215

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.192 OPTION_CMOS_SHADOW_C800 Option

The OPTION_CMOS_SHADOW_C800 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at C800h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.193 OPTION_CMOS_SHADOW_CC00 Option

The OPTION_CMOS_SHADOW_CC00 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at CC00h during
POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

216 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.194 OPTION_CMOS_SHADOW_D000 Option

The OPTION_CMOS_SHADOW_D000 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at D000h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.195 OPTION_CMOS_SHADOW_D400 Option

The OPTION_CMOS_SHADOW_D400 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at D400h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 217

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.196 OPTION_CMOS_SHADOW_D800 Option

The OPTION_CMOS_SHADOW_D800 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at D800h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.197 OPTION_CMOS_SHADOW_DC00 Option

The OPTION_CMOS_SHADOW_DC00 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at DC00h during
POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

218 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.198 OPTION_CMOS_SHADOW_E000 Option

The OPTION_CMOS_SHADOW_E000 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at E000h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.199 OPTION_CMOS_SHADOW_E400 Option

The OPTION_CMOS_SHADOW_E400 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at E400h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.200 OPTION_CMOS_SHADOW_E800 Option

The OPTION_CMOS_SHADOW_E800 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at E800h during POST.

Chapter 7 EMBEDDED BIOS Adaptation Guide 219

General Software EMBEDDED BIOS Adaptation Guide

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.201 OPTION_CMOS_SHADOW_EC00 Option

The OPTION_CMOS_SHADOW_EC00 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 16K segment at EC00h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable shadowing of specified segment during POST.
0 - Disable shadowing of specified segment during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.202 OPTION_CMOS_SHADOW_F000 Option

The OPTION_CMOS_SHADOW_F000 option specifies the factory default setting for the
CMOS parameter that enables or disables shadowing at the 64K segment at F000h during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

220 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Enable shadowing of full 64KB segment at F000h during POST.
0 - Disable shadowing of full 64KB segment at F000h during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_SHADOW - Enable shadowing support.
OPTION_CMOS_SHADOW_ENABLE - Enable shadowing during POST.

7.1.203 OPTION_CMOS_SPEED Option

The OPTION_CMOS_SPEED option specifies the factory default setting for the CMOS
parameter that enables or disables high CPU speed during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable high CPU speed during POST.
0 - Disable high CPU speed during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SPEED_CPU - Enable CPU module speed support.
OPTION_SPEED_CHIPSET - Enable chipset module speed support.
OPTION_SPEED_BOARD - Enable board module speed support.

7.1.204 OPTION_CMOS_REFRESH Option

The OPTION_CMOS_ REFRESH option specifies the factory default setting for the CMOS
parameter that enables or disables automatic DRAM refresh during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable automatic DRAM refresh during POST.
0 - Disable automatic DRAM refresh during POST.

Chapter 7 EMBEDDED BIOS Adaptation Guide 221

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_REFRESH_8237 - Enable traditional DMA-based refresh support.
OPTION_REFRESH_CPU - Enable CPU module refresh support.
OPTION_REFRESH_CHIPSET - Enable chipset module refresh support.
OPTION_REFRESH_BOARD - Enable board module refresh support.
OPTION_REFRESH_CHARGE - Enable charging of DRAMs after refresh starts.

7.1.205 OPTION_CMOS_POWER Option

The OPTION_CMOS_ POWER option specifies the factory default setting for the CMOS
parameter that enables or disables power management during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable power management during POST.
0 - Disable power management during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_POWERMAN - Enable power management support.

7.1.206 OPTION_CMOS_ATA Option

The OPTION_CMOS_ ATA option specifies the factory default setting for the CMOS
parameter that enables or disables ATA card support during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable ATA card during POST.
0 - Disable ATA card during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.

222 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.207 OPTION_CMOS_RFD Option

The OPTION_CMOS_ RFD option specifies the factory default setting for the CMOS
parameter that enables or disables the Resident Flash Disk (RFD) during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS must be enabled for this option to work.

Values:

1 - Enable RFD during POST.
0 - Disable RFD during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_RFD_DISK - Enable RFD support.

7.1.208 OPTION_CMOS_LOAD_WINCE Option

The OPTION_CMOS_ LOAD_WINCE option specifies the factory default setting for the
CMOS parameter that enables or disables the loading of Windows CE during POST.

This option does not enable or disable the assembly of code in the BIOS; instead, it specifies the
default use of the assembled code; therefore, the actual feature must be enabled with other
parameters for this option to be useful.

OPTION_SUPPORT_CMOS and OPTION_SUPPORT_WINCE must be enabled for this
option to work.

Values:

1 - Enable RFD during POST.
0 - Disable RFD during POST.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_SUPPORT_RFD_DISK - Enable RFD support.

7.1.209 OPTION_HARDERR_A20 Option

The OPTION_HARDERR_A20 option specifies whether POST should consider failure during
the A20 test as a critical error that stops POST. If enabled, failure results in an error. If disabled,
failure causes POST to continue, although system operation may not be normal.

Chapter 7 EMBEDDED BIOS Adaptation Guide 223

General Software EMBEDDED BIOS Adaptation Guide

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.210 OPTION_HARDERR_DISSHADOW Option

The OPTION_HARDERR_DISSHADOW option specifies whether POST should consider
failure during disabling shadowing as a critical error that stops POST. If enabled, failure results
in an error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.211 OPTION_HARDERR_KBDCTRL Option

The OPTION_HARDERR_KBDCTRL option specifies whether POST should consider failure
during the keyboard controller test as a critical error that stops POST. If enabled, failure results
in an error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

224 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.212 OPTION_HARDERR_CMOS Option

The OPTION_HARDERR_CMOS option specifies whether POST should consider failure
during the CMOS RAM test as a critical error that stops POST. If enabled, failure results in an
error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.213 OPTION_HARDERR_PCI Option

The OPTION_HARDERR_PCI option specifies whether POST should consider failure during
the initialization of the PCI bus as a critical error that stops POST. If enabled, failure results in
an error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.

Chapter 7 EMBEDDED BIOS Adaptation Guide 225

General Software EMBEDDED BIOS Adaptation Guide

0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.214 OPTION_HARDERR_TIMER Option

The OPTION_HARDERR_TIMER option specifies whether POST should consider failure
during the timer test as a critical error that stops POST. If enabled, failure results in an error. If
disabled, failure causes POST to continue, although system operation may not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.215 OPTION_HARDERR_REFRESH Option

The OPTION_HARDERR_TIMER option specifies whether POST should consider failure
during the DRAM refresh test as a critical error that stops POST. If enabled, failure results in an
error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.

226 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.216 OPTION_HARDERR_MEMCFG Option

The OPTION_HARDERR_MEMCFG option specifies whether POST should consider failure
during the memory geometry detection as a critical error that stops POST. If enabled, failure
results in an error. If disabled, failure causes POST to continue, although system operation may
not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.217 OPTION_HARDERR_BASEMEM Option

The OPTION_HARDERR_BASEMEM option specifies whether POST should consider
failure during the base (64K or less) memory test as a critical error that stops POST. If enabled,
failure results in an error. If disabled, failure causes POST to continue, although system
operation may not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

Chapter 7 EMBEDDED BIOS Adaptation Guide 227

General Software EMBEDDED BIOS Adaptation Guide

7.1.218 OPTION_HARDERR_DMA Option

The OPTION_HARDERR_DMA option specifies whether POST should consider failure
during the DMA controller test as a critical error that stops POST. If enabled, failure results in
an error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.219 OPTION_HARDERR_INT Option

The OPTION_HARDERR_INT option specifies whether POST should consider failure during
the interrupt controller test as a critical error that stops POST. If enabled, failure results in an
error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.220 OPTION_HARDERR_FIRMWARE Option

The OPTION_HARDERR_FIRMWARE option specifies whether POST should consider
failure during the downloading of OEM-proprietary firmware as a critical error that stops POST.

228 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

If enabled, failure results in an error. If disabled, failure causes POST to continue, although
system operation may not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.221 OPTION_HARDERR_KBD Option

The OPTION_HARDERR_KBD option specifies whether POST should consider failure during
the keyboard test as a critical error that stops POST. If enabled, failure results in an error. If
disabled, failure causes POST to continue, although system operation may not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.222 OPTION_HARDERR_VIDEO Option

The OPTION_HARDERR_VIDEO option specifies whether POST should consider failure
during the video test as a critical error that stops POST. If enabled, failure results in an error. If
disabled, failure causes POST to continue, although system operation may not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Chapter 7 EMBEDDED BIOS Adaptation Guide 229

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.223 OPTION_HARDERR_PSWD Option

The OPTION_HARDERR_PSWD option specifies whether POST should consider failure
during the password checking as a critical error that stops POST. If enabled, failure results in an
error. If disabled, failure causes POST to continue, although system operation may not be
normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.224 OPTION_HARDERR_LOWMEM Option

The OPTION_HARDERR_LOWMEM option specifies whether POST should consider failure
during the low (<1MB) memory test as a critical error that stops POST. If enabled, failure
results in an error. If disabled, failure causes POST to continue, although system operation may
not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.

230 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.225 OPTION_HARDERR_PROTMODE Option

The OPTION_HARDERR_PROTMODE option specifies whether POST should consider
failure during the protected mode tests as a critical error that stops POST. If enabled, failure
results in an error. If disabled, failure causes POST to continue, although system operation may
not be normal.

The BIOS can be configured to handle critical errors in several ways, including entering
Manufacturing Mode, beeping the speaker, blinking the floppy drive light, or calling OEM-
proprietary code in the Board Personality Module.

Values:

1 - Enable this critical error during POST.
0 - Disable this critical error during POST.

Related Parameters:

OPTION_CRITICAL_BEEP - Beep speaker on critical errors.
OPTION_CRITICAL_FLOPPY_LIGHT - Blink floppy light on critical errors.
OPTION_CRITICAL_BOARD - Call board module on critical errors.
OPTION_CRITICAL_MFGMODE - Enter Manufacturing Mode on critical errors.

7.1.226 OPTION_SOFTERR_SETUP Option

The OPTION_SOFTERR_SETUP option enables or disables code in the BIOS that enables
routing of soft errors to the SETUP screen system.

Examples of soft errors are corrupt CMOS, low battery indications, keyboard errors, and similar
things that are usually correctable by the user in SETUP. All errors that are not critical errors
(such as RAM parity errors, etc.) are soft errors.

OPTION_SUPPORT_SETUP must be enabled for this option to work.

Values:

1 - Enable soft error routing to SETUP screen.
0 - Disable soft error routing to SETUP screen.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 231

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_SETUP - Enable SETUP screen system.

7.1.227 OPTION_SOFTERR_LPT Option

The OPTION_SOFTERR_LPT option enables or disables code in the BIOS to generate a soft
error if missing LPT ports are encountered.

Values:

1 - Enable strict LPT port checking.
0 - Disable strict LPT port checking.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable parallel port support.

7.1.228 OPTION_SOFTERR_MEMMIS Option

The OPTION_SOFTERR_MEMMIS option enables or disables code in the BIOS to generate
a soft error if a CMOS memory size mismatch is detected.

Values:

1 - Enable CMOS memory size mismatch soft error.
0 - Disable CMOS memory size mismatch soft error.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.1.229 OPTION_SOFTERR_BOARD Option

The OPTION_SOFTERR_BOARD option enables or disables code in the BIOS to generate a
soft error if the board module detects one.

The board module should unconditionally report soft errors to the core by setting the
POST_ERR_BOARD bit in the PostErrFlag2 Extended BIOS Data Area field. The core uses
this option to determine whether this soft error is reported to the user.

Values:

1 - Enable board-level soft errors.
0 - Disable board-level soft errors.

Related Parameters:

None.

232 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.230 OPTION_SOFTERR_CHIPSET Option

The OPTION_SOFTERR_CHIPSET option enables or disables code in the BIOS to generate a
soft error if the chipset module detects one.

The chipset module should unconditionally report soft errors to the core by setting the
POST_ERR_CHIPSET bit in the PostErrFlag2 Extended BIOS Data Area field. The core
uses this option to determine whether this soft error is reported to the user.

Values:

1 - Enable chipset-level soft errors.
0 - Disable chipset-level soft errors.

Related Parameters:

None.

7.1.231 OPTION_SOFTERR_CPU Option

The OPTION_SOFTERR_CPU option enables or disables code in the BIOS to generate a soft
error if the CPU module detects one.

The CPU module should unconditionally report soft errors to the core by setting the
POST_ERR_CPU bit in the PostErrFlag2 Extended BIOS Data Area field. The core uses this
option to determine whether this soft error is reported to the user.

Values:

1 - Enable CPU-level soft errors.
0 - Disable CPU-level soft errors.

Related Parameters:

None.

7.1.232 OPTION_QUERY_ENTERSETUP Option

The OPTION_QUERY_ENTERSETUP option enables or disables code in the BIOS to ask the
user if he wants to enter the Setup system.

Values:

1 - Enable query.
0 - Disable query; automatically perform action.

Related Parameters:

OPTION_SUPPORT_SETUP - Enable Setup screen support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 233

General Software EMBEDDED BIOS Adaptation Guide

7.1.233 OPTION_QUERY_FORMATRFD Option

The OPTION_QUERY_FORMATRFD option enables or disables code in the BIOS to ask the
user if he wants to reformat the RFD during POST, if POST has determined that the RFD is
unformatted.

Values:

1 - Enable query.
0 - Disable query; do not format RFD.

Related Parameters:

OPTION_SUPPORT_RFD_DISK - Enable RFD support.

7.1.234 OPTION_QUERY_VERIFYRFD Option

The OPTION_QUERY_VERIFYRFD option enables or disables code in the BIOS to ask the
user if he wants to check the integrity of the RFD and fix any discovered problems during POST.
Normally this integrity check is always done during POST, if the RFD is to be used after the
operating system has booted. The only reason to bypass this (and hence make this option useful)
is for a test lab environment, where the RFD should not always be autoinitialized by the system
until the Flash I/O has been debugged.

Values:

1 - Enable query.
0 - Disable query; automatically verify RFD integrity & fix problems.

Related Parameters:

OPTION_SUPPORT_RFD_DISK - Enable RFD support.

7.1.235 OPTION_QUERY_FORMATRAM Option

The OPTION_QUERY_FORMATRAM option enables or disables code in the BIOS to ask
the user if he wants to format the RAM disk during POST. If this parameter is enabled, and the
user responds affirmatively, the RAM disk will be initialized. If the parameter is enabled and the
user responds negatively, or if the parameter is disabled, then the RAM disk will not be explicitly
formatted.

This does not affect the logic that determines if a valid RAM disk image is detected. During
RAM disk initialization, separately from the query discussed above, the RAM disk server checks
the BIOS Parameter Block in the RAM disk’s boot record to determine if the disk is valid. If
not, the RAM disk is automatically formatted in any case.

Values:

234 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable query.
0 - Disable query; do not format unless RAM disk is uninitialized.

Related Parameters:

OPTION_SUPPORT_RAM_DISK - Enable RFD support.

7.1.236 OPTION_QUERY_DEBUG Option

The OPTION_QUERY_DEBUG option enables or disables code in the BIOS to ask the user if
he wants to enter the debugger before POST completes and boots the operating system.

Values:

1 - Enable query.
0 - Disable query; do not enter the debugger.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable debugger support.

7.1.237 OPTION_MFGMODE_TIMEOUT Option

The OPTION_MFGMODE_TIMEOUT option enables or disables code in the BIOS that
causes POST to time-out the Manufacturing Mode if the test mode bit drops once Manufaturing
Mode is entered.

This feature allows consumer electronic devices that are being managed by Manufacturing Mode
to resume normal operations when they are removed from the field-support test hardware.
Typically, this is an RS-232 signal such as DTR that goes low when the Manufacturing Mode
cable is disconnected from the target.

The actual method by which the hardware is tested is OEM-specific, and handled with a call to
the Board Personality Module (BPM). See Chapter 20 for details.

OPTION_SUPPORT_MFGMODE must be enabled for Manufacturing Mode to be properly
supported. See the notes associated with this option for futher information about Manufacturing
Mode.

Values:

1 - Enable Manufacturing Mode timeout handling.
0 - Disable Manufacturing Mode timeout handling.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode.
OPTION_MFGMODE_FIFO - Enable target UART’s FIFO during Manufacturing

Mode.

Chapter 7 EMBEDDED BIOS Adaptation Guide 235

General Software EMBEDDED BIOS Adaptation Guide

7.1.238 OPTION_MFGMODE_FIFO Option

The OPTION_MFGMODE_FIFO option enables or disables code in the BIOS that enables the
FIFO of the UART used during Manufacturing Mode.

This feature can significantly improve performance on targets that have working FIFOs in their
UARTs, because interrupts are not delivered on a per-byte basis, but instead when the UART’s
high water mark is reached.

OPTION_SUPPORT_MFGMODE must be enabled for Manufacturing Mode to be properly
supported. See the notes associated with this option for futher information about Manufacturing
Mode.

Values:

1 - Enable Manufacturing Mode FIFO support.
0 - Disable Manufacturing Mode FIFO support.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode.
OPTION_MFGMODE_TIMEOUT - Enable Manufacturing Mode timeout handling.

7.1.239 OPTION_MEMTEST_LOW_POST Option

The OPTION_MEMTEST_LOW_POST option enables or disables code in the BIOS that
causes POST to use a more extensive, exhaustive memory test on low memory below 1MB.

OPTION_SUPPORT_EXHMEMTEST must be enabled for this option to be valid so that the
exhaustive memory test software is enabled.

Values:

1 - Enable exhaustive testing of low memory during POST.
0 - Disable exhaustive testing of low memory during POST.

Related Parameters:

OPTION_SUPPORT_EXHMEMTEST - Enable exhaustive memory test code.

7.1.240 OPTION_MEMTEST_HIGH_POST Option

The OPTION_MEMTEST_HIGH_POST option enables or disables code in the BIOS that
causes POST to use a more extensive, exhaustive memory test on high memory above 1MB
(extended memory).

OPTION_SUPPORT_EXHMEMTEST must be enabled for this option to be valid so that the
exhaustive memory test software is enabled.

236 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Additionally, support for extended memory requires that
OPTION_SUPPORT_PROTECT_MODE be enabled. There are other considerations to make
with respect to protected mode; see the details under the
OPTION_SUPPORT_PROTECT_MODE option for more information.

Values:

1 - Enable exhaustive testing of high memory during POST.
0 - Disable exhaustive testing of high memory during POST.

Related Parameters:

OPTION_SUPPORT_EXHMEMTEST - Enable exhaustive memory test code.
OPTION_SUPPORT_PROTECT_MODE - Enable protected mode and extended

memory support.

7.1.241 OPTION_MEMTEST_WAIT Option

The OPTION_MEMTEST_WAIT option enables or disables code in the BIOS that causes
POST to pause between tested memory blocks so that the user has a chance to hit the key
or <ESC> key during the memory test.

This option is used both with exhaustive memory tests and with the standard memory tests.

The CONFIG_WAIT_COUNT configuration parameter is used to configure the length of the
delay. This is units of CPU loops, so it is best to start with the default value and adjust it as
necessary for the performance of your CPU.

Values:

1 - Enable pauses between tested memory blocks during POST.
0 - Disable pauses between tested memory blocks during POST.

Related Parameters:

CONFIG_WAIT_COUNT - Specifies the amount of time to wait between tested blocks.

7.1.242 OPTION_MEMTEST_CLEAR Option

The OPTION_MEMTEST_CLEAR option enables or disables code in the BIOS that causes
POST to store a 00h pattern into each byte of low memory, to prevent MS-DOS from failing.

The problem is that some MS-DOS utility programs erroneously use values from memory
locations that are uninitialized in areas that they do not own. These utility programs fail when
the values read are not zeroes.

If you are running MS-DOS on the target, you should enable this option. Otherwise, it should be
disabled to save code space and valuable time during POST.

Chapter 7 EMBEDDED BIOS Adaptation Guide 237

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Enable zero-fill of low memory during POST.
0 - Disable zero-fill of low memory during POST.

Related Parameters:

None.

7.1.243 OPTION_MEMTEST_CLICK Option

The OPTION_MEMTEST_CLICK option enables or disables code in the BIOS that causes
POST to click the speaker after testing each block during POST.

This option is used both with exhaustive memory tests and with the standard memory tests.

Values:

1 - Enable clicks between tested memory blocks during POST.
0 - Disable clicks between tested memory blocks during POST.

Related Parameters:

None.

7.1.244 OPTION_MEMTEST_QUICK Option

The OPTION_MEMTEST_QUICK option enables or disables code in the BIOS that optimizes
POST’s memory test for time by only testing the first word of each 1KB unit of memory.

Values:

1 - Enable memory test optimization.
0 – Disable memory test optimization.

Related Parameters:

OPTION_MEMTEST_CLEAR – Clear memory blocks to 0 during test.
OPTION_MEMTEST_CLICK – Click speaker during test.
OPTION_MEMTEST_HIGH_POST – Test high memory exhaustively.
OPTION_MEMTEST_LOW_POST – Test low memory exhaustively.
OPTION_MEMTEST_WAIT – Pause between each tested block during test.

7.1.245 OPTION_RFD_TESTFREE Option

The OPTION_RFD_TESTFREE option enables or disables code in the BIOS that the Resident
Flash Disk (RFD) uses to verify that Flash blocks marked “free” or “deleted” do in fact contain
nothing but bytes with the value ffh. If errors are found, the offending free areas are marked bad.

238 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This option requires that at least one RFD in the system be defined with the FILE_SYSTEM
macro.

Values:

1 - Enable check of free block contents during POST.
0 - Disable check of free block contents during POST.

Related Parameters:

FILE_SYSTEM - Define file system.

7.1.246 OPTION_RFD_FAT_SNOOP Option

The OPTION_RFD_FAT_SNOOP option enables or disables code in the BIOS that the
Resident Flash Disk (RFD) uses to optimize writes to Flash. The result is a substantial
improvement in sustained INT 13h write performance up to a factor of 10.

Without FAT snooping, an RFD must maintain the contents of previously-written clusters, even
when the directory entries for the files written to those clusters have long since been deleted.
Consider that an UNDELETE utility may be able to restore the contents of a previously-deleted
file by finding these "deleted" clusters and chaining them together again. While UNDELETE is
useful in the desktop PC environment, it is not so important in embedded designs, where
performance is paramount. The FAT snooping performance optimization causes the RFD to
detect writes to the FATs on the disk which free-up previously-written clusters. When this
condition is detected, the freed clusters’ sectors are marked dead, so that they may be reclaimed
for reuse on the next write.

This performance enhancement is supported for both soft and hard-formatted RFDs in versions
4.3 and beyond, whereas prior versions only supported FAT snooping on soft-formatted RFDs.
See the FILE_SYSTEM macro for details.

This option requires that at least one RFD in the system be defined with the FILE_SYSTEM
macro.

Values:

1 - Enable FAT snooping for RFDs.
0 - Disable FAT snooping for RFDs.

Related Parameters:

FILE_SYSTEM - Define file system.

7.1.247 OPTION_DEBUG_HOTKEY Option

The OPTION_DEBUG_HOTKEY option enables or disables code in the BIOS to intercept the
Control (Ctl) and Left Shift (Shf) key chord in the keyboard BIOS as a command to enter ("break
into") the debugger. This allows the user to break into the debugger at any time interrupts are
enabled.

Chapter 7 EMBEDDED BIOS Adaptation Guide 239

General Software EMBEDDED BIOS Adaptation Guide

This option requires PC, PC/XT, or PC/AT keyboard support by enabling
OPTION_KEYBOARD_PCAT, since it intercepts the IRQ1 handler at interrupt vector 09h and
reads shift flags in the BIOS data area.

OEM-defined keyboard modules may choose to review the Int09Isr code in
SYSTEM\KEYBOARD.ASM and derive their own way of entering the debugger, if necessary.

Values:

1 - Enable debugger hotkey support.
0 - Disable debugger hotkey support.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

OPTION_KEYBOARD_PCAT - Use PC/XT or PC/AT keyboard.

7.1.248 OPTION_DEBUG_FLASH Option

The OPTION_DEBUG_FLASH option enables or disables code in the BIOS that provides the
Erase Flash (EFL), Read Flash (RFL), Write Flash (WFL), Update Flash (UFL) and Set Flash
(SFL) commands in the integrated BIOS debugger.

This allows the OEM to test Flash drivers and hardware with the debugger.

This option requires the OPTION_SUPPORT_MCL option to be enabled, and a valid media
table to be defined with the MEDIA_REGION macro.

Values:

1 - Enable Flash commands in debugger.
0 - Disable Flash commands in debugger.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

OPTION_SUPPORT_MCL - Enable Flash programming support.

MEDIA_REGION - Macro used to define media table for media types.

7.1.249 OPTION_DEBUG_WATCHINT Option

The OPTION_DEBUG_WATCHINT option enables or disables code in the BIOS that
supports the WATCH command in the integrated BIOS debugger.

240 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The WATCH command allows the OEM to instruct the debugger to display the contents of the
general registers on entry and on exit to a BIOS service interrupt routine.

The OPTION_DEBUG_WATCHINT option causes additional code to be compiled at the
beginning and end of every service routine supporting the BIOS APIs; this code calls the
debugger to notify it so that a trace can be displayed.

Enabling this option does degrade performance because every service routine performs extra
work in anticipation of providing the debugging information. This option should be disabled in a
production system.

Values:

1 - Enable Watch command in debugger.
0 - Disable Watch command in debugger.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

7.1.250 OPTION_DEBUG_NMI Option

The OPTION_DEBUG_NMI option enables or disables code in the BIOS that causes NMI
interrupts to enter the debugger.

NMIs can be generated in an ISA system by manipulating the I/O check line on the bus.
Common "break-out switches" do exactly this, effectively providing a hardware way to break
into the debugger, even when a software method such as using a keystroke combination on the
keyboard is unable to.

Because the NMI interrupt is nonmaskable, this allows the debugger to be used to debug real
system hangs that leave interrupts disabled.

Values:

1 - Enable NMI debugger support.
0 - Disable NMI debugger support.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

7.1.251 OPTION_DEBUG_PCMCIA Option

The OPTION_DEBUG_PCMCIA option enables or disables code in the BIOS that provides
PCMCIA debugging commands. In particular, the debugger command, CIS, is supported.

Values:

Chapter 7 EMBEDDED BIOS Adaptation Guide 241

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable PCMCIA debugger support.
0 - Disable PCMCIA debugger support.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

7.1.252 OPTION_DEBUG_ASSEMBLY Option

The OPTION_DEBUG_ASSEMBLY option enables or disables code in the BIOS that
provides a disassembler that can translate raw bytes into 80386 mnemonics.

Values:

1 - Enable debugger disassembler.
0 - Disable debugger disassembler.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

7.1.253 OPTION_DEBUG_EDOSROM Option

The OPTION_DEBUG_EDOSROM option enables or disables code in the BIOS that provides
a facility to selectively, at run time, enable or disable the execution of XPRINTF macros for
debugging inside the Embedded DOS-ROM kernel. Normally, this facility is only used at
General Software.

Values:

1 - Enable debugger disassembler.
0 - Disable debugger disassembler.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

7.1.254 OPTION_DEBUG_CHIPSET Option

The OPTION_DEBUG_CHIPSET option enables or disables code in the BIOS that allows the
debugger to support the CSR (chipset read) and CSW (chipset write) debugger commands.

If this option is enabled, the commands are enabled in the debugger, and calls are made to
CsReadReg and CsWriteReg routines in the chipset module, respectively. The chipset module
must implement these routines in order for the debugger commands to work properly; by default,
these routines do not write or read a chipset register.

Values:

242 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable debugger chipset read/write commands.
0 - Disable debugger chipset read/write commands.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable integrated BIOS debugger.

7.1.255 OPTION_FLOPPY_SEEK Option

The OPTION_FLOPPY_SEEK option enables or disables code in the BIOS that can seek the
floppy disk drive heads during POST. This POST action is used to determine whether the floppy
disk drives are functional or not.

This option only supports the seeking feature; it must be enabled in CMOS via SETUP screen for
the seek to actually occur. In order to permanently enable this feature, the
OPTION_CMOS_FLOPPYSEEK option must be set.

Failure to seek properly causes a soft error to occur.

Values:

1 - Enable POST floppy seek feature.
0 - Disable POST floppy seek feature.

Related Parameters:

FILE_SYSTEM - Define file system for floppy support.

OPTION_CMOS_FLOPPYSEEK - Factory default value for floppy option.

7.1.256 OPTION_FLOPPY_DMA Option

The OPTION_FLOPPY_DMA option enables or disables code in the BIOS that supports
floppy I/O with DMA transfers. If this option is enabled, then DMA transfers are supported.
This is the normal method of transferring data between RAM and the floppy disk controller.

Some systems do not have PC-compatible 8237A DMA controllers. These systems therefore
cannot use DMA-based floppy disk I/O. Instead, they use a polled approach that requires a fairly
high CPU performance to sustain a 500KB/second transfer rate with error checking on each byte.
If you are supporting a target that must have floppy I/O without DMA support, then this option
should be disabled. Otherwise, in all other circumstances, this option should be enabled if you
are supporting floppy disk I/O.

The OPTION_FLOPPY_FAST_POLL option is used when OPTION_FLOPPY_DMA is
disabled. Fast polling uses an in-line instruction sequence that avoids a few pushes, pops, calls,
and returns. In some cases, this can make the difference between supporting and not supporting
a polled approach on slower targets.

OPTION_FLOPPY_POLL_ERRORS should really be set when OPTION_FLOPPY_DMA
is disabled. Error polling is used to check the status port before reading data from the floppy

Chapter 7 EMBEDDED BIOS Adaptation Guide 243

General Software EMBEDDED BIOS Adaptation Guide

disk controller. This allows the floppy disk code to determine if an error is occurring during a
data transfer. Without this support, significant timeouts can occur, and in some cases, lockups
can occur.

The OPTION_FLOPPY_82077 option should be set whenever an 82077A or 82078 floppy disk
controller is used, to take advantage of the built-in FIFO. This does not solve polled I/O
throughput problems, but it can smooth-out situations where a slight delay would ordinarily have
caused a single byte to be missed.

If you are using polling without error detection, then OPTION_FLOPPY_144_ONLY can help
eliminate superfluous errors. The floppy disk state machine tries to recognize different media in
the drive, because the user can insert different media. The floppy disk controller must be
programmed appropriately, so the test is necessary in order to support both 720KB and 1.44MB
floppy disks in a 3.5" drive. If you are confident that your target will only support 1.44MB
floppy disks in your application, then you can enable OPTION_FLOPPY_144_ONLY and
avoid this guessing game played by the floppy disk driver.

Polling the floppy disk controller is such a time-critical operation that interrupts must be disabled
during the transfers. Thus, no keyboard activity is recognized during floppy I/O, and the
system’s time of day is not maintained accurately.

Values:

1 - Enable DMA-based floppy I/O.
0 - Disable DMA-based floppy I/O (poll instead).

Related Parameters:

FILE_SYSTEM - Define file system for floppy support.

OPTION_FLOPPY_82077 - Enable floppy FIFO support.

OPTION_FLOPPY_FAST_POLL - Enable in-line polling code.

OPTION_FLOPPY_POLL_ERRORS - Enable error detection for non-DMA
operation.

OPTION_FLOPPY_144_ONLY - Only support 1.44MB floppies in 3.5" drives.

7.1.257 OPTION_FLOPPY_82077 Option

The OPTION_FLOPPY_82077 option enables or disables code in the BIOS that supports the
FIFO in Intel 82077A or 82078 floppy disk controllers.

The OPTION_FLOPPY_82077 option should be set whenever an 82077A or 82078 floppy disk
controller is used, to take advantage of the built-in FIFO. This does not solve polled I/O
throughput problems, but it can smooth-out situations where a slight delay would ordinarily have
caused a single byte to be missed.

Values:

244 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - Enable FIFO in floppy disk controller.
0 - Disable FIFO in floppy disk controller.

Related Parameters:

FILE_SYSTEM - Define file system for floppy support.

7.1.258 OPTION_FLOPPY_WATCHIO Option

The OPTION_FLOPPY_WATCHIO option enables or disables code in the BIOS that displays
the general registers on entry and on exit to the floppy disk service routine. This allows
debugging of floppy disk I/O on targets that are having trouble supporting it.

Values:

1 - Enable debugging code in floppy disk service routine.
0 - Disable debugging code in floppy disk service routine.

Related Parameters:

FILE_SYSTEM - Define file system for floppy support.

7.1.259 OPTION_FLOPPY_FAST_POLL Option

The OPTION_FLOPPY_FAST_POLL option is used when OPTION_FLOPPY_DMA is
disabled. Fast polling uses an in-line instruction sequence that avoids a few pushes, pops, calls,
and returns.

If disabled, then some code space is saved, at the expense of slower execution time.

Polled floppy disk I/O is an extremely time-critical operation. In some cases, this can make the
difference between supporting and not supporting a polled approach on slower targets.

Values:

1 - Enable fast polling code in floppy disk service routine.
0 - Disable fast polling code in floppy disk service routine.

Related Parameters:

FILE_SYSTEM - Define file system for floppy support.
OPTION_FLOPPY_DMA - Enable DMA-based floppy I/O.

7.1.260 OPTION_FLOPPY_POLL_ERRORS Option

The OPTION_FLOPPY_POLL_ERRORS option causes code to be generated in the BIOS
that checks for error conditions when polling the floppy disk controller in a polled I/O mode.

Chapter 7 EMBEDDED BIOS Adaptation Guide 245

General Software EMBEDDED BIOS Adaptation Guide

This option is only valid when OPTION_FLOPPY_DMA is disabled. Error polling is used to
check the status port before reading data from the floppy disk controller. This allows the floppy
disk code to determine if an error is occurring during a data transfer. Without this support,
significant timeouts can occur, and in some cases, lockups can occur.

Polled floppy disk I/O is an extremely time-critical operation. In some cases, this can make the
difference between supporting and not supporting a polled approach on slower targets.

Values:

1 - Enable error detection in floppy disk service routine.
0 - Disable error detection in floppy disk service routine.

Related Parameters:

FILE_SYSTEM - Define file system for floppy support.
OPTION_FLOPPY_DMA - Enable DMA-based floppy I/O.

7.1.261 OPTION_FLOPPY_144_ONLY Option

The OPTION_FLOPPY_144_ONLY option causes code to be generated in the BIOS that
disables the floppy disk state machine’s testing for 720KB or 1.44MB floppy disks inserted in a
3.5" disk drive. Instead of doing this checking, it assumes that only 1.44MB floppy disks will be
inserted.

This option is only necessary when OPTION_FLOPPY_DMA is disabled. The purpose of
enabling this function is to reduce the chance that errors are encountered. Error checking is
extremely time-critical in polled systems, so is only really necessary when DMA support is
disabled.

Values:

1 - Enable 1.44-only floppy disk I/O.
0 - Disable 1.44-only floppy disk I/O.

Related Parameters:

FILE_SYSTEM - Define file system for floppy support.
OPTION_FLOPPY_DMA - Enable DMA-based floppy I/O.

7.1.262 OPTION_IDE_RESET Option

The OPTION_IDE_RESET option enables or disables code in the BIOS to reset the hard disk
controller during POST. The reset function takes time, and may be removed in most targets.

In targets using the IDE code to operate PCMCIA PC Cards with ATA interfaces, this option
should be disabled, as it causes a significant timeout during POST.

246 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Enable reset of hard disk controller in POST.
0 - Disable reset of hard disk controller in POST.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

7.1.263 OPTION_IDE_SEEK Option

The OPTION_IDE_SEEK option enables or disables code in the BIOS to seek the IDE disk
drive heads during POST. This POST action is used to determine whether the hard drives are
functional or not.

This option only supports the seek feature; it must be enabled in SETUP for the seek to actually
occur. In order to permanently enable this feature, the OPTION_CMOS_HDSEEK parameter
must be set.

Failure to seek properly causes a soft error to occur.

Values:

1 - Enable POST hard drive seek feature.
0 - Disable POST hard drive seek feature.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

OPTION_CMOS_HDSEEK - Factory default value for hard drive seek option.

7.1.264 OPTION_IDE_DISABLE_INTS Option

The OPTION_IDE_DISABLE_INTS option enables or disables code in the BIOS to disable
interrupts around the REP INSW or REP OUTSW instructions that perform the actual data
transfer.

Most desktop PC BIOS implementations do disable interrupts during I/O; however, this
increases interrupt latency, which degrades real-time systems’ performance.

Not all IDE controllers can operate without disabling of interrupts during data transfers in all
situations; start by enabling this feature, and disabling it later to improve performance if needed.

CAUTION: Allowing interrupts around the data transfer causes some CPUs to create longer
bus cycles for the data transfer, which can lead to erroneous transfers. We recommend that you
begin with this option enabled, and disable the option only when required, and when proven safe
for a given target and drive combination.

Chapter 7 EMBEDDED BIOS Adaptation Guide 247

General Software EMBEDDED BIOS Adaptation Guide

Values:

1 - Disable interrupts during hard disk I/O.
0 - Enable interrupts during hard disk I/O.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

7.1.265 OPTION_IDE_SLOWDOWN Option

The OPTION_IDE_SLOWDOWN option enables or disables code in the BIOS to perform
replacements for the standard REP INSW or REP OUTSW instructions that perform the actual
data transfer. The replacements perform programmed loops that issue INSW and OUTSW
instructions, one at a time.

This feature should be disabled unless a hard disk is found to not work with the IDE BIOS.
There are no known hard drives that fail with the IDE code, so this should never be necessary.

Values:

1 - Enable slowdown code in IDE data transfers.
0 - Disable slowdown code in IDE data transfers.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

7.1.266 OPTION_IDE_POLLED Option

The OPTION_IDE_POLLED option selects the type of I/O completion to be used by the IDE
driver. If this option is enabled, then the IDE controller’s status is polled until status bits indicate
that a pending operation has been completed. If this option is disabled, then interrupts are used
to complete the transfer.

Values:

1 - Enable polling to detect I/O completion (disables interrupts).
0 - Disable polling to detect I/O completion (enables interrupts).

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

7.1.267 OPTION_IDE_AUTODETECT Option

The OPTION_IDE_AUTODETECT option enables or disables code in the BIOS to
automatically detect the geometry of attached IDE drives during POST. When enabled, this

248 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

option eliminates the need for the user to specify the number of heads, cylinders, and sectors per
track for drives that support the Extended IDE Protocols.

Not all drives support this feature, or if they do, support it correctly. Older drives, usually under
120MB in size, may have troubles with this protocol. Newer drives above this size are all
supporting the Extended IDE Specification.

This feature must be enabled for the LBA or CHS translation mechanisms to be supported, since
those methods offer additional translation on top of IDE autodetection.

Values:

1 - Enable autodetect code in SETUP and POST.
0 - Disable autodetect code in SETUP and POST.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

7.1.268 OPTION_IDE_LBA Option

The OPTION_IDE_LBA option enables or disables code in the BIOS to translate the physical
geometry of a drive as determined by the geometry autodetect code into logical geometry that
can accommodate support for drives larger than 528MB.

Large drives normally support more than 1024 cylinders, but the INT 13h BIOS interface used
by DOS and other applications to perform disk I/O does not allow cylinder numbers beyond
1023 to be specified. To solve this problem, the LBA method packs the bits differently
according to an industry-standard formula, so that the heads and tracks fields are used to
accommodate the extra space provided by the drive. LBA is one method, and CHS is another
method, that can be used to address this additional drive space. EMBEDDED BIOS provides
both methods so that it can be used to interoperate with all drives formatted in other systems.

Not all drives support this feature, or if they do, support it correctly. Older drives, usually under
120MB in size, may have troubles with this protocol. Newer drives above this size are all
supporting the Extended IDE Specification.

This feature requires OPTION_IDE_AUTODETECT to be enabled in order to be useful.

Values:

1 - Enable LBA code in SETUP and POST.
0 - Disable LBA code in SETUP and POST.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

OPTION_IDE_CHS - Enable Phoenix-compatible CHS translation support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 249

General Software EMBEDDED BIOS Adaptation Guide

7.1.269 OPTION_IDE_CHS Option

The OPTION_IDE_CHS option enables or disables code in the BIOS to translate the physical
geometry of a drive as determined by the geometry autodetect code into logical geometry that
can accommodate support for drives larger than 528MB.

Large drives normally support more than 1024 cylinders, but the INT 13h BIOS interface used
by DOS and other applications to perform disk I/O does not allow cylinder numbers beyond
1023 to be specified. To solve this problem, the CHS method packs the bits differently
according to an industry-standard formula, so that the heads and tracks fields are used to
accommodate the extra space provided by the drive. CHS is one method compatible with some
Phoenix BIOSes, and LBA is another method, that can be used to address this additional drive
space. EMBEDDED BIOS provides both methods so that it can be used to interoperate with all
drives formatted in other systems.

Not all drives support this feature, or if they do, support it correctly. Older drives, usually under
120MB in size, may have troubles with this protocol. Newer drives above this size are all
supporting the Extended IDE Specification.

This feature requires OPTION_IDE_AUTODETECT to be enabled in order to be useful.

Values:

1 - Enable CHS code in SETUP and POST.
0 - Disable CHS code in SETUP and POST.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

OPTION_IDE_LBA - Enable LBA translation support.

7.1.270 OPTION_IDE_LBACMD Option

The OPTION_IDE_LBACMD option enables or disables code in the IDE disk driver to use a
packetized interface (ATAPI) to communicate with IDE drives. If this option is disabled, then
the original PC/AT MFM register file is used for communicating commands, parameters, and
data to the target drives.

Values:

1 - Enable LBA packet protocol in IDE driver.
0 - Disable LBA packet protocol in IDE driver.

Related Parameters:

FILE_SYSTEM - Define file system for IDE support.

OPTION_IDE_LBA - Enable LBA autodetect support.

250 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.1.271 OPTION_IDE_BYTE_IO Option

The OPTION_IDE_BYTE_IO option enables or disables code in the IDE driver in the BIOS to
only perform 8-bit I/O to the IDE/ATA drive instead of 16-bit I/O. This is necessary for support
of ATA cards on platforms that must operate in 8-bit mode.

Values:

1 - Enable 8-bit IDE/ATA I/O.
0 – Disable 8-bit IDE/ATA I/O.

Related Parameters:

FILE_SYSTEM – Declare IDE file system.
OPTION_IDE_AUTODETECT – Autodetect IDE drives.
OPTION_IDE_CHS – Autodetect IDE drives with Phoenix CHS geometry.
OPTION_IDE_DISABLE_INTS – Disable interrupts during data transfers.
OPTION_IDE_LBA – Autodetect IDE drives using LBA geometry.
OPTION_IDE_POLLED – Disable use of interrupts for IDE I/O.
OPTION_IDE_RESET – Issue reset command to drives during POST.
OPTION_IDE_SEEK – Issue seek command to drives during POST.
OPTION_IDE_SLOWDOWN – Use slower I/O loops instead of string I/O.
OPTION_IDE_QUICK_DETECT – Skip IDE detection if drive not ready.

7.1.272 OPTION_IDE_QUICK_DETECT Option

The OPTION_IDE_QUICK_DETECT option enables or disables code in the IDE driver in the
BIOS to only perform drive autodetection if the drive is ready. In this mode, when a drive
reports “not ready” status during POST, it will be skipped (disabled), allowing a faster boot time.

Values:

1 - Enable quick detection of IDE drives.
0 – Disable quick detection of IDE drives.

Related Parameters:

FILE_SYSTEM – Declare IDE file system.
OPTION_IDE_AUTODETECT – Autodetect IDE drives.
OPTION_IDE_CHS – Autodetect IDE drives with Phoenix CHS geometry.
OPTION_IDE_DISABLE_INTS – Disable interrupts during data transfers.
OPTION_IDE_LBA – Autodetect IDE drives using LBA geometry.
OPTION_IDE_POLLED – Disable use of interrupts for IDE I/O.
OPTION_IDE_RESET – Issue reset command to drives during POST.
OPTION_IDE_SEEK – Issue seek command to drives during POST.
OPTION_IDE_SLOWDOWN – Use slower I/O loops instead of string I/O.
OPTION_IDE_BYTE_IO – Perform only 8-bit I/O to drives.

7.1.273 OPTION_BOOT_BEEP Option

Chapter 7 EMBEDDED BIOS Adaptation Guide 251

General Software EMBEDDED BIOS Adaptation Guide

The OPTION_BOOT_BEEP option enables or disables code in the BIOS to beep the speaker
when POST has completed and it is ready to boot the operating system.

This option requires the OPTION_SUPPORT_SOUND and the
OPTION_SUPPORT_PORT_B options to be enabled in order to make noise.

Values:

1 - Enable beep upon POST completion.
0 - Disable beep upon POST completion.

Related Parameters:

OPTION_SUPPORT_SOUND - Enable speaker support.
OPTION_SUPPORT_PORT_B - Enable speaker control hardware.

7.1.274 OPTION_ BOOT_QUICK Option

The OPTION_BOOT_QUICK option enables or disables code in the BIOS to disable all
messages, pauses, and prompts issued for the user’s sake when the system boots, causing the
system to boot much faster than a desktop PC system.

Destructive memory tests are also disabled with this option; memory is tested on 1KB
boundaries with a nondestructive algorithm.

Values:

1 - Enable quick boot POST.
0 - Disable quick boot POST.

Related Parameters:

None.

7.1.275 OPTION_ BOOT_PRESERVE_WARM Option

The OPTION_BOOT_PRESERVE_WARM option enables or disables code in the BIOS to
change the warm boot indicator (1234h) in segment 40h after a warm boot to a done status.

This option is normally disabled. It may be enabled to cause a warm boot to not reset its status in
the BIOS data area for some applications.

Values:

1 - Don’t change indicator from WARM_BOOT to WARM_DONE.
0 - Change indicator from WARM_BOOT to WARM_DONE.

Related Parameters:

252 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

None.

7.1.276 OPTION_ BOOT_WARM_DELAY Option

The OPTION_BOOT_WARM_DELAY option enables or disables code in the BIOS to delay
for approximately one second on a warm boot so that the user has a chance to press the
or ^C keys so that SETUP can be entered. On some systems, a warm boot is processed so
quickly that this delay is necessary for the user to get a chance to enter the keystroke.

Values:

1 - Enable the delay on warm boots.
0 - Disable the delay on warm boots.

Related Parameters:

None.

7.1.277 OPTION_ CON_REDIR_WAIT Option

The OPTION_CON_REDIR_WAIT option enables or disables code in the BIOS to wait for
the UART’s Transmit Buffer Empty (TBE) status bit in the Line Status Register (LSR) to go high
before sending the next character via INT 14h.

INT 14h has a built-in test for the case where the characters cannot be transmitted, say, due to a
cable being disconnected. However, the INT 14h service times out, which may lead to dropped
characters if a cable is disconnected for an extended length of time. Enabling this option causes
the console redirection code to keep trying the service until the character is sent.

Values:

1 - Enable the wait for TBE on redirected console output.
0 - Disable the wait for TBE on redirected console output.

Related Parameters:

OPTION_SUPPORT_CON_REDIRECTOR - Enable console redirection.
OPTION_CON_REDIR_DISABLE - Disable redirection if timeout occurs.

7.1.278 OPTION_ CON_REDIR_DISABLE Option

The OPTION_CON_REDIR_DISABLE option enables or disables code in the BIOS stop
redirecting console I/O over a serial port if output directed to the port times out. When the
console redirection is reset, output is delivered to the main video controller and input is read
from the keyboard driver.

Values:

1 - Enable reset of console redirection if a timeout occurs.

Chapter 7 EMBEDDED BIOS Adaptation Guide 253

General Software EMBEDDED BIOS Adaptation Guide

0 - Disable reset of console redirection if a timeout occurs.

Related Parameters:

OPTION_SUPPORT_CON_REDIRECTOR - Enable console redirection.
OPTION_CON_REDIR_WAIT - Wait for characters to be output.

7.1.279 OPTION_ CON_REDIR_CANCEL Option

The OPTION_CON_REDIR_CANCEL option enables or disables code in the BIOS that
cancels console redirection if a key is pressed on the main keyboard.

This option is most useful in the lab where the default keyboard and screen are redirected to a
serial terminal program running on a host, but when the keyboard is used on the target after some
period of debugging, console I/O continues to run on the target’s main keyboard and screen.

Values:

1 - Enable autoredirect cancel feature.
0 – Disable autoredirect cancel feature.

Related Parameters:

OPTION_SUPPORT_CON_REDIRECTOR – Enable console redirection feature.

OPTION_CON_REDIR_WAIT – Wait for TBE before outputting characters.

OPTION_CON_REDIR_DISABLE - Disable redirection if timeout expires.

OPTION_CON_REDIR_AUTO – Cancel redirection if video controller detected.

7.1.280 OPTION_ CON_REDIR_AUTO Option

The OPTION_CON_REDIR_AUTO option enables or disables code in the BIOS that cancels
console redirection if a video BIOS (add-on VGA card or option ROM) is detected in the system.

When this option is enabled, it is most typical to enable
OPTION_SUPPORT_CON_REDIRECTOR, and then set CONFIG_CON_REDIR_STD,
CONFIG_CON_REDIR_DEBUG, and CONFIG_CON_REDIR_SETUP to the COM port
number that would be used if a video card were not detected in the system. Then, redirection
will be used as specified in the project file unless a video BIOS is detected in the system.

Values:

1 - Enable video card detection feature.
0 – Disable video card detection feature.

Related Parameters:

OPTION_SUPPORT_CON_REDIRECTOR – Enable console redirection feature.

254 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

OPTION_CON_REDIR_WAIT – Wait for TBE before outputting characters.

OPTION_CON_REDIR_DISABLE - Disable redirection if timeout expires.

OPTION_CON_REDIR_CANCEL – Cancel redirection if main keyboard used.

7.1.281 OPTION_RTC_CMOS Option

The OPTION_RTC_CMOS option enables or disables code in the BIOS to use the Dallas
Semiconductor Real-Time Clock chip that contains the CMOS RAM for maintaining the
system's date and time. This is the standard mechanism used in most ISA systems today.

OPTION_SUPPORT_CMOS must be enabled in order for this option to be used.

The configuration parameter, CONFIG_DEFAULT_RTC, defines the initialization value to be
loaded into the Dallas part to define its operating mode. If a change is required, then this
parameter must be edited.

Values:

1 - Enable standard PC/AT-compatible real time clock.
0 - Disable standard PC/AT-compatible real time clock.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS hardware driver.
CONFIG_DEFAULT_RTC - Default programming of RTC.

7.1.282 OPTION_RTC_72421 Option

The OPTION_RTC_72421 option enables or disables code in the BIOS to use the 72421 Real-
Time Clock chip for maintaining the system's date and time.

This chip is used by the VersaLogic VL-186 family of industrial computer systems.

Values:

1 - Enable 72421 support.
0 - Disable 72421 support.

Related Parameters:

OPTION_SUPPORT_72421 - Enable 72421 hardware driver.

7.2 Parameters Found in CONFIG.INC

Chapter 7 EMBEDDED BIOS Adaptation Guide 255

General Software EMBEDDED BIOS Adaptation Guide

This section explains the purpose of the parameters defined in the INC\CONFIG.INC configuration
file. You should make sure that all of the parameters in this section are set properly for your
target hardware configuration, or the target will not function properly.

Do not edit the INC\CONFIG.INC file directly! Instead, if you need to make changes to the settings
of these parameters, copy the lines from INC\CONFIG.INC to your project file, and change the
values in the project file.

Note that most parameters in INC\CONFIG.INC are tied closely to options selected in
INC\OPTIONS.INC. Please carefully compare the two sets of configuration parameters to be sure
they accurately describe your hardware architecture.

7.2.1 BIOS_DATE Parameter

The BIOS_DATE parameter is edited by the adaptation engineer to provide a build date
timestamp on the BIOS. This date is assembled into the binary image of the BIOS.

The date is automatically configured by the BIOS if you do not specify a date; the date that is
used is the date determined by the assembler at the time the BIOS is built. If you override the
automatic date with this parameter, then any date can be specified. This may be necessary for
OEM version control.

Values:

’MM/DD/YY’ - a string containing the year, month, and date.

Related Parameters:

None.

7.2.2 BIOS_NAME Constant

The BIOS_NAME constant is displayed by the BIOS during POST to identify the BIOS
software as the property of General Software, Inc.

This constant must not be edited by the adaptation engineer or any adaptations that are modified
in this way will be deemed unlicensed by General Software. Do not attempt to translate this
string into a foreign language.

Values:

’Copyright (C) 1990-2000 General Software, Inc.’

Related Parameters:

BIOS_RESERVED - All rights reserved message, required for distribution outside of
the United States of America.

7.2.3 BIOS_RESERVED Constant

256 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The BIOS_NAME constant is displayed by the BIOS during POST. It must not be edited by the
adaptation engineer or any adaptations that are modified in this way will be deemed unlicensed
by General Software. Do not attempt to translate this string into a foreign language.

Values:

’, All Rights reserved.’

Related Parameters:

BIOS_NAME - EMBEDDED BIOS copyright message.

7.2.4 CPU_TYPE Parameter

The CPU_TYPE parameter is used during assembly of the BIOS to determine the minimum
CPU level that will be executing the BIOS at run-time. This allows the BIOS to conditionally
use more advanced techniques that use 286, 386, 486, Pentium, or Pentium II-specific features to
save space and time.

Values:

CPU_86 - CPU core is 8088 or 8086-compatible.
CPU_186 - CPU core is 80186 or 80188-compatible.
CPU_286 - CPU core is 80286 or 80288-compatible.
CPU_386 - CPU core is 80386 -compatible.
CPU_486 - CPU core is 80486-compatible.
CPU_586 - CPU core is Pentium-compatible.
CPU_686 - CPU core is Pentium II, Pentium III, Pentium Pro, or K6-compatible.

7.2.5 CPU_MHZ Parameter

The CPU_MHZ parameter is used by some CPU Personality Modules to program baud rates for
internal UARTs that have their clocks tied to the CPU clock rate.

Intended for use with 80C186-EC and similar systems, this parameter provides a way to
customize basically common code with a minimum of modification to the core BIOS.

Values:

16 - 16 Mhz CPU clock.
20 - 20 Mhz CPU clock.
25 - 25 Mhz CPU clock.
33 - 33 Mhz CPU clock.
50 - 50 Mhz CPU clock.
66 - 66 Mhz CPU clock.
133 - 133 Mhz CPU clock.
166 - 166 Mhz CPU clock.
200 - 200 Mhz CPU clock.
233 - 233 Mhz CPU clock.

Chapter 7 EMBEDDED BIOS Adaptation Guide 257

General Software EMBEDDED BIOS Adaptation Guide

400 - 400 Mhz CPU clock.
450 - 450 Mhz CPU clock.
500 - 500 Mhz CPU clock.
1000 - 1 Ghz CPU clock.
n - other CPU clocks.

Related Parameters:

None.

7.2.6 CONFIG_BOARD_VERSION Parameter

The CONFIG_BOARD_VERSION parameter is an unarchitected parameter that may be used
by the OEM’s Board Personality Module (BPM) to indicate which revision of the hardware is
being supported by the BIOS.

This allows an OEM to code a BPM which supports several similar hardware platforms, each of
which may be slightly different and require subtle changes in chipset initialization, for example.
With conditional assembly using this parameter, the BPM can determine which values to use for
chipset or other initialization.

Values:

n - Any value, to be passed to Board Personality Module, architected by OEM.

Related Parameters:

None.

7.2.7 CONFIG_POWER_ON_DELAY Parameter

The CONFIG_POWER_ON_DELAY parameter specifies a delay executed during POST that
compensates for the period of time on power-on when external peripheral components are not yet
ready to operate.

Usually, the components on a target initialize at different times, even though these times are very
close together. For example, while the CPU may start running if it is a low-power device, the
8042 keyboard controller may still be in an indeterminant state. The delay that this parameter
introduces causes the CPU to wait for a specified period of time to give the peripherals a chance
to initialize themselves.

The delay is actually specified as a number without specific units such as seconds. Because no
timing is available during this early stage (peripherals are assumed to not work yet), the delay is
specified in "CPU loops."

If you find that your target sometimes boots, and sometimes does not, then it may be a power-on
delay problem. If you are able to reset the target without dropping power, and the problem
persists, then it is not a power-on delay problem.

258 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

However, if you find that substituting a more heavy-duty power supply for a lighter-duty one
causes the target to start working reliably, then you need to increase this parameter, or get a
bigger power supply.

If the problem is not related to the power supply, then it can be related to 8042 initialization. See
the discussion on OPTION_SUPPORT_8042 for further details.

Values:

n - A number of iterations (0=none, 1 is the minimum delay, 65,535 is the maximum).

Related Parameters:

OPTION_SUPPORT_POWERON_DELAY - Enable power-on delay feature.

OPTION_SUPPORT_8042 - Discussion about 8042 initialization requirements of 8042
keyboard controllers. If this initialization is incorrect, the target may appear to
have a power-on delay problem, when in fact the problem is not the power supply.

7.2.8 CONFIG_CPU_DATA_BYTES Parameter

The CONFIG_CPU_DATA_BYTES parameter specifies the number of bytes to reserve in the
Extended BIOS Data Area in a field called CpuData for the CPU Personality Module’s exclusive
use (i.e., to maintain its internal state, as might be needed for shadowing, cache control, etc.)

Values:

n - Number of bytes to reserve in EBDA.

Related Parameters:

CONFIG_CS_DATA_BYTES - Space for Chipset Personality Module.
CONFIG_BOARD_DATA_BYTES - Space for Board Personality Module.

7.2.9 CONFIG_CS_DATA_BYTES Parameter

The CONFIG_CS_DATA_BYTES parameter specifies the number of bytes to reserve in the
Extended BIOS Data Area in a field called CsData for the Chipset Personality Module’s
exclusive use (i.e., to maintain its internal state, as might be needed for shadowing, cache
control, etc.)

Values:

n - Number of bytes to reserve in EBDA.

Related Parameters:

CONFIG_CPU_DATA_BYTES - Space for CPU Personality Module.
CONFIG_BOARD_DATA_BYTES - Space for Board Personality Module.

Chapter 7 EMBEDDED BIOS Adaptation Guide 259

General Software EMBEDDED BIOS Adaptation Guide

7.2.10 CONFIG_BOARD_DATA_BYTES Parameter

The CONFIG_BOARD_DATA_BYTES parameter specifies the number of bytes to reserve in
the Extended BIOS Data Area in a field called BoardData for the Board Personality Module’s
exclusive use (i.e., to maintain its internal state, as might be needed for shadowing, cache
control, etc.)

Values:

n - Number of bytes to reserve in EBDA.

Related Parameters:

CONFIG_CPU_DATA_BYTES - Space for CPU Personality Module.
CONFIG_CS_DATA_BYTES - Space for Chipset Personality Module.

7.2.11 CONFIG_MAX_CMOS_LOCATIONS Parameter

The CONFIG_MAX_CMOS_LOCATIONS parameter specifies the number of CMOS
locations available to the BIOS.

Normally, on a standard IBM PC/AT machine, there are 50 cells in the CMOS RAM. Many
chipsets extend this limitation when they implement the CMOS RAM feature. This parameter
tells the BIOS to what extent CMOS is implemented.

Consult your chipset documentation for complete details, if the CMOS RAM is implemented by
the chipset.

Values:

n - A number of cells (50 was standard, 80h is now more common).

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

CONFIG_START_BOARD_CMOS - 1st CMOS cell available to Board Personality
Module for its Custom Setup Screen’s information.

CONFIG_START_CMOS_CACHE - 1st CMOS cell not used by Real-Time clock's
date and time information.

7.2.12 CONFIG_START_BOARD_CMOS Parameter

The CONFIG_START_BOARD_CMOS parameter specifies the first CMOS location that can
be used by the Board Personality Module to store its own proprietary configuration data.

260 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This provides an architected means by which chipset modules can be compatible with different
CMOS RAM sizes.

Consult your chipset documentation for complete details about how many cells you will need to
store configuration data, and how many CMOS locations are implemented by the actual
hardware.

The use of CMOS by the board module is unarchitected, except for the definition of the first
cell’s index. Thus, the OEM can use these fields in any way necessary.

Values:

n - A cell number (normally, use the symbol, CMOS_END_STD, as a value).

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

CONFIG_MAX_CMOS_LOCATIONS - Total number of CMOS cells supported by
CMOS RAM part.

CONFIG_START_CMOS_CACHE - 1st CMOS cell not used by Real-Time clock’s
date and time.

7.2.13 CONFIG_START_CMOS_CACHE Parameter

The CONFIG_START_CMOS_CACHE parameter specifies the first CMOS location that does
not contain Real-Time Clock information, such as the date and time.

Technically, this parameter specifies the first cell’s index that can be cached by EMBEDDED
BIOS into a RAM buffer in the Extended BIOS Data Area for purposes of manipulating a local
copy of CMOS without disrupting the stored copy during SETUP. Since the Real-Time clock
information is constantly updated, it cannot be cached.

Consult your chipset hardware documentation for complete details about how many cells are
supported by your chipset. This cell number almost always starts at 10h, since the cells before
cell 10h are usually used by the Real-Time Clock and are not saved by SETUP in the same way
that other cells are.

Values:

n - A cell number (10h is common).

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

CONFIG_START_BOARD_CMOS - 1st CMOS cell available to Board Personality
Module.

Chapter 7 EMBEDDED BIOS Adaptation Guide 261

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_MAX_CMOS_LOCATIONS - Total number of CMOS cells supported by
CMOS RAM part.

7.2.14 CONFIG_CMOS_INDEX Parameter

The CONFIG_CMOS_INDEX parameter specifies the I/O port assigned to the index register
on the CMOS RAM.

In most systems, the I/O port address is 70h. However, in some systems based on processors
such as the NEC V51, the I/O port changes to other values (156h for the V51).

Consult your hardware documentation to be sure you have the correct I/O port established for the
index register.

If you change the index register, you will most likely need to also change the data register, by
adjusting CONFIG_CMOS_DATA.

Values:

n - An I/O port number from 000h to fffh. For ISA systems, this is almost always 70h.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

CONFIG_CMOS_DATA - Data register I/O address.

7.2.15 CONFIG_CMOS_DATA Parameter

The CONFIG_CMOS_DATA parameter specifies the I/O port assigned to the data register on
the CMOS RAM.

In most systems, the I/O port address is 71h. However, in some systems based on processors
such as the NEC V51, the I/O port changes to other values (157h for the V51).

Consult your hardware documentation to be sure you have the correct I/O port established for the
data register.

If you change the data register, you will most likely need to also change the index register, by
adjusting CONFIG_CMOS_INDEX.

Values:

n - An I/O port number from 000h to fffh. For ISA systems, this is almost always 71h.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

262 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CMOS_INDEX - Index register I/O address.

7.2.16 CONFIG_DEFAULT_RTC Parameter

The CONFIG_DEFAULT_RTC parameter specifies the base rate at which the Real Time
Clock is configured to operate.

For ISA systems, this value should be set at 26h and not modified. If you are using a different
part other than the standard Dallas one, or if you find that the Real-Time clock is not keeping
accurate time, then you may need to adjust this value. See the documentation for the Real-Time
Clock you are using to determine how to change this parameter.

Values:

26h - Base rate.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_RTC_CMOS - Enable Dallas RTC support.

7.2.17 CONFIG_CMOS_BOOT_0 Parameter

The CONFIG_CMOS_BOOT_0 parameter specifies the factory default value for the CMOS
first boot action to be performed by POST. Boot actions include booting an operating system or
Windows CE from drives A: through K:, booting Windows CE out of ROM, booting DOS from
ROM, entering Manufacturing Mode, and entering the debugger.

There are six boot actions, and POST executes them one at a time, until no more actions are
possible, at which time it displays a short menu that allows the user to reboot the system, or enter
the Setup system. Any combination of actions may be specified by the user, making the system
flexible enough to attempt booting a desktop operating system such as Windows NT before
booting the backup boot operating system, Embedded DOS-ROM, or entering Manufacturing
Mode if no operating system has been programmed into the Flash yet.

Values:

BOOT_NONE - No action for this boot step.
BOOT_DRIVEA - Attempt to boot from logical drive A:.
BOOT_DRIVEB - Attempt to boot from logical drive B:.
BOOT_DRIVEC - Attempt to boot from logical drive C:.
BOOT_DRIVED - Attempt to boot from logical drive D:.
BOOT_DRIVEE - Attempt to boot from logical drive E:.
BOOT_DRIVEF - Attempt to boot from logical drive F:.
BOOT_DRIVEG - Attempt to boot from logical drive G:.
BOOT_DRIVEH - Attempt to boot from logical drive H:.
BOOT_DRIVEI - Attempt to boot from logical drive I:.
BOOT_DRIVEJ - Attempt to boot from logical drive J:.
BOOT_DRIVEK - Attempt to boot from logical drive K:.
BOOT_EDOSROM - Attempt to boot DOS out of ROM.

Chapter 7 EMBEDDED BIOS Adaptation Guide 263

General Software EMBEDDED BIOS Adaptation Guide

BOOT_WINCE - Attempt to boot Windows CE out of ROM.
BOOT_MFGMODE - Enter Manufacturing Mode.
BOOT_DEBUGGER - Enter debugger.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.18 CONFIG_CMOS_BOOT_1 Parameter

The CONFIG_CMOS_BOOT_1 parameter specifies the factory default value for the CMOS
second boot action to be performed by POST. Boot actions include booting an operating system
or Windows CE from drives A: through K:, booting Windows CE out of ROM, booting DOS
from ROM, entering Manufacturing Mode, and entering the debugger.

There are six boot actions, and POST executes them one at a time, until no more actions are
possible, at which time it displays a short menu that allows the user to reboot the system, or enter
the Setup system. Any combination of actions may be specified by the user, making the system
flexible enough to attempt booting a desktop operating system such as Windows NT before
booting the backup boot operating system, Embedded DOS-ROM, or entering Manufacturing
Mode if no operating system has been programmed into the Flash yet.

Values:

BOOT_NONE - No action for this boot step.
BOOT_DRIVEA - Attempt to boot from drive A:.
BOOT_DRIVEB - Attempt to boot from logical drive B:.
BOOT_DRIVEC - Attempt to boot from logical drive C:.
BOOT_DRIVED - Attempt to boot from logical drive D:.
BOOT_DRIVEE - Attempt to boot from logical drive E:.
BOOT_DRIVEF - Attempt to boot from logical drive F:.
BOOT_DRIVEG - Attempt to boot from logical drive G:.
BOOT_DRIVEH - Attempt to boot from logical drive H:.
BOOT_DRIVEI - Attempt to boot from logical drive I:.
BOOT_DRIVEJ - Attempt to boot from logical drive J:.
BOOT_DRIVEK - Attempt to boot from logical drive K:.
BOOT_EDOSROM - Attempt to boot DOS out of ROM.
BOOT_WINCE - Attempt to boot Windows CE out of ROM.
BOOT_MFGMODE - Enter Manufacturing Mode.
BOOT_DEBUGGER - Enter debugger.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.19 CONFIG_CMOS_BOOT_2 Parameter

The CONFIG_CMOS_BOOT_2 parameter specifies the factory default value for the CMOS
third boot action to be performed by POST. Boot actions include booting an operating system or
Windows CE from drives A: through K:, booting Windows CE out of ROM, booting DOS from
ROM, entering Manufacturing Mode, and entering the debugger.

264 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

There are six boot actions, and POST executes them one at a time, until no more actions are
possible, at which time it displays a short menu that allows the user to reboot the system, or enter
the Setup system. Any combination of actions may be specified by the user, making the system
flexible enough to attempt booting a desktop operating system such as Windows NT before
booting the backup boot operating system, Embedded DOS-ROM, or entering Manufacturing
Mode if no operating system has been programmed into the Flash yet.

Values:

BOOT_NONE - No action for this boot step.
BOOT_DRIVEA - Attempt to boot from drive A:.
BOOT_DRIVEB - Attempt to boot from logical drive B:.
BOOT_DRIVEC - Attempt to boot from logical drive C:.
BOOT_DRIVED - Attempt to boot from logical drive D:.
BOOT_DRIVEE - Attempt to boot from logical drive E:.
BOOT_DRIVEF - Attempt to boot from logical drive F:.
BOOT_DRIVEG - Attempt to boot from logical drive G:.
BOOT_DRIVEH - Attempt to boot from logical drive H:.
BOOT_DRIVEI - Attempt to boot from logical drive I:.
BOOT_DRIVEJ - Attempt to boot from logical drive J:.
BOOT_DRIVEK - Attempt to boot from logical drive K:.
BOOT_WINCE - Attempt to boot Windows CE out of ROM.
BOOT_EDOSROM - Attempt to boot DOS out of ROM.
BOOT_MFGMODE - Enter Manufacturing Mode.
BOOT_DEBUGGER - Enter debugger.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.20 CONFIG_CMOS_BOOT_3 Parameter

The CONFIG_CMOS_BOOT_3 parameter specifies the factory default value for the CMOS
fourth boot action to be performed by POST. Boot actions include booting an operating system
or Windows CE from drives A: through K:, booting Windows CE out of ROM, booting DOS
from ROM, entering Manufacturing Mode, and entering the debugger.

There are six boot actions, and POST executes them one at a time, until no more actions are
possible, at which time it displays a short menu that allows the user to reboot the system, or enter
the Setup system. Any combination of actions may be specified by the user, making the system
flexible enough to attempt booting a desktop operating system such as Windows NT before
booting the backup boot operating system, Embedded DOS-ROM, or entering Manufacturing
Mode if no operating system has been programmed into the Flash yet.

Values:

BOOT_NONE - No action for this boot step.
BOOT_DRIVEA - Attempt to boot from drive A:.
BOOT_DRIVEB - Attempt to boot from logical drive B:.
BOOT_DRIVEC - Attempt to boot from logical drive C:.
BOOT_DRIVED - Attempt to boot from logical drive D:.

Chapter 7 EMBEDDED BIOS Adaptation Guide 265

General Software EMBEDDED BIOS Adaptation Guide

BOOT_DRIVEE - Attempt to boot from logical drive E:.
BOOT_DRIVEF - Attempt to boot from logical drive F:.
BOOT_DRIVEG - Attempt to boot from logical drive G:.
BOOT_DRIVEH - Attempt to boot from logical drive H:.
BOOT_DRIVEI - Attempt to boot from logical drive I:.
BOOT_DRIVEJ - Attempt to boot from logical drive J:.
BOOT_DRIVEK - Attempt to boot from logical drive K:.
BOOT_WINCE - Attempt to boot Windows CE out of ROM.
BOOT_EDOSROM - Attempt to boot DOS out of ROM.
BOOT_MFGMODE - Enter Manufacturing Mode.
BOOT_DEBUGGER - Enter debugger.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.21 CONFIG_CMOS_BOOT_4 Parameter

The CONFIG_CMOS_BOOT_4 parameter specifies the factory default value for the CMOS
fifth boot action to be performed by POST. Boot actions include booting an operating system or
Windows CE from drives A: through K:, booting Windows CE out of ROM, booting DOS from
ROM, entering Manufacturing Mode, and entering the debugger.

There are six boot actions, and POST executes them one at a time, until no more actions are
possible, at which time it displays a short menu that allows the user to reboot the system, or enter
the Setup system. Any combination of actions may be specified by the user, making the system
flexible enough to attempt booting a desktop operating system such as Windows NT before
booting the backup boot operating system, Embedded DOS-ROM, or entering Manufacturing
Mode if no operating system has been programmed into the Flash yet.

Values:

BOOT_NONE - No action for this boot step.
BOOT_DRIVEA - Attempt to boot from drive A:.
BOOT_DRIVEB - Attempt to boot from logical drive B:.
BOOT_DRIVEC - Attempt to boot from logical drive C:.
BOOT_DRIVED - Attempt to boot from logical drive D:.
BOOT_DRIVEE - Attempt to boot from logical drive E:.
BOOT_DRIVEF - Attempt to boot from logical drive F:.
BOOT_DRIVEG - Attempt to boot from logical drive G:.
BOOT_DRIVEH - Attempt to boot from logical drive H:.
BOOT_DRIVEI - Attempt to boot from logical drive I:.
BOOT_DRIVEJ - Attempt to boot from logical drive J:.
BOOT_DRIVEK - Attempt to boot from logical drive K:.
BOOT_WINCE - Attempt to boot Windows CE out of ROM.
BOOT_EDOSROM - Attempt to boot DOS out of ROM.
BOOT_MFGMODE - Enter Manufacturing Mode.
BOOT_DEBUGGER - Enter debugger.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

266 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.2.22 CONFIG_CMOS_BOOT_5 Parameter

The CONFIG_CMOS_BOOT_5 parameter specifies the factory default value for the CMOS
sixth boot action to be performed by POST. Boot actions include booting an operating system or
Windows CE from drives A: through K:, booting Windows CE out of ROM, booting DOS from
ROM, entering Manufacturing Mode, and entering the debugger.

There are six boot actions, and POST executes them one at a time, until no more actions are
possible, at which time it displays a short menu that allows the user to reboot the system, or enter
the Setup system. Any combination of actions may be specified by the user, making the system
flexible enough to attempt booting a desktop operating system such as Windows NT before
booting the backup boot operating system, Embedded DOS-ROM, or entering Manufacturing
Mode if no operating system has been programmed into the Flash yet.

Values:

BOOT_NONE - No action for this boot step.
BOOT_DRIVEA - Attempt to boot from drive A:.
BOOT_DRIVEB - Attempt to boot from logical drive B:.
BOOT_DRIVEC - Attempt to boot from logical drive C:.
BOOT_DRIVED - Attempt to boot from logical drive D:.
BOOT_DRIVEE - Attempt to boot from logical drive E:.
BOOT_DRIVEF - Attempt to boot from logical drive F:.
BOOT_DRIVEG - Attempt to boot from logical drive G:.
BOOT_DRIVEH - Attempt to boot from logical drive H:.
BOOT_DRIVEI - Attempt to boot from logical drive I:.
BOOT_DRIVEJ - Attempt to boot from logical drive J:.
BOOT_DRIVEK - Attempt to boot from logical drive K:.
BOOT_WINCE - Attempt to boot Windows CE out of ROM.
BOOT_EDOSROM - Attempt to boot DOS out of ROM.
BOOT_MFGMODE - Enter Manufacturing Mode.
BOOT_DEBUGGER - Enter debugger.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.23 CONFIG_CMOS_FLOPPY_0 Parameter

The CONFIG_CMOS_FLOPPY_0 parameter specifies the factory-default device assignment
for the first physical floppy drive. Note that this parameter has nothing to do with drive
emulators or drive letter assignments. This parameter tells the BIOS which type of physical
floppy drive will be found as the second one on the floppy drive cable.

If you are using a floppy disk in your system, you need to adjust this parameter to properly
indicate what the factory-default floppy disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine what floppy drive type is used for the first physical floppy drive.

Chapter 7 EMBEDDED BIOS Adaptation Guide 267

General Software EMBEDDED BIOS Adaptation Guide

If no floppy drive is assigned to the drive letter, then the value is 0 or DRIVE_NONE. The
other values are specified below. Note that these values define drive types, not floppy disk types.
For example, it is possible to insert either a 720KB or a 1.44MB floppy in a 3.5" 1.44MB drive.
It is the drive type that is specified here; the discovery of a particular disk type when a disk is
inserted into the drive is the job of the floppy disk driver.

Values:

DRIVE_NONE - No device assigned to drive.
DRIVE_360 - 5.25", 360KB floppy drive.
DRIVE_12 - 5.25", 1.2MB floppy drive.
DRIVE_720 - 3.5", 720KB floppy drive.
DRIVE_144 - 3.5", 1.44MB floppy drive.

Related Parameters:

FILE_SYSTEM - Enable floppy disk support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_FLOPPY_1 - Floppy 1 device assignment.
CONFIG_CMOS_FLOPPY_2 - Floppy 2 device assignment.
CONFIG_CMOS_FLOPPY_3 - Floppy 3 device assignment.

7.2.24 CONFIG_CMOS_FLOPPY_1 Parameter

The CONFIG_CMOS_FLOPPY_1 parameter specifies the factory-default device assignment
for the second physical floppy drive. Note that this parameter has nothing to do with drive
emulators or drive letter assignments. This parameter tells the BIOS which type of physical
floppy drive will be found as the second one on the floppy drive cable.

If you are using a floppy disk in your system, you need to adjust this parameter to properly
indicate what the factory-default floppy disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine what floppy drive type is used for the second physical floppy drive.

If no floppy drive is assigned to the drive letter, then the value is 0 or DRIVE_NONE. The
other values are specified below. Note that these values define drive types, not floppy disk types.
For example, it is possible to insert either a 720KB or a 1.44MB floppy in a 3.5" 1.44MB drive.
It is the drive type that is specified here; the discovery of a particular disk type when a disk is
inserted into the drive is the job of the floppy disk driver.

Values:

DRIVE_NONE - No device assigned to drive.
DRIVE_360 - 5.25", 360KB floppy drive.
DRIVE_12 - 5.25", 1.2MB floppy drive.
DRIVE_720 - 3.5", 720KB floppy drive.
DRIVE_144 - 3.5", 1.44MB floppy drive.
DRIVE_288 - 3.5", 2.88MB floppy drive

268 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

FILE_SYSTEM - Enable floppy disk support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_FLOPPY_0 - Floppy 0 device assignment.
CONFIG_CMOS_FLOPPY_2 - Floppy 2 device assignment.
CONFIG_CMOS_FLOPPY_3 - Floppy 3 device assignment.

7.2.25 CONFIG_CMOS_FLOPPY_2 Parameter

The CONFIG_CMOS_FLOPPY_2 parameter specifies the factory-default device assignment
for the third physical floppy drive. Note that this parameter has nothing to do with drive
emulators or drive letter assignments. This parameter tells the BIOS which type of physical
floppy drive will be found as the third one on the floppy drive cable.

If you are using a floppy disk in your system, you need to adjust this parameter to properly
indicate what the factory-default floppy disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine what floppy drive type is used for the third physical floppy drive.

If no floppy drive is assigned to the drive letter, then the value is 0 or DRIVE_NONE. The
other values are specified below. Note that these values define drive types, not floppy disk types.
For example, it is possible to insert either a 720KB or a 1.44MB floppy in a 3.5" 1.44MB drive.
It is the drive type that is specified here; the discovery of a particular disk type when a disk is
inserted into the drive is the job of the floppy disk driver.

Values:

DRIVE_NONE - No device assigned to drive.
DRIVE_360 - 5.25", 360KB floppy drive.
DRIVE_12 - 5.25", 1.2MB floppy drive.
DRIVE_720 - 3.5", 720KB floppy drive.
DRIVE_144 - 3.5", 1.44MB floppy drive.
DRIVE_288 - 3.5", 2.88MB floppy drive.

Related Parameters:

FILE_SYSTEM - Enable floppy disk support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_FLOPPY_0 - Floppy 0 device assignment.
CONFIG_CMOS_FLOPPY_1 - Floppy 1 device assignment.
CONFIG_CMOS_FLOPPY_3 - Floppy 3 device assignment.

7.2.26 CONFIG_CMOS_FLOPPY_3 Parameter

The CONFIG_CMOS_FLOPPY_0 parameter specifies the factory-default device assignment
for the fourth physical floppy drive. Note that this parameter has nothing to do with drive

Chapter 7 EMBEDDED BIOS Adaptation Guide 269

General Software EMBEDDED BIOS Adaptation Guide

emulators or drive letter assignments. This parameter tells the BIOS which type of physical
floppy drive will be found as the fourth one on the floppy drive cable.

If you are using a floppy disk in your system, you need to adjust this parameter to properly
indicate what the factory-default floppy disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine what floppy drive type is used for the fourth physical floppy drive.

If no floppy drive is assigned to the drive letter, then the value is 0 or DRIVE_NONE. The
other values are specified below. Note that these values define drive types, not floppy disk types.
For example, it is possible to insert either a 720KB or a 1.44MB floppy in a 3.5" 1.44MB drive.
It is the drive type that is specified here; the discovery of a particular disk type when a disk is
inserted into the drive is the job of the floppy disk driver.

Values:

DRIVE_NONE - No device assigned to drive.
DRIVE_360 - 5.25", 360KB floppy drive.
DRIVE_12 - 5.25", 1.2MB floppy drive.
DRIVE_720 - 3.5", 720KB floppy drive.
DRIVE_144 - 3.5", 1.44MB floppy drive.
DRIVE_288 - 3.5", 2.88MB floppy drive.

Related Parameters:

FILE_SYSTEM - Enable floppy disk support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_FLOPPY_0 - Floppy 0 device assignment.
CONFIG_CMOS_FLOPPY_1 - Floppy 1 device assignment.
CONFIG_CMOS_FLOPPY_2 - Floppy 2 device assignment.

7.2.27 CONFIG_CMOS_IDE_0 Parameter

The CONFIG_CMOS_IDE_0 parameter specifies the factory-default value to be used as the
first hard drive’s drive type.

If you are using a hard drive in your system, you need to adjust this parameter to properly
indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine what hard disk type is used for the physical hard drive.

Type IDE_USER is user-defined. If you use type IDE_USER, then the geometry will be read
from CONFIG_CMOS_IDE0_CYL, CONFIG_CMOS_IDE0_HEADS, and
CONFIG_CMOS_IDE0_SPT to be used for the number of cylinders, heads, and sectors per
track, respectively.

270 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The following example shows how to define the the first hard drive as being type IDE_USER
(the other three geometry parameters are also specified here to support an ATA card with 320
cylinders, 2 heads, and 32 sectors per track):

CONFIG_CMOS_IDE_0 = IDE_USER ; the drive type.

CONFIG_CMOS_IDE0_CYL = 320 ; cylinders.

CONFIG_CMOS_IDE0_HEADS = 2 ; heads.

CONFIG_CMOS_IDE0_SPT = 32 ; sectors per track.

Type IDE_AUTO is autodetect, without any geometry translation. This allows EMBEDDED
BIOS to determine during POST the actual geometry (heads, tracks, and sectors per track) so that
it becomes unnecessary for the user to key-in the actual geometry with type IDE_USER. Some
older drives do not support the industry-standard IDE protocol for determining the geometry, so
this may not work in some older systems. Also, if a drive has been used in a system with user-
specified geometry that does not match the drive-reported geometry, type IDE_AUTO should
not be used, because it cannot know the geometry used on the other system.

Type IDE_LBA is another autodetect type, and it also adds LBA (Logical Block Addressing)
translation, supporting drives larger than 528MB. This has become the industry standard, and
General Software recommends using type IDE_LBA for embedded use.

Type IDE_PHOENIX is another autodetect type, and adds CHS (Cylinder/Head/Sector)
translation, a proprietary scheme introduced by Phoenix Technologies. Use of this type is
discouraged since it is only provided for compatibility with drives already formatted CHS.

Values:

IDE_NONE (0) - Specifies drive not installed.

IDE_AUTO (1) - Specifies drive type is detected automatically during POST through
extended IDE protocol. This is not supported by all IDE drives because some
drives don’t have this feature, and others may implement it incorrectly.

IDE_LBA (2) - Specifies drive type is detected automatically during POST through
extended IDE protocol, and that LBA translation will be performed to support
drives with more than 1024 cylinders. The recommended standard for all drives
larger than 528MB.

IDE_PHOENIX (3) - Specifies drive type is detected automatically during POST
through extended IDE protocol, and that Phoenix-compatible CHS translation will
be performed to support drives with more than 1024 cylinders.

Related Parameters:

FILE_SYSTEM - Enable file systems.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_IDE_AUTODETECT - Enable IDE autodetect (type 48) support.
OPTION_IDE_LBA - Enable IDE Logical Block Addressing support.
OPTION_IDE_CHS - Enable IDE Cylinder/Head/Sector translation support.
CONFIG_CMOS_IDE_1 - Configure second IDE drive type.
CONFIG_CMOS_IDE_2 - Configure third IDE drive type.
CONFIG_CMOS_IDE_3 - Configure fourth IDE drive type.

Chapter 7 EMBEDDED BIOS Adaptation Guide 271

General Software EMBEDDED BIOS Adaptation Guide

7.2.28 CONFIG_CMOS_IDE_1 Parameter

The CONFIG_CMOS_IDE_1 parameter specifies the factory-default value to be used as the
second hard drive’s drive type. See the section on CONFIG_CMOS_IDE_0 for details.

Values:

IDE_NONE (0) - Specifies drive not installed.

IDE_AUTO (1) - Specifies drive type is detected automatically during POST through
extended IDE protocol. This is not supported by all IDE drives because some
drives don’t have this feature, and others may implement it incorrectly.

IDE_LBA (2) - Specifies drive type is detected automatically during POST through
extended IDE protocol, and that LBA translation will be performed to support
drives with more than 1024 cylinders. The recommended standard for all drives
larger than 528MB.

IDE_PHOENIX (3) - Specifies drive type is detected automatically during POST
through extended IDE protocol, and that Phoenix-compatible CHS translation will
be performed to support drives with more than 1024 cylinders.

Related Parameters:

FILE_SYSTEM - Enable file systems.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_IDE_AUTODETECT - Enable IDE autodetect (type 48) support.
OPTION_IDE_LBA - Enable IDE Logical Block Addressing support.
OPTION_IDE_CHS - Enable IDE Cylinder/Head/Sector translation support.
CONFIG_CMOS_IDE_0 - Configure first IDE drive type.
CONFIG_CMOS_IDE_2 - Configure third IDE drive type.
CONFIG_CMOS_IDE_3 - Configure fourth IDE drive type.

7.2.29 CONFIG_CMOS_IDE_2 Parameter

The CONFIG_CMOS_IDE_2 parameter specifies the factory-default value to be used as the
third hard drive’s drive type. See the section on CONFIG_CMOS_IDE_0 for details.

Values:

IDE_NONE (0) - Specifies drive not installed.

IDE_AUTO (1) - Specifies drive type is detected automatically during POST through
extended IDE protocol. This is not supported by all IDE drives because some
drives don’t have this feature, and others may implement it incorrectly.

IDE_LBA (2) - Specifies drive type is detected automatically during POST through
extended IDE protocol, and that LBA translation will be performed to support

272 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

drives with more than 1024 cylinders. The recommended standard for all drives
larger than 528MB.

IDE_PHOENIX (3) - Specifies drive type is detected automatically during POST
through extended IDE protocol, and that Phoenix-compatible CHS translation will
be performed to support drives with more than 1024 cylinders.

Related Parameters:

FILE_SYSTEM - Enable file systems.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_IDE_AUTODETECT - Enable IDE autodetect (type 48) support.
OPTION_IDE_LBA - Enable IDE Logical Block Addressing support.
OPTION_IDE_CHS - Enable IDE Cylinder/Head/Sector translation support.
CONFIG_CMOS_IDE_0 - Configure first IDE drive type.
CONFIG_CMOS_IDE_1 - Configure second IDE drive type.
CONFIG_CMOS_IDE_3 - Configure fourth IDE drive type.

7.2.30 CONFIG_CMOS_IDE_3 Parameter

The CONFIG_CMOS_IDE_3 parameter specifies the factory-default value to be used as the
fourth hard drive’s drive type. See the section on CONFIG_CMOS_IDE_0 for details.

Values:

IDE_NONE (0) - Specifies drive not installed.

IDE_AUTO (1) - Specifies drive type is detected automatically during POST through
extended IDE protocol. This is not supported by all IDE drives because some
drives don’t have this feature, and others may implement it incorrectly.

IDE_LBA (2) - Specifies drive type is detected automatically during POST through
extended IDE protocol, and that LBA translation will be performed to support
drives with more than 1024 cylinders. The recommended standard for all drives
larger than 528MB.

IDE_PHOENIX (3) - Specifies drive type is detected automatically during POST
through extended IDE protocol, and that Phoenix-compatible CHS translation will
be performed to support drives with more than 1024 cylinders.

Related Parameters:

FILE_SYSTEM - Enable file systems.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_IDE_AUTODETECT - Enable IDE autodetect (type 48) support.
OPTION_IDE_LBA - Enable IDE Logical Block Addressing support.
OPTION_IDE_CHS - Enable IDE Cylinder/Head/Sector translation support.
CONFIG_CMOS_IDE_0 - Configure first IDE drive type.
CONFIG_CMOS_IDE_1 - Configure second IDE drive type.
CONFIG_CMOS_IDE_2 - Configure third IDE drive type.

Chapter 7 EMBEDDED BIOS Adaptation Guide 273

General Software EMBEDDED BIOS Adaptation Guide

7.2.31 CONFIG_CMOS_IDE0_CYL Parameter

The CONFIG_CMOS_IDE0_CYL parameter specifies the factory-default value to be used as
the first drive’s number of cylinders should CONFIG_CMOS_IDE_0 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of cylinders supported by the drive.

Values:

n - Specifies number of cylinders (1-4096).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE_0 - Configure first drive type.
CONFIG_CMOS_IDE0_HDS - Number of heads for drive.
CONFIG_CMOS_IDE0_SPT - Number of sectors per track for drive.

7.2.32 CONFIG_CMOS_IDE0_HDS Parameter

The CONFIG_CMOS_IDE0_HDS parameter specifies the factory-default value to be used as
the first drive’s number of heads should CONFIG_CMOS_IDE_0 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of heads supported by the drive.

Values:

n - Specifies number of heads (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE - Configure hard drives.
CONFIG_CMOS_IDE_0 - Configure hard drive type.
CONFIG_CMOS_IDE0_CYL - Number of cylinders for drive.

274 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CMOS_IDE0_SPT - Number of sectors per track for drive.

7.2.33 CONFIG_CMOS_IDE0_SPT Parameter

The CONFIG_CMOS_IDE0_SPT parameter specifies the factory-default value to be used as
the first drive’s number of sectors per track should CONFIG_CMOS_IDE_0 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of sectors per track supported by the drive.

Values:

n - Specifies number of sector per track (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE_0 - Configure hard drive type.
CONFIG_CMOS_IDE0_CYL - Number of cylinders for drive.
CONFIG_CMOS_IDE0_HDS - Number of heads for drive.

7.2.34 CONFIG_CMOS_IDE1_CYL Parameter

The CONFIG_CMOS_IDE1_CYL parameter specifies the factory-default value to be used as
the second drive’s number of cylinders should CONFIG_CMOS_IDE_1 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of cylinders supported by the drive.

Values:

n - Specifies number of cylinders (1-4096).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE_1 - Configure first drive type.
CONFIG_CMOS_IDE1_HDS - Number of heads for drive.

Chapter 7 EMBEDDED BIOS Adaptation Guide 275

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CMOS_IDE1_SPT - Number of sectors per track for drive.

7.2.35 CONFIG_CMOS_IDE1_HDS Parameter

The CONFIG_CMOS_IDE0_HDS parameter specifies the factory-default value to be used as
the second drive’s number of heads should CONFIG_CMOS_IDE_1 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of heads supported by the drive.

Values:

n - Specifies number of heads (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE - Configure hard drives.
CONFIG_CMOS_IDE_1 - Configure hard drive type.
CONFIG_CMOS_IDE1_CYL - Number of cylinders for drive.
CONFIG_CMOS_IDE1_SPT - Number of sectors per track for drive.

7.2.36 CONFIG_CMOS_IDE1_SPT Parameter

The CONFIG_CMOS_IDE1_SPT parameter specifies the factory-default value to be used as
the second drive’s number of sectors per track should CONFIG_CMOS_IDE_1 contain the
value IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of sectors per track supported by the drive.

Values:

n - Specifies number of sector per track (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE_1 - Configure hard drive type.

276 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CMOS_IDE1_CYL - Number of cylinders for drive.
CONFIG_CMOS_IDE1_HDS - Number of heads for drive.

7.2.37 CONFIG_CMOS_IDE2_CYL Parameter

The CONFIG_CMOS_IDE2_CYL parameter specifies the factory-default value to be used as
the third drive’s number of cylinders should CONFIG_CMOS_IDE_2 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of cylinders supported by the drive.

Values:

n - Specifies number of cylinders (1-4096).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE_2 - Configure first drive type.
CONFIG_CMOS_IDE2_HDS - Number of heads for drive.
CONFIG_CMOS_IDE2_SPT - Number of sectors per track for drive.

7.2.38 CONFIG_CMOS_IDE2_HDS Parameter

The CONFIG_CMOS_IDE0_HDS parameter specifies the factory-default value to be used as
the third drive’s number of heads should CONFIG_CMOS_IDE_2 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of heads supported by the drive.

Values:

n - Specifies number of heads (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE - Configure hard drives.

Chapter 7 EMBEDDED BIOS Adaptation Guide 277

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CMOS_IDE_2 - Configure hard drive type.
CONFIG_CMOS_IDE2_CYL - Number of cylinders for drive.
CONFIG_CMOS_IDE2_SPT - Number of sectors per track for drive.

7.2.39 CONFIG_CMOS_IDE2_SPT Parameter

The CONFIG_CMOS_IDE2_SPT parameter specifies the factory-default value to be used as
the third drive’s number of sectors per track should CONFIG_CMOS_IDE_2 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of sectors per track supported by the drive.

Values:

n - Specifies number of sector per track (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE_2 - Configure hard drive type.
CONFIG_CMOS_IDE2_CYL - Number of cylinders for drive.
CONFIG_CMOS_IDE2_HDS - Number of heads for drive.

7.2.40 CONFIG_CMOS_IDE3_CYL Parameter

The CONFIG_CMOS_IDE3_CYL parameter specifies the factory-default value to be used as
the fourth drive’s number of cylinders should CONFIG_CMOS_IDE_3 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of cylinders supported by the drive.

Values:

n - Specifies number of cylinders (1-4096).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

278 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CMOS_IDE_3 - Configure first drive type.
CONFIG_CMOS_IDE3_HDS - Number of heads for drive.
CONFIG_CMOS_IDE3_SPT - Number of sectors per track for drive.

7.2.41 CONFIG_CMOS_IDE3_HDS Parameter

The CONFIG_CMOS_IDE3_HEADS parameter specifies the factory-default value to be used
as the fourth drive’s number of heads should CONFIG_CMOS_IDE_3 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of heads supported by the drive.

Values:

n - Specifies number of heads (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE - Configure hard drives.
CONFIG_CMOS_IDE_3 - Configure hard drive type.
CONFIG_CMOS_IDE3_CYL - Number of cylinders for drive.
CONFIG_CMOS_IDE3_SPT - Number of sectors per track for drive.

7.2.42 CONFIG_CMOS_IDE3_SPT Parameter

The CONFIG_CMOS_IDE3_SPT parameter specifies the factory-default value to be used as
the fourth drive’s number of sectors per track should CONFIG_CMOS_IDE_3 contain the value
IDE_USER (user defined type).

If you are using a user-defined hard drive type in your system, you need to adjust this parameter
to properly indicate what the factory-default hard disk configuration will be.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the number of sectors per track supported by the drive.

Values:

n - Specifies number of sector per track (1-63).

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_ATA - Enable PCMCIA ATA card support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 279

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_CMOS - Enable CMOS support.
CONFIG_CMOS_IDE_3 - Configure hard drive type.
CONFIG_CMOS_IDE3_CYL - Number of cylinders for drive.
CONFIG_CMOS_IDE3_HDS - Number of heads for drive.

7.2.43 CONFIG_CMOS_ASSIGN_A Parameter

The CONFIG_CMOS_ASSIGN_A parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.44 CONFIG_CMOS_ASSIGN_B Parameter

The CONFIG_CMOS_ASSIGN_B parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

280 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.45 CONFIG_CMOS_ASSIGN_C Parameter

The CONFIG_CMOS_ASSIGN_C parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.46 CONFIG_CMOS_ASSIGN_D Parameter

The CONFIG_CMOS_ASSIGN_D parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Chapter 7 EMBEDDED BIOS Adaptation Guide 281

General Software EMBEDDED BIOS Adaptation Guide

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.47 CONFIG_CMOS_ASSIGN_E Parameter

The CONFIG_CMOS_ASSIGN_E parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.48 CONFIG_CMOS_ASSIGN_F Parameter

The CONFIG_CMOS_ASSIGN_F parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive

282 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.49 CONFIG_CMOS_ASSIGN_G Parameter

The CONFIG_CMOS_ASSIGN_G parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 283

General Software EMBEDDED BIOS Adaptation Guide

7.2.50 CONFIG_CMOS_ASSIGN_H Parameter

The CONFIG_CMOS_ASSIGN_H parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.51 CONFIG_CMOS_ASSIGN_I Parameter

The CONFIG_CMOS_ASSIGN_I parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.

284 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.52 CONFIG_CMOS_ASSIGN_J Parameter

The CONFIG_CMOS_ASSIGN_J parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.53 CONFIG_CMOS_ASSIGN_K Parameter

The CONFIG_CMOS_ASSIGN_K parameter specifies what file system will be mapped to the
drive letter. While it is actually DOS that provides drive letter assignments, it gets the drive
numbering from the BIOS, and the numbered drives are mapped to physical file systems in the
BIOS itself.

The value associated with this parameter is an index into the FILE_SYSTEM table created by
the OEM in the project file. The value 0 means no assignment (that is, the drive letter will not
have any device mapping).

Nonzero values are indexes into the file system table. The file system table’s entries are
numbered 1, 2, 3, and so on, starting with all of the "soft" entries first, then the "hard" entries,
regardless of whether the soft entries appear before the hard entries in the table.

Chapter 7 EMBEDDED BIOS Adaptation Guide 285

General Software EMBEDDED BIOS Adaptation Guide

If your system has no CMOS configuration, then this is the information the BIOS uses to
determine the file system assigned to the drive.

Values:

0 - No device is assigned to this drive letter.
n - An index into the FILE_SYSTEM table, from 1 to the maximum number of entries.

Related Parameters:

FILE_SYSTEM - Enable file system support.
OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.54 CONFIG_CMOS_TYPEMATIC_DELAY Parameter

The CONFIG_CMOS_TYPEMATIC_DELAY parameter specifies the factory default value to
be used as the delay when programming the keyboard for typematic repeat of pressed keys.

The delay parameter specifies how long a key should be pressed before the keyboard begins
repeating the character automatically.

This feature requires that OPTION_SUPPORT_KEYBOARD and
OPTION_CMOS_TYPEMATIC both be enabled.

Values:

0 - 250 milliseconds.
1 - 500 milliseconds.
2 - 750 milliseconds.
3 - one second.

Related Parameters:

OPTION_SUPPORT_KEYBOARD - Enable keyboard support.
OPTION_CMOS_TYPEMATIC - Factory default for typematic enable.
CONFIG_CMOS_TYPEMATIC_RATE - Factory default for typematic repeat rate.

7.2.55 CONFIG_CMOS_TYPEMATIC_RATE Parameter

The CONFIG_CMOS_TYPEMATIC_RATE parameter specifies the factory default value to
be used as the repeat rate when programming the keyboard for typematic repeat of pressed keys.

The rate parameter specifies how fast the keyboard should repeat a character once typematic
action commences.

This feature requires that OPTION_SUPPORT_KEYBOARD and
OPTION_CMOS_TYPEMATIC both be enabled.

Values:

0 - 30.0 characters per second.

286 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

1 - 26.7 characters per second.
2 - 24.0 characters per second.
3 - 21.8 characters per second.
4 - 20.0 characters per second.
5 - 18.5 characters per second.
6 - 17.1 characters per second.
7 - 16.0 characters per second.
8 - 15.0 characters per second.
9 - 13.3 characters per second.
10 - 12.0 characters per second.
11 - 10.9 characters per second.
12 - 10.0 characters per second.
13 - 9.2 characters per second.
14 - 8.6 characters per second.
15 - 8.0 characters per second.
16 - 7.5 characters per second.
17 - 6.7 characters per second.
18 - 6.0 characters per second.
19 - 5.5 characters per second.
20 - 5.0 characters per second.
21 - 4.6 characters per second.
22 - 4.3 characters per second.
23 - 4.0 characters per second.
24 - 3.7 characters per second.
25 - 3.3 characters per second.
26 - 3.0 characters per second.
27 - 2.7 characters per second.
28 - 2.5 characters per second.
29 - 2.3 characters per second.
30 - 2.1 characters per second.
31 - 2.0 characters per second.

Related Parameters:

OPTION_SUPPORT_KEYBOARD - Enable keyboard support.
OPTION_CMOS_TYPEMATIC - Factory default for typematic enable.
CONFIG_CMOS_TYPEMATIC_DELAY - Factory default for typematic delay.

7.2.56 CONFIG_CMOS_FLOPPY_RETRY Parameter

The CONFIG_CMOS_FLOPPY_RETRY parameter specifies the factory default value to be
stored in CMOS representing the number of times the floppy disk driver will step through its
state table looking for the correct media in a given drive when an operation is performed.

Ordinarily, this value should be at least three (3), since the state tables can involve up to three
steps before a correct media type can be determined.

If an embedded system is to be fixed so that it only operates with a specific drive type, then this
parameter can be set to 1, and OPTION_FLOPPY_144_ONLY can be enabled.

Values:

Chapter 7 EMBEDDED BIOS Adaptation Guide 287

General Software EMBEDDED BIOS Adaptation Guide

n - Number of retries before floppy disk I/O returns sector not found error.

Related Parameters:

OPTION_SUPPORT_FLOPPY - Enable floppy disk support.
OPTION_SUPPORT_CMOS - Enable CMOS support.
OPTION_FLOPPY_144_ONLY - Only support 1.44MB floppy disks.

7.2.57 CONFIG_CMOS_EQUIP Parameter

The CONFIG_CMOS_EQUIP parameter specifies the factory default value to be used to
initialize the equipment byte in the BIOS data area, if not initialized in other ways on a system.

Values:

xxh - Factory default equipment byte as saved in CMOS.

Related Parameters:

OPTION_SUPPORT_CMOS - Enable CMOS support.

7.2.58 CONFIG_BOOT_ATTEMPT Parameter

The CONFIG_BOOT_ATTEMPT parameter specifies the number of times that POST will
attempt to boot from each of the boot drives selected in the SETUP options before timing out the
operation and switching to the next boot action.

Ordinarily, more than one attempt is made to account for floppy drive spin-up on the first try.
However, if the configuration parameters that govern retries in the floppy disk BIOS are set to
suitably higher values, then this value can be reduced. Remember that this value controls the
boot retries for all drives in the system, floppy and otherwise.

Values:

n - Number of retries used to boot operating system.

Related Parameters:

FILE_SYSTEM - Enable file system support.

7.2.59 CONFIG_WAIT_8042 Parameter

The CONFIG_WAIT_8042 parameter specifies the amount of time (in iterated loops) required
for an 8042 command to be accepted.

The 8042 keyboard controller is a separate microcontroller that takes a certain amount of time to
respond to requests submitted to its input ports. This parameter is used as a delay factor that
when increased, results in a larger delay to account for slower 8042 controllers.

288 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Values:

n - Number of iterations through a polling loop to wait for the 8042 to receive a
command.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.

7.2.60 CONFIG_WAIT_8042_INIT Parameter

The CONFIG_WAIT_8042_INIT parameter specifies the number of CPU loops to be executed
to allow the 8042 keyboard controller to recover after reading the BAT code during POST.

Values:

n – Specifies a wait value in CPU loops.

Related Parameters:

OPTION_SUPPORT_8042 – Enable 8042 keyboard controller support.
CONFIG_WAIT_8042 – Delay factor when waiting for 8042 to become ready.
CONFIG_SETTLE_8042 – Delay factor when waiting for 8042 accept commands.

7.2.61 CONFIG_SETTLE_8042 Parameter

The CONFIG_SETTLE_8042 parameter specifies the amount of time (in iterated loops)
required for an 8042 command to cause the A20 line to be gated.

The 8042 keyboard controller is a separate microcontroller that takes a certain amount of time to
perform a given function. This parameter is used as a delay factor that when increased, results in
a larger delay to account for slower 8042 controllers.

Values:

n - Number of iterations through a polling loop to wait for the 8042 to gate the A20 line
circuit.

Related Parameters:

OPTION_SUPPORT_8042 - Enable 8042 support.

7.2.62 CONFIG_WAIT_COUNT Parameter

The CONFIG_WAIT_COUNT parameter specifies the delay used during POST's memory tests
between blocks. This delay allows the user a chance to view the memory test as it is being
performed, and also gives the user a chance to intervene and press the key to enter the
SETUP system.

Chapter 7 EMBEDDED BIOS Adaptation Guide 289

General Software EMBEDDED BIOS Adaptation Guide

This value determines how many iterations of a CPU-controlled software loop is executed. The
larger the value, the more loops will be used to kill time. Because this mechanism is CPU-speed
specific, the value should be fine-tuned for your target.

Values:

n - Number of iterations through a polling loop to pause between memory block checks
during POST.

Related Parameters:

OPTION_MEMTEST_WAIT - Enable the delay associated with this parameter.

OPTION_MEMTEST_CLICK - Enable speaker clicks during POST memory testing.

7.2.63 CONFIG_WAIT_LPT Parameter

The CONFIG_WAIT_LPT parameter specifies the amount of time (in iterated loops) wasted by
POST when an LPT port is initialized.

Some parallel ports take additional time to settle when initialized.

Values:

n - Number of iterations through a polling loop to delay during initialization of LPT port.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable parallel port support.

7.2.64 CONFIG_WAIT_IDE_INIT Parameter

The CONFIG_WAIT_IDE_INIT parameter specifies the time in seconds that the IDE file
system will wait for IDE drives configured in the Setup Screen to initialize during POST. If a
drive does not become ready within this minimum time period, the initialization of that drive will
fail.

This timeout is used to handle the condition where a drive is connected improperly or simply not
connected, although it is configured in the Setup Screen. The timeout permits POST to continue
and give the user a chance to change parameters in the Setup Screen.

Values:

n – Timeout in seconds.

Related Parameters:

FILE_SYSTEM – Define IDE file system.

290 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_WAIT_IDE_IO – IDE timeout for drive I/O.

7.2.65 CONFIG_WAIT_IDE_IO Parameter

The CONFIG_WAIT_IDE_IO parameter specifies the time in seconds that the IDE file system
will wait for IDE drives to perform I/O before a timeout failure is indicated.

Values:

n – Timeout in seconds.

Related Parameters:

FILE_SYSTEM – Define IDE file system.
CONFIG_WAIT_IDE_INIT – IDE timeout for drive initialization.

7.2.66 CONFIG_WAIT_PROGRESS_COM Parameter

The CONFIG_WAIT_PROGRESS_COM parameter specifies a CPU-specific delay that will
be incurred between successive character writes to the POSTCODE_COM UART device, so that
handshaking that might not be working properly during board bring-up is not required for pacing
I/O to the UART.

The default value of this parameter is zero, a special value that indicates that the standard TBE
method of pacing is used.

Values:

n – Delay in CPU loops.

Related Parameters:

OPTION_SUPPORT_POSTCODES_COM – Enable progress messages debugging
feature.

7.2.67 CONFIG_SERIAL_TIMEOUT Parameter

The CONFIG_SERIAL_TIMEOUT parameter specifies the time in seconds to initialize the
BIOS Data Area timeouts for all serial ports in the system.

The serial I/O services inspect the timeout value for a serial port when performing a read or write
to the port.

Values:

n - Timeout value for all system serial ports, in seconds.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 291

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.68 CONFIG_PARALLEL_TIMEOUT Parameter

The CONFIG_PARALLEL_TIMEOUT parameter specifies the time in seconds to initialize
the BIOS Data Area timeouts for all parallel ports in the system.

The parallel I/O services inspect the timeout value for a parallel port when performing a write to
the port.

Values:

n - Timeout value for all system parallel ports, in seconds.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable parallel I/O support.

7.2.69 CONFIG_POST_PROGRESS_PORT Parameter

The CONFIG_POST_PROGRESS_PORT parameter specifies I/O port that the POSTCODE
macro uses to write POST progress codes to.

Ordinarily, this value is 80h. However, some systems can benefit by writing POST codes to
other ports that can be both read and written, such as UART scratch registers (i.e., 2ffh, 3ffh).
The benefit of using alternate ports in these targets is that Manufacturing Mode can retrieve the
last POST code value and return it to the host.

OPTION_SUPPORT_POSTCODES must be enabled for this parameter to be effective.

Values:

xxh - I/O port assignment for POST progress port.

Related Parameters:

OPTION_SUPPORT_POSTCODES - Enable POSTCODE status codes.

7.2.70 CONFIG_POST_PROGRESS_COM Parameter

The CONFIG_POST_PROGRESS_COM parameter specifies base I/O port of an 8250-
compatible UART that the POSTCODECOM macro uses to write ASCII characters to POST
progress codes to.

In production systems, this feature is not used because it interferes with serial port initialization,
takes time to work, and produces unwanted output. However, it can be very useful for
debugging an otherwise inoperative target.

292 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The value chosen for this parameter need not match one of the standard COM port addresses.
The feature uses hard-coded OUT instructions to access the UART’s data register and does not
require other BIOS functionality to work. Typical values are 3f8h for COM1, or 2f8h for
COM2.

OPTION_SUPPORT_POSTCODE_COM must be enabled for this parameter to be effective.

Values:

xxxh - Base I/O port of UART for POST status port.

Related Parameters:

OPTION_SUPPORT_POSTCODE_COM - Enable UART-based POST status codes.
CONFIG_POST_PROGRESS_BAUD - Specify baud rate for UART-based progress

codes.

7.2.71 CONFIG_POST_PROGRESS_BAUD Parameter

The CONFIG_POST_PROGRESS_BAUD parameter baud rate to assign when initializing the
8250-compatible UART that the POSTCODECOM macro uses to write ASCII characters to
POST progress codes to.

OPTION_SUPPORT_POSTCODE_COM must be enabled for this parameter to be effective.

Values:

COM_BAUD_110 - 110 baud.
COM_BAUD_150 - 150 baud.
COM_BAUD_300 - 300 baud.
COM_BAUD_600 - 600 baud.
COM_BAUD_1200 - 1200 baud.
COM_BAUD_2400 - 2400 baud.
COM_BAUD_4800 - 4800 baud.
COM_BAUD_9600 - 9600 baud.
COM_BAUD_19K - 19.2K baud.
COM_BAUD_28K - 28.4K baud.
COM_BAUD_56K - 56K baud.
COM_BAUD_115K - 115K baud.

Related Parameters:

OPTION_SUPPORT_POSTCODE_COM - Enable UART-based POST status codes.
CONFIG_POST_PROGRESS_COM - UART base address for status codes.

7.2.72 CONFIG_MFG_PROGRESS_PORT Parameter

The CONFIG_MFG_PROGRESS_PORT parameter specifies I/O port that the Manufacturing
Mode will use to copy the incoming command codes to whenever incoming requests arrive. This
is typically used to drive a 2-digit 7-segment hex display on an evaluation board for debugging.

Chapter 7 EMBEDDED BIOS Adaptation Guide 293

General Software EMBEDDED BIOS Adaptation Guide

Ordinarily, this value is 80h. However, some systems can benefit by writing the codes to other
ports that can be both read and written, such as UART scratch registers (i.e., 2ffh, 3ffh). The
benefit of using alternate ports in these targets is that the EMBEDDED BIOS debugger can be
used to read the port and determine the last message code that was processed.

OPTION_SUPPORT_MFGCODES must be enabled for this parameter to be effective.

Values:

xxh - I/O port assignment for Manufacturing Mode progress port.

Related Parameters:

OPTION_SUPPORT_MFGCODES - Enable Manufacturing Mode status codes.

7.2.73 CONFIG_MAX_LOW_MEMORY Parameter

The CONFIG_MAX_LOW_MEMORY parameter specifies the maximum number of kilobytes
of low memory to be scanned by POST.

This limit causes POST to stop its memory scan before running into special regions of the
memory map, such as battery-backed RAM or video regeneration memory. The typical value for
this parameter in ISA systems is 640, because VGA memory starts at segment A000h, which
corresponds to the 640KB address mark.

If additional memory beyond the 640KB address mark is available (either because real memory
is available or because shadow memory has been made available for the purpose of augmenting
the size of the <1MB area), this parameter may be increased to present the memory to DOS.

Note that the Extended BIOS Data Area takes away from the top of low memory, by an amount
that depends on the particular features enabled by the OEM. This is usually on the order of 1-
5KB.

Values:

n - Amount of low memory to scan during POST, in kilobytes.

Related Parameters:

CONFIG_MAX_EXT_MEMORY - Limit of extended memory scan.

7.2.74 CONFIG_TESTBASE_SIZE Parameter

The CONFIG_TESTBASE_SIZE parameter specifies the maximum number of kilobytes of
low memory to be tested before POST initializes the BIOS Data Area and creates its initial stack.

Ordinarily, this value is 64 (expressed in kilobytes), although this value can be reduced or
expanded as necessary to accommodate nonstandard memory maps. Do not set this value less
than 8K (8) or greater than 64K (64).

294 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Testing of the base memory during POST is exhaustive; different destructive patterns are written
during this phase, and it is expensive in terms of time to complete the test.

Values:

n - Amount of low memory to test as base RAM during POST, in kilobytes.

Related Parameters:

None.

7.2.75 CONFIG_MAX_EXT_MEMORY Parameter

The CONFIG_MAX_EXT_MEMORY parameter specifies the maximum number of kilobytes
of extended memory to be scanned by POST.

This limit causes POST to stop its memory scan before running into special regions of the
memory map, such as battery-backed RAM or Flash memory.

Values:

n - Amount of extended memory to scan during POST, in kilobytes.

Related Parameters:

CONFIG_MAX_LOW_MEMORY - Limit of low memory scan.

7.2.76 CONFIG_EXTRA_SEGMENT Parameter

The CONFIG_EXTRA_SEGMENT parameter specifies the initial location of the 1KB region
known as the Extended BIOS Data Segment, before this region is moved to the top of low
memory at a certain point during POST. By default, this region is started at segment 50h.

Values:

nnnnh - Segment address where the Extended BIOS Data Segment is initially created.

Related Parameters:

None.

7.2.77 CONFIG_FSINIT_SEGMENT Parameter

The CONFIG_FSINIT_SEGMENT parameter specifies the segment address of an area of
memory used during POST’s file system initialization. This parameter should not be modified
without understanding how the file system initialization internals work.

Chapter 7 EMBEDDED BIOS Adaptation Guide 295

General Software EMBEDDED BIOS Adaptation Guide

Values:

nnnnh - Segment address of scratch space used during POST’s file system initialization.

Related Parameters:

FILE_SYSTEM - Enable file systems in the BIOS.

7.2.78 CONFIG_DEFAULT_EQUIP_BYTE Parameter

The CONFIG_DEFAULT_EQUIP_BYTE parameter specifies the initial equipment byte to be
used when CMOS is not available on PC and PC/XT-compatible systems.

This value is read by the core BIOS through PORT B; therefore,
OPTION_SUPPORT_PORT_B must be enabled for this parameter to be effective.

Values:

nnh - Equipment byte contents (see CMOS.INC for equivalent bit definitions).

Related Parameters:

OPTION_SUPPORT_PORT_B - Enable PC & PC/XT-compatible peripheral access
register.

7.2.79 CONFIG_VIDEO_ROM_SCAN Parameter

The CONFIG_VIDEO_ROM_SCAN parameter specifies the segment address to be scanned
for an EGA or VGA ROM BIOS extension during the initialization of the video BIOS.

Normally, this value is 0C000h, but it can be changed to other values such as 0E000h, for
example.

This value is excluded from the general ROM scan, even if it lies in the middle of the scan range.

OPTION_SUPPORT_VIDEO_BOARDS must be enabled in order for this parameter to be
useful.

Values:

nnnnh - Segment address to be scanned for a video BIOS extension.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable base video support.
OPTION_SUPPORT_VIDEO_BOARDS - Enable video ROM scan.

7.2.80 CONFIG_LOW_ROM_SCAN Parameter

296 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The CONFIG_LOW_ROM_SCAN parameter specifies the first segment address in a range to
be scanned for non-video ROM BIOS extensions during the POST ROM scan.

Normally, this value is 0C800h. However, it can be changed to any segment value desired by the
OEM, such that the value of this parameter is lower than the value of the
CONFIG_HIGH_ROM_SCAN value.

The ROM scan addresses of Embedded DOS-ROM, and the video ROM extensions are excluded
from this general scan so that these pieces of software are not initialized twice.

The ROM scan checks for ROM scan signatures at regular intervals specified by
CONFIG_ROM_SCAN_INTERVAL. In desktop PC systems, this interval is fixed at 2048
bytes. However, in embedded designs where ROM space is more expensive, the interval can be
reduced to values such as 1024 so that more ROM extensions can be packed together.

Values:

nnnnh - First segment address to be scanned for user ROM BIOS extensions.

Related Parameters:

OPTION_SUPPORT_ROM_EXTENSIONS - Enable general ROM scan.

CONFIG_HIGH_ROM_SCAN - Set upper limit of ROM scan.

CONFIG_ROM_SCAN_INTERVAL - Set increment for scan between lower and
upper limits.

7.2.81 CONFIG_HIGH_ROM_SCAN Parameter

The CONFIG_HIGH_ROM_SCAN parameter specifies the first segment address above the
range to be scanned for non-video ROM BIOS extensions during the POST ROM scan.

Normally, this value is 0DE00h. However, it can be changed to any segment value desired by
the OEM, such that the value of this parameter is higher than the value of the
CONFIG_LOW_ROM_SCAN value.

The ROM scan addresses of Embedded DOS-ROM, and the video ROM extensions are excluded
from this general scan so that these pieces of software are not initialized twice.

The ROM scan checks for ROM scan signatures at regular intervals specified by
CONFIG_ROM_SCAN_INTERVAL. In desktop PC systems, this interval is fixed at 2048
bytes. However, in embedded designs where ROM space is more expensive, the interval can be
reduced to values such as 1024 so that more ROM extensions can be packed together.

Values:

nnnnh - First segment address outside the range to be scanned for user ROM BIOS
extensions (this address will not be scanned).

Chapter 7 EMBEDDED BIOS Adaptation Guide 297

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_ROM_EXTENSIONS - Enable general ROM scan.

CONFIG_LOW_ROM_SCAN - Set start address of ROM scan.

CONFIG_ROM_SCAN_INTERVAL - Set increment for scan between lower and
upper limits.

7.2.82 CONFIG_ROM_SCAN_INTERVAL Parameter

The CONFIG_ROM_SCAN_INTERVAL parameter specifies the increment in addresses that
is used during the general ROM scan to scan the range between CONFIG_LOW_ROM_SCAN
and CONFIG_HIGH_ROM_SCAN.

In desktop PC systems, this interval is fixed at 2048 bytes. However, in embedded designs
where ROM space is more expensive, the interval can be reduced to values such as 1024 so that
more ROM extensions can be packed together.

Values:

n - Interval between scan points.

Related Parameters:

OPTION_SUPPORT_ROM_EXTENSIONS - Enable general ROM scan.

CONFIG_LOW_ROM_SCAN - Set start address of ROM scan.

CONFIG_HIGH_ROM_SCAN - Set upper limit of ROM scan.

7.2.83 CONFIG_MINI_DOS_SCAN Parameter

The CONFIG_MINI_DOS_SCAN parameter specifies the segment address to be scanned for
the Embedded DOS-ROM system image (as generated by the Embedded DOS-ROM build
process, a file called DOS.ROM).

Normally, this value is 0E000h, but can be changed to any segment value where Embedded
DOS-ROM is located. If you change this value, you must relocate the Embedded DOS-ROM
system file to the address you specify. Otherwise, it will not function properly.

This segment value is excluded from the general ROM scan so that Embedded DOS-ROM is not
initialized twice.

OPTION_SUPPORT_MINI_DOS must be enabled for this parameter to be useful.

Values:

298 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

nnnnh - Segment address to be scanned for Embedded DOS-ROM.

Related Parameters:

OPTION_SUPPORT_MINI_DOS - Enable Embedded DOS-ROM scan.

7.2.84 CONFIG_PCI_ROM_SHADOW_START Parameter

The CONFIG_PCI_ROM_SHADOW_START parameter specifies the starting segment
address of the upper memory area in a PCI system where PCI device option ROMs may be
copied into read/write shadow memory.

The PCI chipset must be capable of shadowing in this region. The core BIOS automatically
allocates space starting at this segment address, enabling shadowing as necessary to copy more
option ROMs.

OPTION_SUPPORT_PCI must be enabled for this parameter to be useful.

Values:

xxxxh - Starting address of PCI option ROM shadow area.

Related Parameters:

OPTION_SUPPORT_PCI - Enable PCI support.

7.2.85 CONFIG_VIDEO_SEG_GRAPHIC Parameter

The CONFIG_VIDEO_SEG_GRAPHIC parameter specifies the segment address that the
video BIOS will use when testing and manipulating video RAM, if available, when the video
controller is in graphics mode.

In desktop PC systems, this value is 0A000h. However, in embedded designs employing
nonstandard video controllers, this value can be adjusted to make room for additional low system
RAM.

OPTION_SUPPORT_VIDEO must be enabled for this parameter to be useful.
OPTION_VIDEO_VIDEOMEM needs to be specified if the video RAM should be tested
during POST.

Values:

xxxxh - Segment address of video RAM in graphics mode.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video services.
OPTION_VIDEO_VIDEOMEM - Enable testing of video RAM during POST.

Chapter 7 EMBEDDED BIOS Adaptation Guide 299

General Software EMBEDDED BIOS Adaptation Guide

7.2.86 CONFIG_VIDEO_SEG_MONO Parameter

The CONFIG_VIDEO_SEG_MONO parameter specifies the segment address that the video
BIOS will use when testing and manipulating video RAM, if available, when the video controller
is in monochrome mode.

In desktop PC systems, this value is 0B000h. However, in embedded designs employing
nonstandard video controllers, this value can be adjusted to make room for additional low system
RAM.

OPTION_SUPPORT_VIDEO must be enabled for this parameter to be useful.
OPTION_VIDEO_VIDEOMEM needs to be specified if the video RAM should be tested
during POST.

Values:

xxxxh - Segment address of video RAM in monochrome mode.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video services.
OPTION_VIDEO_VIDEOMEM - Enable testing of video RAM during POST.

7.2.87 CONFIG_VIDEO_SEG_COLOR Parameter

The CONFIG_VIDEO_SEG_COLOR parameter specifies the segment address that the video
BIOS will use when testing and manipulating video RAM, if available, when the video controller
is in color mode.

In desktop PC systems, this value is 0B800h. However, in embedded designs employing
nonstandard video controllers, this value can be adjusted to make room for additional low system
RAM.

OPTION_SUPPORT_VIDEO must be enabled for this parameter to be useful.
OPTION_VIDEO_VIDEOMEM needs to be specified if the video RAM should be tested
during POST.

Values:

xxxxh - Segment address of video RAM in color mode.

Related Parameters:

OPTION_SUPPORT_VIDEO - Enable video services.
OPTION_VIDEO_VIDEOMEM - Enable testing of video RAM during POST.

7.2.88 CONFIG_BEEP_LENGTH Parameter

The CONFIG_BEEP_LENGTH parameter specifies the duration for speaker beeps to last.

300 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This parameter is specified in "loop iteration" units, which is CPU-performance-specific.
Normally, this value should be set to values around 200 for a 386SX-25, but can be adjusted to
suit the CPU speed of the target.

Values:

n - Length of beeps.

Related Parameters:

OPTION_SUPPORT_SOUND - Enable speaker support.
OPTION_SUPPORT_PORT_B - Enable PORT B peripheral access.
CONFIG_BEEP_CYCLE - Wavelength of beep.

7.2.89 CONFIG_BEEP_CYCLE Parameter

The CONFIG_BEEP_CYCLE parameter specifies the micro delay used to create a square
wave, when the 8042 timer cannot be programmed to deliver an accurate tone through the
speaker.

Normally, this value should start around 100 for a CPU with a performance of about a 386SX-25,
but can be adjusted to suit the CPU speed of the target.

Values:

n - Inverse frequency of beeps (actually, the wavelength).

Related Parameters:

OPTION_SUPPORT_SOUND - Enable speaker support.
OPTION_SUPPORT_PORT_B - Enable PORT B peripheral access.
CONFIG_BEEP_LENGTH - Duration of beep.

7.2.90 CONFIG_BEEP_8254_TONE Parameter

The CONFIG_BEEP_8254_TONE parameter specifies the divisor to be used when
programming the 8254’s T2 timer to generate beeps for the speaker.

This is a more reliable way to specify beep frequency because it is controlled by a system that is
clocked independently from the CPU. However, POST cannot use this tone production
mechanism before the 8254 counter-timer has been initialized, so the other method that uses
CONFIG_BEEP_CYCLE must also be supported.

The CONFIG_BEEP_LENGTH is used to determine the length of tones produced with the
8254 as well as those produced manually with CONFIG_BEEP_CYCLE.

Values:

Chapter 7 EMBEDDED BIOS Adaptation Guide 301

General Software EMBEDDED BIOS Adaptation Guide

n - 8254’s T2 divisor value that determines frequency of beeps once 8254 hardware is
initialized.

Related Parameters:

OPTION_SUPPORT_SOUND - Enable speaker support.
OPTION_SUPPORT_8254 - Enable 8254 support.
CONFIG_BEEP_LENGTH - Duration of beep.

7.2.91 CONFIG_PCMCIA_IOBASE Parameter

The CONFIG_PCMCIA_IOBASE parameter specifies the base I/O port of the PCMCIA
controller being used when OPTION_SUPPORT_ATA is enabled.

This allows the PCMCIA controller to be placed anywhere in the I/O space of the target. By
default, the Cirrus Logic 6710 and 6720 controllers are located at address 3e0h, but this can be
changed by editing this value to locate the part anywhere.

Values:

xxxh - Base I/O address of PCMCIA controller.

Related Parameters:

OPTION_SUPPORT_ATA - Enable ATA PC Cards over PCMCIA controller.

7.2.92 CONFIG_RFDDISK_KBBLKSIZE Parameter

The CONFIG_RFDDISK_KBBLKSIZE parameter specifies the size of the minimum erasable
unit (Flash block) within the Flash array to be used by the Resident Flash Disk (RFD), in
kilobytes.

Typically, Flash blocks are a power of 2 in size. For example, 16KB, 32KB, 64KB, 128KB, and
so on. The block size is a device parameter that is not changable by simply changing this
parameter; instead, this parameter must be modified to fit the block size associated with the Flash
devices you are using.

If you have a Flash array that is interleaved (i.e., two 8-bit parts ganged together to form a 16-bit
data path, etc.), then make sure you take into account that 2-way part interleaving effectively
doubles the block size, and 4-way part interleaving quadruples it.

The FILE_SYSTEM macro is used to define RFDs in the system. Consult that section for more
information about how to specify the starting address and size of the RFD. For information
about the RFD disk, see Chapter 12.

Values:

n - Size of the RFD’s Flash array blocks in kilobytes.

302 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

FILE_SYSTEM - Enable RFD support.

7.2.93 CONFIG_FLASH_DATASEG Parameter

The CONFIG_FLASH_DATASEG parameter specifies a segment address that Manufacturing
Mode can use as a RAM buffer for staging incoming and outgoing data over the serial link.

This allows the host to download several messages into one contiguous buffer, which can then be
written to Flash with one target operation.

The staging buffer occupies 64KB of RAM. Typically, this buffer is located at segment 2000h,
so that it does not interfere with the CONFIG_FLASH_CODESEG parameter or low memory
where the interrupt vector table and BIOS data area are stored.

OPTION_SUPPORT_MCL must be enabled for this parameter to be useful.

Values:

xxxxh - Segment address of 64KB scratch area for Manufacturing Mode staging buffer.

Related Parameters:

OPTION_SUPPORT_MCL - Enable Flash support.
OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

7.2.94 CONFIG_FLASH_CODESEG Parameter

The CONFIG_FLASH_CODESEG parameter specifies a segment address that Manufacturing
Mode can use as a RAM buffer for copying the BIOS to so that it can execute out of RAM when
programming the Flash.

This allows the host to cause the target to reprogram the BIOS Flash itself and continue
executing. The BIOS Flash routines cannot run out of the same device that is being
programmed, because (1) it must be erased, and (2) the Flash enters a command/status mode
instead of a read mode, so that instructions fetched out of the Flash would not be instruction
bytes, but status bytes.

This code segment buffer requires 64KB of RAM. Typically, this buffer is located at segment
1000h, so that it does not interfere with the CONFIG_FLASH_DATASEG parameter or low
memory where the interrupt vector table and BIOS data area are stored.

OPTION_SUPPORT_MCL must be enabled for this parameter to be useful.

Values:

xxxxh - Segment address of 64KB scratch area for Manufacturing Mode to run a copy of
the BIOS from.

Chapter 7 EMBEDDED BIOS Adaptation Guide 303

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_MCL - Enable Flash support.
OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

7.2.95 CONFIG_PAGED_MEM_SEG Parameter

The CONFIG_PAGED_MEM_SEG parameter specifies the segment address of a memory
window below the 1MB address marker that the OEM defines to map to a specific page of some
physical device, such as a RAM, ROM, EPROM, or Flash part.

This value is used by the Chipset Personality Module in some cases (for example, the SC300,
SC310, SC400, and SC410 processors by AMD) to determine how to program the memory
management unit on the chipset itself for Flash operations.

Not all values are valid for all chipsets. Please note that adjusting this value may imply a change
in the way the chipset’s memory management hardware is used; i.e., some addresses are handled
with MMSA, and others with MMSB, on AMD Elan processors.

Values:

xxxxh - Specifies the real-mode segment address of the memory window.

Related Parameters:

OPTION_SUPPORT_MCL - Enable Flash support.

7.2.96 CONFIG_VPP_TIMEOUT_IN_TICKS Parameter

The CONFIG_VPP_TIMEOUT_IN_TICKS parameter specifies the number of 55ms timer
ticks to pass after the last Flash function is requested by any portion of the BIOS (RFD,
debugger, Manufacturing Mode, etc.) before Vpp is disabled.

EMBEDDED BIOS Flash Media Technology Drivers (MTDs) can take advantage of automatic
Vpp regulation in the core BIOS by making calls to enable and disable Vpp at appropriate points
inside the MTDs. Controlling Vpp involves OEM-proprietary methods, so a call to the OEM’s
Board Personality Module hides the actual mechanism. Normally, raising Vpp is followed by a
delay (OEM-specific) to ensure that Vpp has had adequate time to become stable before being
used. This delay is unnecessarily incurred if Vpp is commanded to go high before an operation,
then commanded to go low, followed by the same sequence, many times. To improve the
performance of back-to-back Flash I/O, EMBEDDED BIOS implements lazy Vpp regulation that
causes MTD disable Vpp requests to start a timer (specified by this parameter). When the timer
expires (at system tick time in the background), Vpp is disabled by a call to the board module.

The higher this parameter is specified, the longer Vpp will be left on after the last Flash I/O
operation. Since erase commands can occur in the background and be temporarily preempted by
reads in some MTDs, Vpp is left on even during read operations. Leaving Vpp on for an
excessive amount of time wastes battery power in low-power applications. Leaving Vpp on for
too short a time after the last I/O could lead to data loss.

304 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The minimum time to set this value to should be the time necessary for the longest operation to
proceed in the background, plus some margin for error. On some Flash devices, erase time can
exceed two or three seconds.

Values:

n - Specifies the number of timer ticks to delay after the last Flash operation before Vpp
is disabled in the background to save battery power.

Related Parameters:

OPTION_SUPPORT_MCL - Enable Flash programming support.

7.2.97 CONFIG_PCI_ROM_MAP Parameter

The CONFIG_PCI_ROM_MAP parameter specifies the top 16 bits of the 32-bit physical
address to use in PCI systems for temporarily mapping device option ROM extensions during the
time that they are copied into shadow memory. Note that this is only a temporary mapping
during the copy process during PCI POST, and is the same for each PCI option ROM, because
they are copied one at a time.

The full 32-bit physical address is formed by using the 16 bits specified by this parameter as the
high 16 bits in a 32-bit address. The bottom 16 bits are always zeroes.

Commonly, the physical address is configured so as not to interfere with any boot ROM mapped
to the top of the address space, yet be positioned beyond any reasonable address space that might
be consumed by main memory.

Values:

xxxxh - Specifies the top 16 bits of a 32-bit physical address to map PCI ROM extensions.

Related Parameters:

OPTION_SUPPORT_PCI - Enable PCI support.

7.2.98 CONFIG_PCI_MEM_AVAIL Parameter

The CONFIG_PCI_MEM_AVAIL parameter specifies the top 16 bits of the first 32-bit
physical address that is to be made available to PCI devices requesting memory address space
during PCI POST. As each device requests its own memory address space, the 32-bit pointer is
advanced by the core BIOS so that each device is able to acquire a unique range of memory
addresses.

The full 32-bit physical address is formed by using the 16 bits specified by this parameter as the
high 16 bits in a 32-bit address. The bottom 16 bits are always zeroes.

Commonly, the physical address is configured so as not to interfere with any boot ROM mapped
to the top of the address space, yet be positioned beyond any reasonable address space that might

Chapter 7 EMBEDDED BIOS Adaptation Guide 305

General Software EMBEDDED BIOS Adaptation Guide

be consumed by main memory. Additionally, this address space must be positioned so as not to
interfere with the address space defined by the CONFIG_PCI_ROM_MAP parameter.

Values:

xxxxh - Specifies the top 16 bits of the first 32-bit physical to be made available to PCI
devices as a memory address space resource.

Related Parameters:

OPTION_SUPPORT_PCI - Enable PCI support.

7.2.99 CONFIG_PCI_IO_PORT_BASE Parameter

The CONFIG_PCI_IO_PORT_BASE parameter specifies the starting 16-bit I/O port address
used by the PCI subsystem for its allocation of I/O address space resources to devices during
system initialization.

Normally, this parameter is defaulted to FC00h, and the PCI subsystem decrements it by
CONFIG_PCI_IO_ALLOC (normally 400h) to avoid conflicts due to ISA aliasing. This is the
effective base address to be used when assigning I/O resources to PCI devices. However, it is
not the first actual address to be assigned; instead, the extra offset 100h is added to this base
address to skip past the first 100h hex bytes that conflict with ISA I/O ports.

According to the PCI Specification, configuration software should configure PCI devices such
that no conflicts exist. This can be performed in one of two ways. In the first method the
configuration software can explicitly know what ISA devices are in the system, what addresses
and aliases those devices use, and then configure PCI devices so that no conflicts occur. The
major problem with this method is that the automatic detection of ISA devices as well as
determining what resources they consume is very difficult. The second method is to pre-allocate
three-fourths of the address space to ISA devices and their aliases. PCI devices are placed in the
remaining spaces. Essentially, and I/O address that is greater than 4K (to avoid platform ISA
devices) and where SA<8-9>=00b (to avoid ISA aliases) is a valid address for PCI devices. This
technique provides for sixty 256 byte-wide addresses where PCI devices can be mapped without
conflicting with platform or ISA devices. This is the preferred method for allocating I/O address
space in a PCI based system. In practice, this means that I/O addresses 0100h-01ffh, 1100h-
11ffh, 1500h-15ffh, 1900h-19ffh, 2100h-21ffh, and so on, are available for PCI use in a mixed
PCI/ISA system.

As a matter of practice, the PCI POST process attempts to allocate PCI I/O addresses from the
top, rather than the bottom, of the I/O address range, so as to minimize any possible conflict with
ISA I/O ports. Thus, the first I/O range assigned to a PCI device in the above example would
actually be fd00h-fdffh, then f900h-f9ffh, and so on.

Values:

xxxxh - Specifies the 16-bit I/O base address from which I/O port ranges may be assigned
to PCI devices during initialization. Note that this value does not account for the
extra 100h byte offset needed to avoid ISA aliasing; the 100h is automatically
added by the PCI subsystem.

306 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_PCI - Enable PCI support.
CONFIG_PCI_IO_ALLOC – Amount to subtract from

CONFIG_PCI_IO_PORT_BASE to obtain next available base address in
system.

7.2.100 CONFIG_PCI_IO_ALLOC Parameter

The CONFIG_PCI_IO_ADDRESS parameter specifies the number of consecutive I/O
addresses to be found at the I/O address specified by CONFIG_PCI_IO_PORT_BASE.

This parameter does not specify how many addresses are available for allocation; rather, it
defines the value to be used to decrement CONFIG_PCI_IO_PORT_BASE in the allocation
algorithm.

For details about the PCI I/O space assignment process, consult the description of
CONFIG_PCI_IO_BASE.

Values:

n - Specifies the value to be subtracted from CONFIG_PCI_IO_PORT_BASE in an
interative algorithm used to generate new I/O port ranges for assignment.

Related Parameters:

OPTION_SUPPORT_PCI - Enable PCI support.
CONFIG_PCI_IO_PORT_BASE – First (and highest) I/O base address used by PCI

subsystem to generate available I/O ranges for assignments to devices.

7.2.101 CONFIG_PCI_IO_TMP_TBL_SEG Parameter

The CONFIG_PCI_IO_TMP_TBL_SEG parameter specifies the scratch RAM segment to use
for copying the I/O table to during POST’s PCI enumeration.

Values:

n – 16-bit segment address of scratch area for PCI during POST.

Related Parameters:

OPTION_SUPPORT_PCI – Enable PCI support.
CONFIG_PCI_IO_BM_OFFSET – Specify offset to use within scratch segment for

PCI bus map during POST.

7.2.102 CONFIG_PCI_BM_OFFSET Parameter

The CONFIG_PCI_BM_OFFSET parameter specifies the offset into the scratch segment to
store the PCI bus map.

Chapter 7 EMBEDDED BIOS Adaptation Guide 307

General Software EMBEDDED BIOS Adaptation Guide

Values:

n – 16-bit offset within the scratch area.

Related Parameters:

OPTION_SUPPORT_PCI – Enable PCI support.
CONFIG_PCI_IO_DATASEG – Specify scratch segment address.

7.2.103 CONFIG_PCI_MMIO_AVAIL Parameter

The CONFIG_PCI_MMIO_AVAIL parameter specifies the high 16 bits of the physical
address for non-prefetchable memory given to PCI devices.

Values:

n – top 16 bits of a 32-bit physical address.

Related Parameters:

OPTION_SUPPORT_PCI – Enable PCI support.

7.2.104 CONFIG_PCI_LATENCY Parameter

The CONFIG_PCI_LATENCY parameter specifies the value to be programmed into the
latency field in the header of each PCI device during PCI enumeration.

Values:

n – 8-bit initial latency value to be programmed into PCI headers.

Related Parameters:

OPTION_SUPPORT_PCI – Enable PCI support.

7.2.105 CONFIG_PCI_IRQ_BITMAP Parameter

The CONFIG_PCI_IRQ_BITMAP parameter specifies a 16-bit bitmask containing bits that,
when set, indicate that the associated IRQ may be allocated by the PCI subsystem.

Bit 0 corresponds to IRQ0, bit 1 corresponds to IRQ1, and so on, up to bit 15’s association with
IRQ15.

Not all the specified IRQs will necessarily be assigned to PCI devices. The PCI subsystem will
choose up to four IRQs from the specified set, and map them to the INTA, INTB, INTC, and
INTD PCI bus lines.

Values:

n – 16-bit bitmask of IRQs assignable to PCI devices by PCI subsystem.

308 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

OPTION_SUPPORT_PCI – Enable PCI support.

7.2.106 CONFIG_PS2_MOUSE_IRQ Parameter

The CONFIG_PCI_PS2_MOUSE_IRQ parameter specifies system interrupt request level used
by the keyboard controller to generate mouse interrupts. Normally, this value is 12, but may be
assigned to any IRQ as appropriate for the platform.

Values:

n - Specifies an IRQ level from 0 to 15.

Related Parameters:

OPTION_SUPPORT_PS2MOUSE - Enable mouse support.
CONFIG_PS2_MOUSE_LOOP - Specify device timeout for PS/2 mouse.

7.2.107 CONFIG_PS2_MOUSE_LOOP Parameter

The CONFIG_PS2_MOUSE_LOOP parameter specifies a timeout value, in CPU loops, to
wait for the keyboard controller to return status information about the PS/2 mouse device after it
has been commanded to provide status.

Values:

n - Specifies a timeout value from 1 to 65535.

Related Parameters:

OPTION_SUPPORT_PS2MOUSE - Enable mouse support.
CONFIG_PS2_MOUSE_IRQ - Specify PS/2 mouse interrupt level.

7.2.108 CONFIG_IDE_PORT_BASE Parameter

The CONFIG_IDE_PORT_BASE parameter specifies a base I/O address, to which are added
0f0h or 070h for the primary or secondary IDE controllers, respectively. By default, this
parameter has the value 100h, so that the address 1f0h and 170h are used.

Do not change this value with out a full understanding of how the IDE and ATA file system
drivers work.

Values:

nnnh – Base I/O port number which is used to compute the primary and secondary IDE
controller addresses.

Chapter 7 EMBEDDED BIOS Adaptation Guide 309

General Software EMBEDDED BIOS Adaptation Guide

Related Parameters:

FILE_SYSTEM - Enable file system.

7.2.109 CONFIG_IDE_PORT_ALT_STATUS Parameter

The CONFIG_IDE_PORT_ALT_STATUS parameter specifies a value to be added to the f0h
or 70h values associated with the primary and secondary controllers, respectively, to access the
IDE alternate status register for each controller.

Normally, this parameter has the value 306h, so that the alternate status registers for the primary
and secondary controller are 3f6h and 376h, respectively.

Do not change this value with out a full understanding of how the IDE and ATA file system
drivers work.

Values:

nnnh – Base I/O port number which is used to compute the primary and secondary IDE
controller’s alternate status register addresses.

Related Parameters:

FILE_SYSTEM - Enable file system.

7.2.110 CONFIG_IDE_PORT_CTRL Parameter

The CONFIG_IDE_PORT_CTRL parameter specifies a value to be added to the f0h or 70h
values associated with the primary and secondary controllers, respectively, to access the IDE
control register for each controller.

Normally, this parameter has the value 306h, so that the control registers for the primary and
secondary controller are 3f6h and 376h, respectively.

Do not change this value with out a full understanding of how the IDE and ATA file system
drivers work.

Values:

nnnh – Base I/O port number which is used to compute the primary and secondary IDE
controller’s control register addresses.

Related Parameters:

FILE_SYSTEM - Enable file system.

7.2.111 LPT1_BASE Parameter

310 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The LPT1_BASE parameter specifies the I/O port to be scanned for the existence of the primary
parallel port.

Values:

nnnh - I/O port number associated with the LPT port. The value 0 indicates no port
assignment.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable parallel I/O support.

7.2.112 LPT2_BASE Parameter

The LPT2_BASE parameter specifies the I/O port to be scanned for the existence of the
secondary parallel port.

Values:

nnnh - I/O port number associated with the LPT port. The value 0 indicates no port
assignment.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable parallel I/O support.

7.2.113 LPT3_BASE Parameter

The LPT3_BASE parameter specifies the I/O port to be scanned for the existence of the third
parallel port.

Values:

nnnh - I/O port number associated with the LPT port. The value 0 indicates no port
assignment.

Related Parameters:

OPTION_SUPPORT_PARALLEL - Enable parallel I/O support.

7.2.114 COM1_BASE Parameter

The COM1_BASE parameter specifies the I/O port to be scanned for the existence of the first
external serial port.

Values:

Chapter 7 EMBEDDED BIOS Adaptation Guide 311

General Software EMBEDDED BIOS Adaptation Guide

nnnh - I/O port number associated with the COM port. The value 0 indicates no port
assignment.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.115 COM2_BASE Parameter

The COM2_BASE parameter specifies the I/O port to be scanned for the existence of the second
external serial port.

Values:

nnnh - I/O port number associated with the COM port. The value 0 indicates no port
assignment.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.116 COM3_BASE Parameter

The COM3_BASE parameter specifies the I/O port to be scanned for the existence of the third
external serial port.

Values:

nnnh - I/O port number associated with the COM port. The value 0 indicates no port
assignment.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.117 COM4_BASE Parameter

The COM4_BASE parameter specifies the I/O port to be scanned for the existence of the fourth
external serial port.

Values:

nnnh - I/O port number associated with the COM port. The value 0 indicates no port
assignment.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

312 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

7.2.118 COM1_INIT Parameter

The COM1_INIT parameter specifies the initialization byte used to program the first external
serial port.

The value is passed to the Initialize Serial Port function of INT 14h during POST.

Values:

nnh - Initialization byte specifying baud rate, parity, number of data bits, and number of
stop bits in an encoded fashion as defined by the INT 14h standard initialization
function. The default value of 11100011b initializes the serial port to 9600 baud,
no parity, 8 data bits, and one stop bit.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.119 COM2_INIT Parameter

The COM2_INIT parameter specifies the initialization byte used to program the second external
serial port.

The value is passed to the Initialize Serial Port function of INT 14h during POST.

Values:

nnh - Initialization byte specifying baud rate, parity, number of data bits, and number of
stop bits in an encoded fashion as defined by the INT 14h standard initialization
function. The default value of 11100011b initializes the serial port to 9600 baud,
no parity, 8 data bits, and one stop bit.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.120 COM3_INIT Parameter

The COM3_INIT parameter specifies the initialization byte used to program the third external
serial port.

The value is passed to the Initialize Serial Port function of INT 14h during POST.

Values:

nnh - Initialization byte specifying baud rate, parity, number of data bits, and number of
stop bits in an encoded fashion as defined by the INT 14h standard initialization

Chapter 7 EMBEDDED BIOS Adaptation Guide 313

General Software EMBEDDED BIOS Adaptation Guide

function. The default value of 11100011b initializes the serial port to 9600 baud,
no parity, 8 data bits, and one stop bit.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.121 COM4_INIT Parameter

The COM4_INIT parameter specifies the initialization byte used to program the fourth external
serial port.

The value is passed to the Initialize Serial Port function of INT 14h during POST.

Values:

nnh - Initialization byte specifying baud rate, parity, number of data bits, and number of
stop bits in an encoded fashion as defined by the INT 14h standard initialization
function. The default value of 11100011b initializes the serial port to 9600 baud,
no parity, 8 data bits, and one stop bit.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.

7.2.122 MFG_COM_BASE Parameter

The MFG_COM_BASE parameter specifies the base I/O port of the UART to be used by
Manufacturing Mode. The UART must be 8250 compatible.

The UART does not have to be one of the standard ones assigned to COM1, COM2, COM3, or
COM4, but this is commonly the case.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

nnnh - Base I/O port of the UART to be used by Manufacturing Mode.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

CONFIG_MFG_BAUD - Encoded baud rate to be used by Manufacturing Mode.

MFG_INT_VECT - Interrupt vector used by the UART.

MFG_EOI_PORT - Interrupt controller port to be used to acknowledge serial interrupts
during Manufacturing Mode.

314 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

MFG_EOI_CMD - End-Of-Interrupt command to be issued to interrupt controller
during Manfacturing Mode.

7.2.123 MFG_INT_VECT Parameter

The MFG_INT_VECT parameter specifies the interrupt vector number associated with the
UART to be used by Manufacturing Mode. The interrupt vector is needed to support interrupt-
driven receives of RS-232 data from the host.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

nnh - Interrupt vector number associated with the UART to be used by Manufacturing
Mode.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

CONFIG_MFG_BAUD - Encoded baud rate to be used by Manufacturing Mode.

MFG_COM_BASE - Base I/O port of UART to be used by Manufacturing Mode.

MFG_EOI_PORT - Interrupt controller port to be used to acknowledge serial interrupts
during Manufacturing Mode.

MFG_EOI_CMD - End-Of-Interrupt command to be issued to interrupt controller
during Manfacturing Mode.

7.2.124 CONFIG_MFG_BAUD Parameter

The CONFIG_MFG_BAUD parameter specifies the baud rate as an encoded number to be used
by Manufacturing Mode.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

0 - 115k baud.
1 - 56k baud.
2 - 38.4k baud.
3 – 28.8k baud.
4 – 19.2k baud.
5 – 9600 baud.

Related Parameters:

Chapter 7 EMBEDDED BIOS Adaptation Guide 315

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

MFG_COM_BASE - Base I/O port of UART to be used by Manufacturing Mode.

MFG_INT_VECT - Interrupt vector associated with UART to be used by
Manufacturing Mode.

MFG_EOI_PORT - Interrupt controller port to be used to acknowledge serial interrupts
during Manufacturing Mode.

MFG_EOI_CMD - End-Of-Interrupt command to be issued to interrupt controller
during Manfacturing Mode.

7.2.125 MFG_EOI_PORT Parameter

The MFG_EOI_PORT parameter specifies interrupt controller’s command port that can be used
to dismiss an interrupt during serial communications in Manufacturing Mode.

This parameter is useful for situations where the COM port being used generates an interrupt via
a nonstandard interrupt controller.

For designs using COM1 or COM2, the primary interrupt controller at I/O port 20h is used,
unless COM1 or COM2 are CPU UARTs.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

xxxh - I/O port associated with interrupt controller’s command register.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

CONFIG_MFG_BAUD - Baud rate associated with Manufacturing Mode.

MFG_COM_BASE - Base I/O port of UART to be used by Manufacturing Mode.

MFG_INT_VECT - Interrupt vector associated with UART to be used by
Manufacturing Mode.

MFG_EOI_CMD - End-Of-Interrupt command to be issued to interrupt controller
during Manfacturing Mode.

7.2.126 MFG_EOI_CMD Parameter

The MFG_EOI_CMD parameter specifies interrupt controller’s EOI command to be used to
dismiss an interrupt during serial communications in Manufacturing Mode.

316 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

This parameter is useful for situations where the COM port being used generates an interrupt via
a nonstandard interrupt controller.

For designs using COM1 or COM2, the primary interrupt controller at I/O port 20h is used,
unless COM1 or COM2 are CPU UARTs. The non-specific EOI command for this controller (or
any 8259) is 20h.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

xxh - 8-bit command to be written to interrupt controller’s command port as End-Of-
Interrupt command.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

CONFIG_MFG_BAUD - Baud rate associated with Manufacturing Mode.

MFG_COM_BASE - Base I/O port of UART to be used by Manufacturing Mode.

MFG_INT_VECT - Interrupt vector associated with UART to be used by
Manufacturing Mode.

MFG_EOI_PORT - Interrupt controller port to be used to acknowledge serial interrupts
during Manufacturing Mode.

7.2.127 CONFIG_MFG_BUFSIZE Parameter

The CONFIG_MFG_BUFSIZE parameter specifies the size of the packet buffer to be used by
Manufacturing Mode. This parameter effectively specifies the maximum message size that can
be transferred between the host and the target.

This parameter does not affect the circular buffer size, which is simply a buffer to handle
differences in speeds of the target and host.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

n - Size of message buffer in bytes (must be greater than or equal to 768).

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

7.2.128 CONFIG_MFG_CBSIZE Parameter

Chapter 7 EMBEDDED BIOS Adaptation Guide 317

General Software EMBEDDED BIOS Adaptation Guide

The CONFIG_MFG_CBSIZE parameter specifies the size of the circular buffer to be used by
Manufacturing Mode. The circular buffer is used for interrupt-driven receives of bytes from the
host. This parameter may specify a value less than the message buffer size, since the bytes are
assembled in the message buffer, and only staged in the circular buffer.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

n - Size of circular buffer in bytes (values greater than 32 recommended; 64 typical).

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

7.2.129 CONFIG_MFG_TIMEOUT Parameter

The CONFIG_MFG_TIMEOUT parameter specifies the number of 18.2Hz timer ticks to wait
for the reception of a character before the message being received is deemed to be timed-out (and
therefore discarded).

Increasing this parameter makes the target more forgiving when working with links that may
become disconnected frequently. Decreasing this parameter makes the target respond more
quickly to errors so that the operation can be retried.

OPTION_SUPPORT_MFGMODE must be enabled for this parameter to be useful.

Values:

n - Number of 18.2Hz ticks to wait for a byte until a timeout occurs.

Related Parameters:

OPTION_SUPPORT_MFGMODE - Enable Manufacturing Mode support.

7.2.130 CONFIG_CON_REDIR_STD Parameter

The CONFIG_CON_REDIR_STD parameter specifies the device used for standard POST and
DOS console I/O. A value of 0 indicates the PC keyboard and video display, whereas nonzero
values indicate the COM port number associated with the redirected I/O.

The redirection feature itself is enabled with the OPTION_SUPPORT_CON_REDIRECTOR
option, which must be enabled for the I/O to be redirected over a serial port.

The OPTION_VIDEO_DUPLICATE option can be enabled to duplicate the redirected output
to the standard video screen. Be aware that any VGA BIOS extension in the system is likely to
hook the INT 10h vector and make it impossible for the console redirection code to receive
control. In the lab environment, this can be solved by using a monochrome or color adapter.

Values:

318 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

0 - Do not redirect standard I/O over serial port; instead, use keyboard and video display.
1 - Redirect standard I/O over COM1.
2 - Redirect standard I/O over COM2.
3 - Redirect standard I/O over COM3.
4 - Redirect standard I/O over COM4.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.
OPTION_SUPPORT_VIDEO - Enable video controller support.
OPTION_SUPPORT_KEYBOARD - Enable PC keyboard support.
COM1_BASE - I/O base of COM1 UART.
COM2_BASE - I/O base of COM2 UART.
COM3_BASE - I/O base of COM3 UART.
COM4_BASE - I/O base of COM4 UART.

7.2.131 CONFIG_CON_REDIR_DEBUG Parameter

The CONFIG_CON_REDIR_DEBUG parameter specifies the device used the BIOS
debugger’s console I/O. A value of 0 indicates the PC keyboard and video display, whereas
nonzero values indicate the COM port number associated with the redirected I/O.

The redirection feature itself is enabled with the OPTION_SUPPORT_CON_REDIRECTOR
option, which must be enabled for the I/O to be redirected over a serial port.

The OPTION_VIDEO_DUPLICATE option can be enabled to duplicate the redirected output
to the standard video screen. Be aware that any VGA BIOS extension in the system is likely to
hook the INT 10h vector and make it impossible for the console redirection code to receive
control. In the lab environment, this can be solved by using a monochrome or color adapter.

Values:

0 - Do not redirect debugger I/O over serial port; instead, use keyboard and video display.
1 - Redirect debugger I/O over COM1.
2 - Redirect debugger I/O over COM2.
3 - Redirect debugger I/O over COM3.
4 - Redirect debugger I/O over COM4.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.
OPTION_SUPPORT_VIDEO - Enable video controller support.
OPTION_SUPPORT_KEYBOARD - Enable PC keyboard support.
COM1_BASE - I/O base of COM1 UART.
COM2_BASE - I/O base of COM2 UART.
COM3_BASE - I/O base of COM3 UART.
COM4_BASE - I/O base of COM4 UART.

7.2.132 CONFIG_CON_REDIR_SETUP Parameter

Chapter 7 EMBEDDED BIOS Adaptation Guide 319

General Software EMBEDDED BIOS Adaptation Guide

The CONFIG_CON_REDIR_SETUP parameter specifies the device used the BIOS SETUP
screen’s console I/O. A value of 0 indicates the PC keyboard and video display, whereas nonzero
values indicate the COM port number associated with the redirected I/O.

The redirection feature itself is enabled with the OPTION_SUPPORT_CON_REDIRECTOR
option, which must be enabled for the I/O to be redirected over a serial port.

The OPTION_VIDEO_DUPLICATE option can be enabled to duplicate the redirected output
to the standard video screen. Be aware that any VGA BIOS extension in the system is likely to
hook the INT 10h vector and make it impossible for the console redirection code to receive
control. In the lab environment, this can be solved by using a monochrome or color adapter.

Values:

0 - Do not redirect standard I/O over serial port; instead, use keyboard and video display.
1 - Redirect SETUP I/O over COM1.
2 - Redirect SETUP I/O over COM2.
3 - Redirect SETUP I/O over COM3.
4 - Redirect SETUP I/O over COM4.

Related Parameters:

OPTION_SUPPORT_SERIAL - Enable serial I/O support.
OPTION_SUPPORT_VIDEO - Enable video controller support.
OPTION_SUPPORT_KEYBOARD - Enable PC keyboard support.
COM1_BASE - I/O base of COM1 UART.
COM2_BASE - I/O base of COM2 UART.
COM3_BASE - I/O base of COM3 UART.
COM4_BASE - I/O base of COM4 UART.

7.2.133 BIOS_HDWR Parameter

The BIOS_HDWR parameter specifies the class of machine (in desktop PC terms) that best
describes the target.

The standard value of BIOS_MODEL_AT is used to describe ISA configurations. This value is
placed immediately after the power-on JMP statement and is inspected by some utility programs
and operating systems.

The most useful information that can be derived from the model byte is the processor type and
the type of keyboard controller that is available. Some software, such as HIMEM.SYS, uses this
information to determine the machine type.

Port 92h is available on all of the PS/2-compatible models, and now on many PC/AT-compatible
machines which do not have PS/2 MCA busses.

The PS/2 model 80 is a 386-based machine that, unlike the other PS/2 models, supports a 32-bit
address space and a way to switch to real mode with an instruction instead of a reboot sequence.

The PC Jr contains polled Floppy I/O and therefore has a very strange I/O model.

320 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Systems that have an 8042 keyboard controller and do not have port 92h should stick to the
PC/AT model byte. General Software recommends that you use the default value,
BIOS_MODEL_AT, if you have hardware that reasonably resembles a desktop 386 machine or
better, with an ISA, PCI, or local bus design.

Values:

BIOS_MODEL_PC - IBM PC compatible.
BIOS_MODEL_XT - IBM PC/XT compatible.
BIOS_MODEL_JR - IBM PC Jr compatible.
BIOS_MODEL_AT - IBM PC/AT compatible (recommended).
BIOS_MODEL_PS2_30 - IBM PS/2 Model 30 compatible.
BIOS_MODEL_CVT - IBM PC Convertable compatible.
BIOS_MODEL_PS2_80 - IBM PS/2 Model 80 compatible.

Related Parameters:

BIOS_HDWR_SUB - Submodel byte.

7.2.134 BIOS_HDWR_SUB Parameter

The BIOS_HDWR_SUB parameter specifies the subclass of machine (in desktop PC terms) that
best describes the target.

This information is rarely used by application or system programs, but is provided so that the
OEM can strictly emulate a model/submodel combination on a target.

The main difference between the XT and AT submodel bytes is that the XT indicates that
protected mode is not supported, and there is no 8042 keyboard controller. The AT indicates that
protected mode is available, and an 8042 keyboard controller exists.

Values:

BIOS_SUBMODEL_AT - IBM AT compatible (recommended for 286 and above).
BIOS_SUBMODEL_XT - IBM XT compatible (recommended for 186 and below).

Related Parameters:

BIOS_HDWR - Model byte.

7.2.135 DEBUG_CMDBUF_LEN Parameter

The DEBUG_CMDBUF_LEN parameter specifies the size of the type-in buffer used by the
debugger when accepting commands from the keyboard.

This value is typically 128 bytes and can be reduced if more memory is needed from the 1KB
Extended BIOS Data Area.

Chapter 7 EMBEDDED BIOS Adaptation Guide 321

General Software EMBEDDED BIOS Adaptation Guide

Values:

n - Number of bytes to reserve for the debugger’s command input buffer.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable debugger support.

7.2.136 DEBUG_MAX_BREAKPOINTS Parameter

The DEBUG_MAX_BREAKPOINTS parameter specifies the number of simultaneous
breakpoints the debugger can manage at any given time.

Each breakpoint requires space from the Extended BIOS Data Area to support.

Values:

n - Number of simultaneously-defined breakpoints supported by the debugger.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable debugger support.
DEBUG_MAX_BKPT_CMD_LEN - Size of command buffer/each record.

7.2.137 DEBUG_MAX_BKPT_CMD_LEN Parameter

The DEBUG_MAX_BKPT_CMD_LEN parameter specifies size of the buffer reserved in each
debugger breakpoint record for an optional ASCII command string to be executed at the time the
breakpoint occurs.

Each breakpoint requires space from the Extended BIOS Data Area to support, and increasing the
command buffer for breakpoints negatively impacts the available space in the EBDA.

Values:

n - Number of simultaneously-defined breakpoints supported by the debugger.

Related Parameters:

OPTION_SUPPORT_DEBUGGER - Enable debugger support.
DEBUG_MAX_BREAKPOINTS - Number of breakpoint records to support.

7.2.138 CONFIG_WINCE_ENTRY Parameter

The CONFIG_WINCE_ENTRY parameter specifies the physical address of the start of the
Windows CE ROM image to be loaded by the BOOT_WINCE boot action.

Values:

322 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

0xxxxxxxxh - 32-bit Media Address specifing start of Windows CE ROM image.

Related Parameters:

OPTION_SUPPORT_WINCE - Enable Windows CE support.
CONFIG_WINCE_VIDEO - Specify initial video mode for Windows CE.
CONFIG_WINCE_PORT - Specify COM port for Windows CE kernel uploads.
CONFIG_WINCE_BAUD - Specify COM port baud rate for kernel uploads.
CONFIG_WINCE_PCI - Specify PCI configuration method for Windows CE kernel.

7.2.139 CONFIG_WINCE_VIDEO Parameter

The CONFIG_WINCE_VIDEO parameter specifies the initial Windows CE-defined video
mode to be selected by the BIOS before transferring control to the Windows CE kernel.

Values:

0 - Use 320 x 200 x 256 mode.
n - Other modes as defined by Microsoft.

Related Parameters:

OPTION_SUPPORT_WINCE - Enable Windows CE support.
CONFIG_WINCE_ENTRY - Specify location of Windows CE ROM image.
CONFIG_WINCE_PORT - Specify COM port for Windows CE kernel uploads.
CONFIG_WINCE_BAUD - Specify COM port baud rate for kernel uploads.
CONFIG_WINCE_PCI - Specify PCI configuration method for Windows CE kernel.

7.2.140 CONFIG_WINCE_PORT Parameter

The CONFIG_WINCE_PORT parameter specifies the COM port used by the Windows CE
kernel to communicate with the host PC during development.

Values:

0 - no COM port.
1 - COM1.
2 - COM2.
3 - COM3.
4 - COM4.

Related Parameters:

OPTION_SUPPORT_WINCE - Enable Windows CE support.
CONFIG_WINCE_ENTRY - Specify location of Windows CE ROM image.
CONFIG_WINCE_VIDEO - Specify initial video mode for Windows CE kernel.
CONFIG_WINCE_BAUD - Specify COM port baud rate for kernel uploads.
CONFIG_WINCE_PCI - Specify PCI configuration method for Windows CE kernel.

Chapter 7 EMBEDDED BIOS Adaptation Guide 323

General Software EMBEDDED BIOS Adaptation Guide

7.2.141 CONFIG_WINCE_BAUD Parameter

The CONFIG_WINCE_BAUD parameter specifies the baud rate that the Windows CE kernel
should use to communicate with the host PC during development.

Values:

COM_BAUD_110 - 110 baud.
COM_BAUD_150 - 150 baud.
COM_BAUD_300 - 300 baud.
COM_BAUD_600 - 600 baud.
COM_BAUD_1200 - 1200 baud.
COM_BAUD_2400 - 2400 baud.
COM_BAUD_4800 - 4800 baud.
COM_BAUD_9600 - 9600 baud.
COM_BAUD_19K - 19.2K baud.
COM_BAUD_28K - 28.8K baud.
COM_BAUD_38K - 38.4K baud.
COM_BAUD_56K - 56K baud.
COM_BAUD_115K - 115K baud.

Related Parameters:

OPTION_SUPPORT_WINCE - Enable Windows CE support.
CONFIG_WINCE_ENTRY - Specify location of Windows CE ROM image.
CONFIG_WINCE_VIDEO - Specify initial video mode for Windows CE kernel.
CONFIG_WINCE_PORT - Specify COM port for kernel uploads.
CONFIG_WINCE_PCI - Specify PCI configuration method for Windows CE kernel.

7.2.142 CONFIG_WINCE_PCI Parameter

The CONFIG_WINCE_PCI parameter specifies the method that the Windows CE kernel will
use to configure PCI. The details of this parameter are beyond the scope of this Adaptation Kit.
Refer to your Windows CE ETK for more information.

Values:

See Windows CE ETK.

Related Parameters:

OPTION_SUPPORT_WINCE - Enable Windows CE support.
CONFIG_WINCE_ENTRY - Specify location of Windows CE ROM image.
CONFIG_WINCE_VIDEO - Specify initial video mode for Windows CE kernel.
CONFIG_WINCE_PORT - Specify COM port for kernel uploads.
CONFIG_WINCE_BAUD - Specify baud rate for COM port for Windows CE kernel.

7.2.143 CONFIG_CFGBOX_MONO_ATTRIB Parameter

324 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The CONFIG_CFGBOX_MONO_ATTRIB parameter specifies the hexadecimal value to be
used as an attribute byte for POST’s configuration box, when using monochrome display
adapters.

Values:

See IBM PC documentation (default is 0fh, white on black).

Related Parameters:

OPTION_SUPPORT_CONFIGBOX - Enable configuration box support.
CONFIG_CFGBOX_COLOR_ATTRIB - Specify attribute for color display adapters.

7.2.144 CONFIG_CFGBOX_COLOR_ATTRIB Parameter

The CONFIG_CFGBOX_COLOR_ATTRIB parameter specifies the hexadecimal value to be
used as an attribute byte for POST’s configuration box, when using color display adapters.

Values:

See IBM PC documentation (default is 1eh, yellow on blue).

Related Parameters:

OPTION_SUPPORT_CONFIGBOX - Enable configuration box support.
CONFIG_CFGBOX_MONO_ATTRIB - Specify attribute for mono display adapters.

7.2.145 CONFIG_DELAY_ADD Parameter

The CONFIG_DELAY_ADD parameter specifies an additive value to be used by the DELAY
macro within the core BIOS code to increase the number of “JMP $+2” instructions generated by
this macro.

Values:

n – Specifies number of extra “JMP $+2” instructions to use in DELAY macro.

Related Parameters:

CONFIG_DELAY_MULTIPLY – Scales count of instructions by a factor.

7.2.146 CONFIG_DELAY_MULTIPLY Parameter

The CONFIG_DELAY_MULTIPLY parameter specifies a multiplicative value to be used by
the DELAY macro within the core BIOS code to scale the number of “JMP $+2” instructions
generated by this macro.

Values:

Chapter 7 EMBEDDED BIOS Adaptation Guide 325

General Software EMBEDDED BIOS Adaptation Guide

n – Specifies a scaling factor of extra “JMP $+2” instructions to use in DELAY macro.

Related Parameters:

CONFIG_DELAY_ADD – Specify incremental number of instructions for DELAY
macro.

7.2.147 CONFIG_DELAY_IO Parameter

The CONFIG_DELAY_IO parameter specifies an I/O port used by the DELAY_IO macro
within the core BIOS to slow-down CPU loops to 8Mhz. By default, this value is 80h (a port
usually implemented in ISA logic that corresponds to the progress codes issued by POST).
However, if port 80h is not available, another port can be chosen.

Values:

n – Specifies the I/O address of an 8-bit port that can be used for dummy reads and writes
to slow down CPU loops. If set to 0, no I/Os will be used.

Related Parameters:

None.

7.2.148 CONFIG_SPLASH_VMODE Parameter

The CONFIG_SPLASH_VMODE parameter specifies the encoded command code and mode
parameter to be passed to INT 10h in the AX CPU register by the Splash Screen Manager when
setting the video mode. The default value is 0012h, which is the value for a Set Mode command
for 640x480x16 color standard VGA mode.

If you have a custom VGA BIOS or you have implemented your own graphics interface,you
could set this parameter to reflect your custom INT 10h interface. Since the standard “Set Video
Mode” function is AH=00h, and because the AL register contains the video mode for this
function, all the values below are in the range 0000h-00ffh. In theory, the OEM could declare
an alternate function code for INT 10h, and specify it by selecting values higher than 00ffh.

Other parameters relating to the splash screen configuration must be properly configured in order
for the graphics system to work properly in the specified mode (see Related Parameters). When
selecting modes, be careful to follow these guidelines:

• Interlaced modes are not supported
• Only monochrome, 16 color, and 256 color modes are supported
• The window to display memory cannot be larger than 64k bytes (65,536)
• VESA modes are not supported

Values:

0dh – Specifies 320x200, 16 colors.
0eh – Specifies 640x200, 16 colors.
0fh – Specifies 640x350, 2 colors (black and white).

326 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

10h – Specifies 640x350, 16 colors.
11h – Specifies 640x480, 2 colors (black and white).
12h – Specifies 640x480, 16 colors.
13h – Specifies 320x200, 256 colors.

Related Parameters:

OPTION_SUPPORT_SPLASHSCR - Enable splash screen support.
OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_WBYTES – Specify video frame buffer width in bytes.
CONFIG_SPLASH_HEIGHT – Specify video display height in raster lines.
CONFIG_SPLASH_COLORS – Specify number of colors supported by video mode.
CONFIG_SPLASH_SEG – Specify segment address for graphics workspace.
CONFIG_SPLASH_BOOTS – Specify limit for booting with disabled splash screen.
SPLASH_TABLE – Specify graphic resources to be used.

7.2.149 CONFIG_SPLASH_WBYTES Parameter

The CONFIG_SPLASH_WBYTES parameter is used by the low-level drawing routines to
calculate the starting position in display memory for each raster line.

For 16 color modes that are only 320 pixels wide, the correct value for this parameter would be
40. For all of the 640xX 16 color and monochrome modes, the correct value for this parameter
would be 80. For the 320x200x256 color mode, the correct value is 320.

This value must reflect the actual way that the display controller has arranged memory, and does
not reflect how many pixels are actually displayed either by the controller or by the monitor or
the LCD panel (the graphics controller may have special hardware registers that control the
number of pixels displayed, regardless of the internal geometry of the display memory.

Values:

40 – Mode 0dh.
80 – Modes 0eh-12h.
320 – Mode 13h.

Related Parameters:

OPTION_SUPPORT_SPLASHSCR - Enable splash screen support.
OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.
CONFIG_SPLASH_VMODE – Specify video mode for graphical front-end.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_HEIGHT – Specify video display height in raster lines.
CONFIG_SPLASH_COLORS – Specify number of colors supported by video mode.
CONFIG_SPLASH_SEG – Specify segment address for graphics workspace.
CONFIG_SPLASH_BOOTS – Specify limit for booting with disabled splash screen.
SPLASH_TABLE – Specify graphic resources to be used.

7.2.150 CONFIG_SPLASH_HEIGHT Parameter

Chapter 7 EMBEDDED BIOS Adaptation Guide 327

General Software EMBEDDED BIOS Adaptation Guide

The CONFIG_SPLASH_HEIGHT parameter is used by the splash screen display routines as
the definition for how many raster lines there are for the selected video mode. This height is
used in turn by the proportional graphics engine to position graphics on the screen.

Values:

200 – Modes 0dh-0eh.
350 – Modes 0fh-10h.
480 – Modes 11h-13h.

Related Parameters:

OPTION_SUPPORT_SPLASHSCR - Enable splash screen support.
OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.
CONFIG_SPLASH_VMODE – Specify video mode for graphical front-end.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_WBYTES – Specify video frame buffer width in bytes.
CONFIG_SPLASH_COLORS – Specify number of colors supported by video mode.
CONFIG_SPLASH_SEG – Specify segment address for graphics workspace.
CONFIG_SPLASH_BOOTS – Specify limit for booting with disabled splash screen.
SPLASH_TABLE – Specify graphic resources to be used.

7.2.151 CONFIG_SPLASH_COLORS Parameter

The CONFIG_SPLASH_COLORS parameter is used by the splash screen display routines to
determine how many colors are supported in the selectd video mode. It is used both on a low
level, as a means of determining the number of bit planes in use, and on a higher level to
determine how much memory to reserve for palette selection.

In EMBEDDED BIOS 4.3, only palette based and monochrome modes are supported. Four-
color CGA modes are not supported and true color modes are not supported.

Values:

2 – Monochrome (2 color) modes.
16 – 16 color modes.
256 – 256 color modes.

Related Parameters:

OPTION_SUPPORT_SPLASHSCR - Enable splash screen support.
OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.
CONFIG_SPLASH_VMODE – Specify video mode for graphical front-end.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_WBYTES – Specify video frame buffer width in bytes.
CONFIG_SPLASH_HEIGHT – Specify video display height in raster lines.
CONFIG_SPLASH_SEG – Specify segment address for graphics workspace.
CONFIG_SPLASH_BOOTS – Specify limit for booting with disabled splash screen.
SPLASH_TABLE – Specify graphic resources to be used.

7.2.152 CONFIG_SPLASH_SEG Parameter

328 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

The CONFIG_SPLASH_SEG parameter is used by the splash screen display routines during
POST to specify the segment address of an area of memory below 1MB that will be used as
scratch space for buffering graphics resources.

The amount of memory that will be needed by the splash screen system may vary depending on
the size of the splash screens involved, so users shoud take the size of the RLE graphics they will
be extracting into account when determining the starting location of this temporary memory.

The default value of 7000h should provide enough space to extract RLE graphic files up to
128KB in size. Unless you have limited memory in your system, you should not need to modify
this value. If CONFIG_MAX_LOW_MEMORY is set abnormally below 640, then you
should change this parameter.

Values:

nnnnh – Hexadecimal segment address of the scratch segment.

Related Parameters:

OPTION_SUPPORT_SPLASHSCR - Enable splash screen support.
OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.
CONFIG_MAX_LOW_MEMORY – Maximum low memory supported.
CONFIG_SPLASH_VMODE – Specify video mode for graphical front-end.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_WBYTES – Specify video frame buffer width in bytes.
CONFIG_SPLASH_HEIGHT – Specify video display height in raster lines.
CONFIG_SPLASH_COLORS – Specify number of colors supported by video mode.
CONFIG_SPLASH_BOOTS – Specify limit for booting with disabled splash screen.
SPLASH_TABLE – Specify graphic resources to be used.

7.2.153 CONFIG_SPLASH_BOOTS Parameter

The CONFIG_SPLASH_BOOTS parameter is used by POST to manage the number of
consecutive boots for which the splash screen may be disabled with a Setup Screen setting. After
the specified number of boots, the splash screen is automatically reenabled.

This feature is used for evaluation platforms containing a preinstalled evaluation copy of
EMBEDDED BIOS. Although it is possible for the user of an evaluation platform to disable the
graphical display, it cannot be disabled indefinitely without an explicit setting of this parameter
in the build.

Values:

0 – The splash screen cannot be disabled in Setup.
1-127 – Number of consecutive boots for which the splash screen may be disabled.
128 – The splash screen will not be automatically enabled.

Related Parameters:

OPTION_SUPPORT_SPLASHSCR - Enable splash screen support.
OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.

Chapter 7 EMBEDDED BIOS Adaptation Guide 329

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_MAX_LOW_MEMORY – Maximum low memory supported.
CONFIG_SPLASH_VMODE – Specify video mode for graphical front-end.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_WBYTES – Specify video frame buffer width in bytes.
CONFIG_SPLASH_HEIGHT – Specify video display height in raster lines.
CONFIG_SPLASH_COLORS – Specify number of colors supported by video mode.
CONFIG_SPLASH_SEG – Specify segment address for graphics workspace.
SPLASH_TABLE – Specify graphic resources to be used.

7.2.154 SPLASH_TABLE Table

The SPLASH_TABLE macro is used to define the graphics used by the graphical POST system,
commonly referred to as the Splash Screen feature. This table describes a time-ordered sequence
of graphics to be displayed, and associates them with internal system events.

The graphical POST system uses the run-time services of the EMBEDDED BIOS External
Resource Manager to retrieve graphics by their Graphics Resource ID, a 16-bit identifying
number specified in the .IDF file read by GSMERGE when combining various components of
the composite BIOS. This is the step where graphics files are associated with Resource IDs.

The splash table is specified in a tabular format with SPLASH_TABLE entries. Each line in the
table specifies a new graphical component of the total graphical POST sequence, and begins with
the identifying macro command, SPLASH_TABLE. Each line contains exactly four (4)
operands, as in the following hypothetical example:

SPLASH_TABLE EVENT_SPLASH_INIT, RESOURCE_ID_SPLASH, SPLASH_CENTER, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_INIT, RESOURCE_ID_BOOTMSG, SPLASH_CENTER, 9800

SPLASH_TABLE EVENT_SPLASH_MSG1, RESOURCE_ID_ADVERT1, SPLASH_CENTER, SPLASH_TOP

SPLASH_TABLE EVENT_SPLASH_MSG2, RESOURCE_ID_ADVERT2, SPLASH_CENTER, SPLASH_TOP

SPLASH_TABLE EVENT_SPLASH_MSG3, RESOURCE_ID_ADVERT3, SPLASH_RIGHT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_MSG3, RESOURCE_ID_ADVERT4, SPLASH_LEFT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_MSG3, 0FF10h, SPLASH_LEFT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_MSG3, RESOURCE_ID_ADVERT5, SPLASH_LEFT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_ICON, SPLASH_ICON_RIGHT+32, 131, 9868 ; define progress bar

The first operand specifies an event code that is associated with the entry. Multiple entries may
be associated with the same event code, in which case they are all activated when that event
occurs in the system. (Note: only one instance of EVENT_SPLASH_ICON is permitted,
however.) The following events are defined by the architecture:

EVENT_SPLASH_INIT (00h) – The initial call to the splash screen.
EVENT_SPLASH_ICON (01h) – Progress bar Icon location/ordering request.
RESERVED (02h-0fh) – Reserved for future expansion.
EVENT_SPLASH_MSG1 (10h) – First graphic after initial splash screen.
EVENT_SPLASH_MSG2 (11h) – Second graphic after initial splash screen.
EVENT_SPLASH_MSG3 (12h) – Third graphic after initial splash screen.
EVENT_SPLASH_MSG4 (13h) – Fourth graphic after initial splash screen.
EVENT_SPLASH_MSG5 (14h) – Fifth graphic after initial splash screen.
EVENT_SPLASH_MSG6 (15h) – Sixth graphic after initial splash screen.

The second operand specifies the graphic resource ID to be associated with the event. When the
event occurs, all of the graphics defined in the SPLASH_TABLE with a matching event code
are displayed in the order they occur. If this parameter is specified to be a value of the form

330 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

0ffxxh, then the system will delay for xxh 55ms timer ticks instead of displaying a graphic. This
permits a timed delay between successive graphics associated with the same event, so that the
user gets a chance to see them. An example of this is shown in the table above, where two
different graphics images (RESOURCE_ID_ADVERT4 and RESOURCE_ID_ADVERT5)
are displayed in response to EVENT_SPLASH_MSG3, but separated by a delay of 10h timer
ticks (approximately 16*55ms=880ms, or about 9/10 of a second).

The third operand specifies the horizontal component of the location at which the associated
graphic will be drawn. If SPLASH_CENTER (5000) is specified, the graphic will be centered
on the screen. If SPLASH_LEFT (0) is specified, the graphic will be left-justified. If
SPLASH_RIGHT (10000) is specified, the graphic will be right-justified. Any other value will
be used as a virtual position within this framework (think of 5000 as 50.00 percent of the screen,
0 as 0.00 percent of the screen, and 10000 as 100.00 percent of the screen, so that a new number
like 7500 would represent 3/4th of the way across the screen.

The fourth operand specifies the vertical component of the location at which the associated
graphic will be drawn. If SPLASH_CENTER (5000) is specified, the graphic will be centered
between the top and bottom of the screen. If SPLASH_TOP (0) is specified, the graphic will be
displayed at the top of the screen. If SPLASH_BOTTOM (10000) is specified, the graphic wil
be displayed at the bottom of the screen. Any other value will be used as a virtual position
within this framework (see the description for the 3rd operand, above).

For the EVENT_SPLASH_ICON table entry, the second, third, and fourth operands have
different meanings. This table entry, when specified, includes the graphical progress bar as a
visible component of the graphical POST system. The second parameter defines both the X and
Y travel directions and a scalar displacement, used in each direction specified, of each icon with
respect to its predecessor. The third parameter specifies the starting X location in the range 0-
10000, and the fourth parameter specifies the starting Y location in the range 0-10000, of the first
icon in the graphical progress bar.

In the above example, some entries share the same event in the table. When those events are
triggered, more than one graphic is drawn. This feature provides the ability to perform animation
by drawing successive graphics, not necessarily in the same location.

A different feature is the ability to use the same graphic ID in different entries in the table. This
allows reuse of the graphic for different situations, saving the need to duplicate the graphic
physically in the build.

Related Parameters:

OPTION_SUPPORT_SPLASHSCR - Enable splash screen support.
OPTION_SUPPORT_EXTRES - Enable External Resource Manager support.
CONFIG_MAX_LOW_MEMORY – Maximum low memory supported.
CONFIG_SPLASH_VMODE – Specify video mode for graphical front-end.
CONFIG_SPLASH_WIDTH – Specify display device width in pixels.
CONFIG_SPLASH_WBYTES – Specify video frame buffer width in bytes.
CONFIG_SPLASH_HEIGHT – Specify video display height in raster lines.
CONFIG_SPLASH_COLORS – Specify number of colors supported by video mode.
CONFIG_SPLASH_SEG – Specify segment address for graphics workspace.
CONFIG_SPLASH_BOOTS – Specify limit for booting with disabled splash screen.

7.2.155 POWER_DEVID (Power Management) Table

Chapter 7 EMBEDDED BIOS Adaptation Guide 331

General Software EMBEDDED BIOS Adaptation Guide

The POWER_DEVID macro is used to define a tree of device dependencies for the power
manager (see Chapter 15 for further information about the power manager). Always at the top of
the tree is the CPU itself. The CPU is the parent of all 1st-tier devices underneath it, such as
Super I/O controllers, Flash arrays, PCMCIA controllers, and the like. Similarly, 1st-tier devices
become parents of the devices they control, such as IDE drives and UARTs in the case of Super
I/O controllers, PCMCIA cards in the case of PCMCIA controllers, and so on. EMBEDDED
BIOS has a limit of eight (8) levels in its power management tree, which is more than adequate
for anticipated designs.

The power management device tree is specified in a tabular format with POWER_DEVID
entries. Each line in the table specifies a new device that will be participating in the system’s
power management, and begins with the identifying macro command, POWER_DEVID. Each
line contains exactly four (4) operands, as in the following hypothetical example:

; Power management device tree definition:

; The POWER_DEVID entry for the CPU MUST be FIRST!

;

; Device Module: Parent: Setup text:

;

 POWER_DEVID CPU, Board, CPU, "Cpu"

 POWER_DEVID IDE_0, Ide, SuperIo,"IDE drive 0"

 POWER_DEVID IDE_1, Ide, SuperIo,"IDE drive 1"

 POWER_DEVID SUPERIO,Board, CPU, "Super I/O"

 POWER_DEVID PCMCIA, Board, CPU, "PCMCIA"

The first operand specifies the symbolic name of the participating device. These device names
must have legal MASM or TASM symbol syntax, and should really be short names to keep the
table simple. These symbols are case-sensitive, and are referred-to by the parent field in other
entries of the table.

The second operand specifies the software component, usually a module name, that is
responsible for management of the device. This operand is prepended to the string PwrLvl to
produce a final name of a procedure in the BIOS that is responsible for managing the device’s
power level. This routine (see Chapter 15 for calling conventions) is called by the core BIOS’s
power management system at the appropriate time to instruct the module to change the device’s
power state. Because this operand specifies a name, and not an ordinal, it is possible to add
OEM-defined device types to the system. General Software has provided the following types in
the core BIOS:

Board OEM Board Personality Module
Ide IDE Hard Drives
Media Media Control Layer (All RFD Devices)
MtdRam RAM MTD
MtdRom ROM MTD
MtdAmd8_1 AMD Flash 8-Bit 1-Way MTD
MtdAmd8_2 AMD Flash 8-Bit 2-Way MTD
MtdAmd8_4 AMD Flash 8-Bit 4-Way MTD
MtdAmd16_1 AMD Flash 16-Bit 1-Way MTD
MtdAtm8_1 Atmel Flash 8-Bit 1-Way MTD
MtdBulk_1 Bulk Erase Flash 8-Bit 1-Way MTD
MtdInt16_1 Intel Flash 16-Bit 1-Way MTD
MtdInt16_2 Intel Flash 16-Bit 2-Way MTD

332 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

MtdInt8_1 Intel Flash 8-Bit 1-Way MTD
MtdInt8_2 Intel Flash 8-Bit 2-Way MTD
MtdInt8_A Intel Flash 28F016 in 8-Bit mode (1-Way) MTD
MtdInt8_B Intel Boot Block Flash MTD
MtdInt16A_1 Intel 28F016/28F032 MTD

Note that the above list includes some “real” devices, and some “pseudo” devices. For example,
the Flash parts managed by the MtdInt16_1 Media Technology Driver are very real. The IDE
drives managed by the Ide module are also real. The Board module corresponds to real hardware
if the OEM chooses to write the BoardPwrLvl routine to handle power management requests,
and that routine must do whatever makes sense to manage the board’s “power”. Pseudo devices
such as the one called Media are actually place-holders. It is necessary to allow these
intermediate devices (this one routes Flash requests to the underlying MTDs), to play a role in
managing power, so that they receive notification that they should suspend or resume the
processing of their client’s requests if the power is suspended or resumed, respectively.

In later versions of EMBEDDED BIOS, additional power management devices may be provided.
For information about the current list of supported power management devices, contact General
Software.

The third operand specifies the device name of the device’s parent. For IDE drives, this is
typically a Super I/O controller (the OEM would need to define the appropriate SuperIoPwrLvl
routine in the Board Personality Module that is responsible for managing the Super I/O controller
in the system). For UARTs, this might also be a Super I/O controller.

The fourth operand specifies an ASCII string in quotes that will appear in the power management
SETUP screens so that the user can configure timeouts and enable and disable power
management on a device basis. These strings should be kept simple and short, so as to fit within
the space constraints of the SETUP screen system and also to be clear to the user.

Related Parameters:

OPTION_SUPPORT_POWERMAN - Enable power management support.

7.2.156 MEDIA_REGION (Media Management) Table

The EMBEDDED BIOS Media Control Layer MCL provides a centralized, uniform, access to
all Flash and related storage devices in the system for its clients, which include the Resident
Flash Disk, the Debugger’s Flash commands, and Manufacturing Mode. Whereas traditional
Flash file systems only support a single device type in a system, the MCL supports many types
of media in the same system, and handles dispatching to associated Media Technology Drivers
(MTDs) transparently to its clients.

This functionality of the MCL is largely data-driven, based on a table created with the
MEDIA_REGION macro in the project file.

The MEDIA_REGION macro is used to define the system’s address space for the purpose of
routing Flash I/O requests associated with a specific 32-bit address to the correct MTD. The
MCL scans the table, starting at the first specified record, until it finds a record that contains the
media address of interest, or until it reaches the end of the table, to determine the MTD that will
handle the request.

Chapter 7 EMBEDDED BIOS Adaptation Guide 333

General Software EMBEDDED BIOS Adaptation Guide

The media table is specified in a tabular format with MEDIA_REGION entries. Each line in
the table specifies a new address range that maps to a particular MTD. In the event that address
ranges overlap, then the MCL will find the first region that contains a given media address. Each
line contains exactly three (3) operands, as in the following hypothetical example:

; Starting Ending Technology

; Phys Addr Phys Addr Driver Name

; --------- ---------- -----------

 MEDIA_REGION 00000000h, 0000dffffh, Ram

 MEDIA_REGION 000e0000h, 0000fffffh, Bulk8_1

 MEDIA_REGION 00100000h, 0007fffffh, Ram

 MEDIA_REGION 00800000h, 009ffffffh, Amd8_2

 MEDIA_REGION 00a00000h, 003ffffffh, Bulk8_1

The first operand specifies the 32-bit address associated with the first byte in the region to be
defined. Note that on some processors, such as the AMD SC400 series, this address is not
necessarily a bus address, but might correspond to the address configured for one of the
processor’s external chip select lines (ROMSEL0, for example). In this case, the Chipset
Personality Module or Board Personality Module must make a decision during system
initialization about where in the address space the chip select shall respond, and then the
MEDIA_REGION entry for the device attached to the chip select must be coded properly so
that the same addressing scheme is used.

The second operand specifies the 32-bit address associated with the last byte in the region to be
defined. This address must be equal to or greater than the starting address as specified by the
first operand.

The third operand specifies the name of the Media Technology Driver to which the MCL will
route any requests related to this defined region. This operand is prepended with the string
MtdSvc to produce a final name of a procedure in the BIOS that is responsible for handling I/O
requests for the media type. This routine (see Chapter 13 for calling conventions) is called by the
core BIOS’s MCL, and never by any other software in the system.

Because the third operand specifies the name of the MTD, and not an ordinal, it is possible to add
OEM-defined media types to the system. General Software has provided the following types in
the core BIOS:

Ram Read/Write RAM (SRAM & DRAM)
Rom Read-Only (any read-only ROM, Flash, SRAM or DRAM)
Amd8_1 AMD Flash, 8-bit devices, 1-way interleaved
Amd8_2 AMD Flash, 8-bit devices, 2-way interleaved
Amd8_4 AMD Flash, 8-bit devices, 4-way interleaved
Amd16_1 AMD Flash, 16-bit devices, 1-way interleaved
Atm8_1 Atmel Flash, 8-bit devices, 1-way interleaved
Bulk_1 Bulk Erase Flash, 8-bit devices, 1-way interleaved
Int16_1 Intel Flash, 16-bit devices, 1-way interleaved
Int16_2 Intel Flash, 16-bit devices, 2-way interleaved
Int8_1 Intel Flash, 8-bit devices, 1-way interleaved
Int8_2 Intel Flash, 8-bit devices, 2-way interleaved
Int8_A Intel 28F016 Flash, 8-bit mode, 1-way interleaved
Int8_B Intel Boot Block Flash, 8-bit mode, 1-way interleaved
Int16A_1 Intel Flash, 28F016/28F032 devices, 1-way interleaved
Int16A_2 Intel Flash, 28F016/28F032 devices, 2-way interleaved
Nand8_1 AMD/Toshiba NAND Flash, 8-bit, 1-way interleaved

334 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

It is very important that the correct Flash driver be used for a given Flash array. Flash arrays are
characterized by the device technology (AMD, Intel, Bulk, RAM, etc.), their data path width, and
their interleave factor.

The first part of any MTD’s name is its device technology. This makes it easy to determine
which parts (AMD, Intel, or whatever) are being used in a given region.

The second part of the MTD’s name is the data path width. This is determined by the Flash parts
themselves, and how they are configured with strapping pins. For example, the Intel 28F008 is
an 8-bit Flash part because it has an 8-bit data bus (D0-D7). The Intel 28F016 can be either an 8-
bit or a 16-bit part, depending on how a package pin is strapped in hardware.

The third part of the MTD’s name is the interleave factor. This is determined by the number of
Flash parts ganged together, so as to widen the data path. For example, two Intel 28F008 parts
can be ganged together, so that D0-D7 of the first part form the top 8 bits of a 16-bit data word,
and D0-D7 of the second part form the bottom 8 bits of the same word. This technique is called
interleaving, and in this example, the interleave factor is two (2). When a Flash array is not
composed of ganged parts in this manner, the interleave factor is said to be one (1).

Note that in the event that the MCL cannot find an entry in the table that contains a given media
address, then the request is passed to the RAM MTD, which treats the address space as though it
had Random Access Memory (RAM), capable of being byte-addressable, with read and write
operations available. Erase operations are simulated in the RAM MTD by resetting each byte
within a block of CONFIG_RFDDISK_KBBLKSIZE to the value, FFh.

In later versions of EMBEDDED BIOS, additional MTDs may be provided. For information
about the current list of supported MTDs, contact General Software.

The OEM can add additional MTDs to support special media by adding the appropriately named
MTD entrypoint routine in the Board Personality Module; MTDs need not be implemented in
separate assembly modules or in the SYSTEM (core BIOS) directory.

Related Parameters:

OPTION_SUPPORT_MCL - Enable Flash (and MCL) support.

7.2.157 FILE_SYSTEM (INT 13h Drive Management) Table

The EMBEDDED BIOS File System Control Layer (FSCL) provides a centralized, uniform,
access to all INT 13h mass storage devices in the system for its clients, which include the
operating system, application software, and Manufacturing Mode.

Hereafter, the term file system will be used to mean a disk driver or its emulator.
The term "file system driver" (FSD) will be used to mean the code that receives
I/O requests from FSCL to either manage the device or emulate it.

The FSCL architecture provides a way for file system drivers (FSDs), including those supporting
floppy disks, IDE drives, ROM disks, RAM disks, Flash disks, and OEM-defined drivers, to
participate in the system in a cooperative way. File systems can be mapped to specific BIOS unit
numbers by the OEM using the SETUP screen system, transparently to the drivers themselves.

Chapter 7 EMBEDDED BIOS Adaptation Guide 335

General Software EMBEDDED BIOS Adaptation Guide

FSCL initializes each participating file system during POST, and routes INT 13h I/O requests to
the appropriate FSD, based on this BIOS unit mapping.

The architecture provides for each file system to provide access to multiple devices in the same
class within the same system. This allows support for up to four real physical floppy drives, four
real physical IDE drives, and a virtually unlimited number of ROM, RAM, and Flash disks.

The architecture also permits FSDs to support both soft-style (floppy format) and hard-style
(hard disk partitioned) file system layouts. The purpose of this feature is to provide the OEM
with a choice of floppy-format or partitioned ROM, RAM, and Flash disks, although the idea can
be logically extended to treating real IDE drives as floppy units, and real floppy drives as
partitioned media, all transparently to the operating system.

This functionality of the FSCL is largely data-driven, based on a table created with the
FILE_SYSTEM macro in the project file.

The FILE_SYSTEM macro is used to define the specific file systems that will be supported in
the system. As previously mentioned, a given FSD may support multiple file systems. These
file systems, as defined by the FILE_SYSTEM macro, are then mapped to drives in the SETUP
screen, according to the user’s needs. Not all of the entries in the FILE_SYSTEM table need be
selected by the user. Only those enabled will actually be initialized by FSCL. The
FILE_SYSTEM table entries represent the possible file systems that the BIOS will support.

When FSCL receives INT 13h requests for a specific drive, they are routed to the FSD that is
handling the file system for the drive. The dispatching mechanism indexes into the
FILE_SYSTEM table to locate the FSD associated with the file system itself.

The file system table is specified in a tabular format with FILE_SYSTEM entries. Each line in
the table specifies a new file system that is governed by a particular FSD. Each line contains
exactly five (5) operands, as in the following hypothetical example:

; Type Device Start Addr Length SETUP name (unique)

; ---- ------ ---------- ---------- -------------------

FILE_SYSTEM Soft, Floppy, 0h, 0h, "Floppy 0"

FILE_SYSTEM Soft, Flash, 080000000h, 400000h, "4MB Flash Disk 0"

FILE_SYSTEM Hard, Ide, 0h, 0h, "IDE Drive 0"

FILE_SYSTEM Hard, Ide, 1h, 0h, "IDE Drive 1"

The first operand specifies the type of file system (soft or hard). Soft file systems are configured
by the BIOS to respond as floppies to the operating system; that is, they are associated with unit
numbers in the range 00h-7fh (bit 7 clear). Hard file systems are configured by the BIOS to
respond as hard disks to the operating system; that is, they are associated with unit numbers in
the range 80h-ffh (bit 7 set). Soft file systems are never partitioned, whereas hard file systems
are always partitioned.

The second operand specifies the file system driver (FSD) to be associated with the file system.
There is a set of standard FSDs provided in the core BIOS, and the OEM can add new FSDs if
needed. The following is a list of built-in file systems supported by the core BIOS:

Floppy True floppy disk drives (360K, 1.2M, 720K, 1.44M, 2.88M)
Ide IDE hard drives and relatives (ATA cards as well)
Cdrom CD-ROM drives with bootable “El Torito” CD-ROM media
Rom ROM disk driver (read-only, sectors direct-mapped to memory)
Ram RAM disk driver (read/write, sectors direct-mapped to memory)

336 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Flash Flash disk driver (read/write, sectors movable in memory)
Doc2000 Disk-On-Chip 2000 file system driver placeholder for bootability
User User-defined file system driver in Board Personality Module

OEM-defined file systems may be added in the system by assigning them a unique name (say,
User), adding an entry in the FILE_SYSTEM table with that name, and then naming the
entrypoint of the new file system according to the naming conventions described in the chapter
on File System Drivers.

The third operand identifies the location of the underlying media for the file system, to the FSD.
For FSDs that emulate drives with memory (ROM, RAM, or Flash disks), the starting media
address of the memory array is specified here. This is illustrated in the example above with the
entry for a Flash file system called "4MB Flash Disk 0", which starts at media address
80000000h.

For FSDs that need to identify physical equipment, this field may be divided into several
bitfields. For IDE drives, bit 0 indicates whether the physical drive is a master or slave device,
and bit 1 indicates whether the controller I/O base address is 1f0h (0) or 170h (1). For Floppy
drives, this field is simply the floppy drive unit number, from 0 to 3.

The fourth operand provides additional information about the file system to the FSD, and this
information is FSD-specific. For FSDs that emulate drives with memory (ROM, RAM, or Flash
disks), the size of the memory array is specified here in bytes. In the example above, the 4MB
Flash Disk is assigned a length field of 400000h, or 4MB.

For FSDs that identify physical equipment like floppy disks and IDE drives, this field is not
used.

The fifth operand is the human-readable name assigned to the file system, for purposes of display
in the SETUP screens and in operator prompts (such as when the user is prompted to verify an
RFD, for example). This name should not exceed 16 characters, or the SETUP screen may not
be displayed correctly.

Related Parameters:

OPTION_SUPPORT_DISKIO - Enable FSCL support.

7.2.158 LOAD_IMAGE (Windows CE Bootability) Table

The EMBEDDED BIOS CE Ready software can load and launch a copy of Windows CE, or any
other operating system software, as it is stored in a file on any disk that the BIOS recognizes.
This includes floppy disks, IDE drives, ROM disks, RAM disks, and Flash disks.

When booting Windows CE with the CE Ready feature, the core BIOS scans a table built from
LOAD_IMAGE entries in the OEM’s project file. This table lists the different filenames that
should be scanned for in the load attempt. The file also describes the contents of each file, so
that the core BIOS knows where to load the image into RAM, and how to transfer control to it.

When the BIOS attempts to boot Windows CE from a disk, it scans this table from beginning to
end, searching the disk’s root directory for the named file. If found, it transfers control to it
according to the specifications in that LOAD_IMAGE table entry.

Chapter 7 EMBEDDED BIOS Adaptation Guide 337

General Software EMBEDDED BIOS Adaptation Guide

The image table is specified in a tabular format with LOAD_IMAGE entries. Each line in the
table specifies a possible image to be loaded. Each line contains exactly four (4) operands, as in
the following hypothetical example:

; Filename Type Load Addr Entrypoint

; ---------------- ----- ---------- ----------

LOAD_IMAGE "NK.BIN", WinCe, 0h, 0h

LOAD_IMAGE "RAW.COM", Raw, 000010000h, 000010100h

LOAD_IMAGE "OS.IMG", Raw, 000080000h, 0h

The first operand specifies the name of the file to be searched for in the boot drive’s root
directory. The BIOS attempts variations on this file, so that closely-matching filenames are also
detected. For example, NK.BIN also matches NK1.BIN, NKXYZ.BIN, etc.

The second operand specifies the type of image to be loaded. This allows the BIOS to determine
how to interpret the contents of the image itself. For example, the NK.BIN file resulting from
the Microsoft Windows CE build has a certain format that EMBEDDED BIOS parses
specifically for Windows CE. This type is called WinCe. Another type, Raw, specifies that the
image is not to be interpreted in any way, but is a simple binary image that should be copied
without changing it. Other types may be available at dates later than this publication; contact
General Software for details.

The third operand specifies the starting physical address of the memory into which the image is
to be copied. For Windows CE builds, the starting physical address is contained in the file, and
so the dummy value 0h is used in the table. For Raw files, this value must be below 1MB.

The fourth operand specifies the entrypoint, or physical address to which the BIOS jumps, after
loading the image into memory. Note that the entrypoint is not specified as an address relative to
the load address, but is itself a physical address. For Windows CE builds, this is specified as 0h
because the entrypoint is encoded in the NK.BIN file itself. For Raw images, if this value is zero
(0h), then no jump will take place, as in the third example above. In this instance, the contents of
the OS.IMG file is loaded into low memory at physical address 80000h, and then no jump takes
place. If the entrypoint is specified as a nonzero value, then the value is used as a jump address.

Related Parameters:

OPTION_SUPPORT_WINCE - Enable Windows CE loader support.
OPTION_WINCE_ENTRY - Windows CE entrypoint for Windows CE in ROM.
OPTION_WINCE_VIDEO - Windows CE video mode.
OPTION_WINCE_PORT - Windows CE COM port.
OPTION_WINCE_BAUD - Windows CE COM port baud rate.
OPTION_WINCE_PCI - Windows CE PCI initialization method.

7.2.159 PCI_ROM Configuration Table

While EMBEDDED BIOS can automatically detect and map ROM images on PCI devices, some
PCI devices have embedded ROM images that are not detectable by the standard PCI
initialization sequence. The PCI_ROM configuration table provides a way for the OEM to
specify embedded PCI ROM images that must be mapped by the BIOS that are not to be
autodetected.

338 EMBEDDED BIOS Adaptation Guide Chapter 7

General Software EMBEDDED BIOS Adaptation Guide

Warning: Do not use this table to predefine PCI devices in a normal PCI system.
The standard option ROMs on PCI devices are automatically detected by the core
BIOS. This table is only used to specify option ROMs that do not show up in PCI
bus autodetection.

The PCI devices with associated embedded ROM images to be mapped are specified in a tabular
format with PCI_ROM macro entries. Each line in the table specifies a ROM image to be
mapped for a particular function of a device on a bus. Each line contains exactly four operands
to specify all of these things, as in the following hypothetical example:

; Bus Device Function Map Address

; --- ------ -------- -----------

PCI_ROM 0, 12h, 42h, c0000h

The first operand specifies the number of the bus to which the device is attached. In this
example, the bus number is 0. Bus number 0 is often used to mean the bus controller’s address.
You must specify the correct number for your system here.

The second operand specifies the number of the device on the bus. In this example, the device
number is 12h.

The third operand specifies the function number of the particular device that is associated with
the ROM image. The hypothetical function number in the example is 42h. Note that each PCI
device may have one or more functional units in a system.

The fourth operand specifies the physical address where the option ROM should be mapped by
the BIOS. In this example, physical address C0000h is specified, which translates to segment
C000h, where the video BIOS extension is normally located.

Related Parameters:

OPTION_SUPPORT_PCI - Enable PCI support.

7.2.160 RELOCATE_FEATURE Configuration Table

The RELOCATE_FEATURE configuration table provides the way for OEMs to move specific
components of the EMBEDDED BIOS core BIOS into segments other than F000h for builds
greater than 64KB in size. Moving components into the other (lower) segments (E000h, D000h,
or even C000h) makes room for other core BIOS features to be enabled. By providing a way for
the OEM to selectively move components, maximum flexibility is passed along to the OEM.

This feature works closely in conjunction with the OPTION_BIOS_KBSIZE parameter. By
default, this parameter is set to 64, providing an output file size of 64KB. To create system
BIOSes with more features than can fit in the 64KB footprint, some of those features must be
moved to a lower segment. When OPTION_BIOS_KBSIZE is set to a larger value (say, 128),
the next lower segment (E000h) is opened up and made available for placement of core features.
Code movement cannot be automatically handled by the build process because it is only at link
time, not compile time, that the total size requirements of selected features can be determined,
yet the segmentation for the selected features must be determined at compile time, not link time.
The RELOCATE_FEATURE table provides the way to specify which components of the BIOS
should be moved into lower segments, such as E000h.

Chapter 7 EMBEDDED BIOS Adaptation Guide 339

General Software EMBEDDED BIOS Adaptation Guide

The system BIOS can range from 16KB to 256KB in size. External considerations, such as the
integration of a VGA BIOS into the final build, are beyond the scope of this section.
Combination of external files not withstanding, the OPTION_BIOS_KBSIZE parameter is used
to select the overall footprint size and automatically make segments at F000h, E000h, D000h,
and C000h available as appropriate for the size. Then, the RELOCATE_FEATURE is used to
move features into the segments made available by OPTION_BIOS_KBSIZE.

The following features may be moved away from the default (F000h) segment into other
segments, thereby gaining space for other features. Others may become available since this
manual was published; contact General Software for details.

Feature Name Component Approximate Codespace
DEBUG BIOS Debugger 6KB-10KB, depending on options
SETUP All Setup Screens 8KB-12KB, depending on options
SPLASH All Splash Screen Code 4KB-10KB, depending on options

The features to be moved to other segments are specified in a tabular format with
RELOCATE_FEATURE macro entries. Each line in the table specifies a feature to be moved.
Each line contains exactly two operands to specify the feature name and its segment, as in the
following hypothetical example:

; Feature Location

; ---------------- -----------

RELOCATE_FEATURE DEBUG, SEG_E000 ; put debugger in E000h segment.

RELOCATE_FEATURE SETUP, SEG_D000 ; put setup system in D000h segment.

RELOCATE_FEATURE SPLASH, SEG_D000 ; put splash screen at D000h.

The first operand specifies the name of the feature to be moved. Not all features are movable;
movement requires core BIOS support in terms of segmentation and the way calls are made into
and out of a given feature’s code modules. In many cases, the core BIOS features are compact
enough that adding movability would add a substantial percentage to their size, reducing pay-off.

The second operand specifies the name of the segment to which the feature is to be moved.
Legal segment names are SEG_E000 (for values of OPTION_BIOS_KBSIZE between 65 and
128), SEG_D000 (for values of OPTION_BIOS_KBSIZE between 129 and 192), and
SEG_C000 (for values of OPTION_BIOS_KBSIZE between 193 and 256).

Related Parameters:

OPTION_BIOS_KBSIZE – Specifies footprint size of BIOS in kilobytes.

Chapter 8 EMBEDDED BIOS Adaptation Guide 341

General Software EMBEDDED BIOS Adaptation Guide

Chapter 8

STEP-BY-STEP BIOS ADAPTATION

This chapter examines the issues related to adapting the standard BIOS to a specific platform.
The following topics are covered in this chapter:

1. The project concept;
2. Selecting the best starting point;
3. Determining what needs to be changed;
4. Building a BIOS; and
5. Getting through POST.

8.1 The Project Concept

A BIOS engineer often needs to work on two or more BIOSes at the same time. For example, it
is highly recommended that the first BIOS an engineer builds be for a standard evaluation board.
Once that BIOS is working, which should be a fairly trivial task, the engineer would then begin
development of a BIOS for the first iteration of the real hardware.

Usually this first iteration will be a non-form-factor bread-board design. If, for example, the end
product was to be a cellular smart phone or PDA, then the final design will be packaged in a
space with dimensions of not more than 1.5" by 3" by 0.5" and will quite likely use flexible
multi-layer printed circuits. Such a package is extremely hard to work with from a
troubleshooting perspective. It is also likely to be mechanically fragile. In the long run it is
often cheaper and quicker to build the first version of the design using a conventional 1/16" rigid
multi-layer printed circuit board with sufficient spacing to do rework and with headers for all
signals that may need to be scoped or examined with a logic analyzer.

During this part of the process, the BIOS engineer will likely be switching back and forth
between the standard evaluation board and the breadboard. Once the bread-board design is
mostly up and running, layout of the form-factor design can begin. Often, as the result of
experiences with the bread-board, changes to the circuitry will be made at this time. Once form-
factor prototypes become available, the BIOS engineer will most probably still be switching back
and forth between two BIOSes: the BIOS for the bread-board and the BIOS for the form-factor
design.

342 EMBEDDED BIOS Adaptation Guide Chapter 8

General Software EMBEDDED BIOS Adaptation Guide

This BIOS kit employs a scheme called the project concept to make it easier for the BIOS
engineer to work with several different BIOSes simultaneously. Each of the three BIOS’s
envisaged in the example above would be different projects.

Suppose that the standard evaluation board was manufactured by the Super Duper Chip
Company and featured their 386 single chip embedded micro-processor. The evaluation board
might well be called a SDC386EV. It would be logical to use that as a project name.

When you purchased the BIOS kit, you probably selected some "personality modules" for it.
Given that the SDC386EV is a standard evaluation board which is supported by the BIOS kit,
two personality modules would be available for it. One would be known as a "board module"
and be called SDC386EV (i.e., the same name as the evaluation board) and the other would be
known as a "chipset module" and be called SDC386 (after the high integration embedded micro-
processor on the board). These modules will have been developed in close cooperation with the
Super Duper Chip Company and contain fixes and workarounds for chip and board anomalies.
Developing your own chipset and board personality modules from ground zero will be a time
consuming and, probably, frustrating process. In this chapter we will assume that you did
purchase these two personality modules.

Having installed the BIOS kit and the personality modules, you will have the following
subdirectories.

C:\
EBIOS43

 BOARDS
 SDC386EV

 CHIPSETS
 SDC386

CPUS
NOCPU

INC

TOOLS

UTIL

RESOURCE

ADS
ICONS
IDF
SPLASH

PROJECTS

SDC386EV

SYSTEM
OBJ

SDC386EV

Note that the two subdirectories in bold type are the personality modules.

Chapter 8 EMBEDDED BIOS Adaptation Guide 343

General Software EMBEDDED BIOS Adaptation Guide

The subdirectory that is underscored is a holding directory in which object modules created by
the build process (see Chapter 5) reside.

The italicized subdirectory is known as the Project Directory. It contains a file named
SDC386EV.INC. This file is known as the Project file. The project include file contains the name
of the board personality module, the chipset personality module and the values of any options
and parameters which have been changed from their default values.

The following is a sample project include file.

;*** SDC386EV.INC -- Embedded BIOS Project File for the SDC386EV System.

;

;1. Functional Description.

; This include file defines CONFIG.INC & OPTIONS.INC overrides.

;

;2. Modification History.

; S. E. Jones 00/02/14. #4.3, original.

;

;3. NOTICE: Copyright (C) 1992-2000 General Software, Inc.

; Required values:

CPUCLASS equ <NOCPU>

CHIPSET equ <SDC386>

BOARD equ <SDC386EV>

BIOS_LICENSEE EQU ’Unlicensed Demonstration Copy’

; CONFIG.INC overrides:

CONFIG_CPU_TYPE = CPU_386

CONFIG_MAX_EXT_MEMORY = (64-1)*16 ; 64MB limit

CONFIG_CMOS_FLOPPY = DRIVE_144

; OPTIONS.INC overrides:

The text in bold type specifies the personality modules.

Once you have built and tested a BIOS for the SDC386EV evaluation board (following the
procedures contained in Chapter 5), you are ready to start on your second BIOS: the one for the
bread-board system.

The first step is to choose a project name for this BIOS. Let us suppose that the hardware has the
code-name RAINIER. A reasonable project name for bread-board BIOS would be RAINIER1.

The next step is to create the sub-directories and initial files for this new RAINIER1 project.
This can be done with the following DOS commands.

MD C:\EBIOS43\SYSTEM\OBJ\RAINIER1

MD C:\EBIOS43\BOARDS\RAINIER1

344 EMBEDDED BIOS Adaptation Guide Chapter 8

General Software EMBEDDED BIOS Adaptation Guide

COPY C:\EBIOS43\BOARDS\SDC386EV\SDC386EV.ASM

C:\EBIOS43\BOARDS\RAINIER1\RAINIER1.ASM

COPY C:\EBIOS43\BOARDS\SDC386EV\SDC386EV.INC

C:\EBIOS43\BOARDS\RAINIER1\RAINIER1.INC

MD C:\EBIOS43\PROJECTS\RAINIER1

COPY C:\EBIOS43\PROJECTS\SDC386EV\SDC386EV.INC

C:\EBIOS43\PROJECTS\RAINIER1\RAINIER1.INC

The last step of the process of creating a new project is to edit the file
C:\EBIOS43\PROJECTS\RAINIER1\RAINIER1.INC to change the name of the board personality
module to RAINIER1.

You are now ready to start development of the BIOS for the bread-board design. A subsequent
section of this chapter provides some hints regarding the changes that you may need to make.

Once the breadboard BIOS is up and running, another project could be created for the form-
factor design. RAINIER2 might be a good name for it.

8.2 Selecting the Best Starting Point

As was noted in the previous section, implementing board or chipset modules from ground zero
is a very time consuming process. Thus it becomes important to choose the best starting point.

Most hardware designers will pick a reference design that illustrates the use of the micro-
processor chip that they had selected. The hardware designer will usually purchase an evaluation
board that incorporates that reference design. In almost all cases, the best starting point for the
BIOS engineer is the personality modules for that same evaluation board.

In some cases there is no evaluation board that uses the same set of chips as does the design for
which the BIOS is being developed. For example, the chosen micro-processor may not include
PCMCIA support, and the hardware design engineer may have selected a PCMCIA controller
chip which is totally different from the one used in the reference design. In this case the
personality modules for the reference design, while useful from many other aspects, are not
helpful for creating PCMCIA code.

In this situation, the BIOS engineer should check other reference designs to see if there is one
that uses the PCMCIA controller chip in question, even if the reference design uses a different
micro-processor. If such a reference design is found, the board personality module for that
design may be acquired and the relevant code ported from it.

If such a reference design cannot be found, it may be that a reference design and personality
module do exist for an earlier version of the chip. Or it may be that they exist for a somewhat
similar chip from another vendor.

In most cases it is cheaper in the long run to start from some tested and proven personality
module rather than to start from nothing. Taking into account wages, benefits, taxes, lab space
costs, utilities, and depreciation, a BIOS engineer usually costs an employer at least $1 per
minute. It does not take too long to spend as much as it would have cost to buy a personality
module.

Chapter 8 EMBEDDED BIOS Adaptation Guide 345

General Software EMBEDDED BIOS Adaptation Guide

8.3 Determining What Needs to be Customized

As important as determining what should be changed is understanding what should not be
changed. The sub-directories C:\EBIOS43\INC and C:\EBIOS43\SYSTEM contain what is known as
"the core". The core should not be changed unless there is no other way to make the BIOS work.
If you change the core you will make it very difficult for you to pick up fixes and new features
for your BIOS from General Software.

The architecture of the BIOS anticipates that changes will be made only to personality modules
and project include files.

Assuming that the hardware design for which a BIOS is need is based on a reference design and
evaluation board for which personality modules have been purchased, the most common changes
required fall into these categories:

1. Project include file changes from standard defaults;
2. General purpose pin assignments (GPIOs);
3. Power control;
4. Watch dog timer;
5. PCI interrupt mapping; and
6. Super I/O programming.

8.3.1 Project File Symbol Overrides

There are many options and parameters which can be changed quite simply. Some of these
options and parameters are intended to "tune" the BIOS to a specific hardware platform while
others enable and disable features that may or may not be relevant to a specific hardware design.
Most of these options and parameters are in the files OPTIONS.INC and CONFIG.INC. These files
are in the directory C:\EBIOS43\INC. These two files should be carefully examined to determine
if they contain the correct values, but these two files themselves SHOULD NEVER BE
CHANGED. Instead, any line that ought to have a different value should be copied into the
project include file and changed there.

8.3.2 General Purpose Package Pin Assignments

Most micro-processor chips intended for use in embedded systems contain pins that can be
directly controlled by software. These are often known as "general purpose pins". The use of
these pins varies greatly from design to design. The BIOS engineer will usually have to work
closely with the hardware design engineer to ensure that the BIOS uses these general purpose
pins correctly.

The architecture of the BIOS expects that all software that directly controls general purpose pins
is confined to personality modules. Violation of this rule may make it very hard to pick up bug
fixes later in the life of the product.

8.3.3 Defining Power Control

Control of power in embedded systems is probably the least standardized part of the system. If
your system includes any kind of software controlled power management, you will probably
have to modify some power related code.

346 EMBEDDED BIOS Adaptation Guide Chapter 8

General Software EMBEDDED BIOS Adaptation Guide

Power control software can be divided into two parts: the APM routines; and the power manager.

The APM routines are contained in the personality modules. Their purpose is to directly
interface with the hardware. They are typically called by the power manager to change the
power consumption level of the hardware (i.e., to power some component on or off, or to change
its speed) and to query the state of the power system, for example to check the level of charge of
a battery, or to determine the presence or absence of AC power.

The APM routines do not normally make any decision concerning the power state of the system.

Two sets of options exist with respect to the power manager. They are to either use or not use
the BIOS’s built-in power manager; and to use or not use an external power manager.

If the built-in power manager is to be used, then appropriate parametric values must be set up in
the project include file.

An external power manager is typically implemented as a device driver (usually called
POWER.SYS) and loaded via CONFIG.SYS. An external power manager is typically required when
power control decisions are based on events that are more complex than timer ticks, for example
when there are user operated power control switches, or when it is necessary to respond to a
change in availability of AC power.

8.3.4 Watchdog Timer

Many embedded systems incorporate a watchdog timer scheme which is intended to reboot the
system if it hangs. In general it is up to the application program to use the INT 15h APIs to
inform the BIOS when the watchdog timer should be enabled, disabled, and "kicked". While the
watchdog timer is enabled, it must be kicked every so often or the system will be rebooted.

When the application program issues watchdog APIs, the personality modules are notified. If the
watchdog timer feature is to be used, the BIOS engineer must put code in a personality module to
enable, disable, and kick the underlying hardware.

8.3.5 PCI Interrupt Mapping

Targets that have one or more PCI busses will need some adaptation at the Board Personality
Module level, in order to specify which PCI interrupt lines (INTA, INTB, INTC, INTD) are
wired to which devices (or “slots”). This prevents the core from generically assigning an
interrupt to a slot that cannot support that interrupt.

Additionally, there are some PCI tuning parameters that govern how resources are assigned
during PCI initialization. These issues are discussed in a separate PCI chapter.

8.3.6 Super I/O Programming

Targets with embedded Super I/O controllers usually require some custom OEM-supplied code
to program the Super I/O part to the desired configuration. For example, COM ports, LPT ports,
FDC, HDC, keyboard and mouse controller, and so on, are all logical components of a Super I/O
part that the OEM may wish to selectively enable or disable, or map to a specific I/O address or

Chapter 8 EMBEDDED BIOS Adaptation Guide 347

General Software EMBEDDED BIOS Adaptation Guide

IRQ. Because General Software cannot know in advance about how the Super I/O is wired into
the target, this programming is necessarily unique to the OEM’s Board Personality Module.

8.4 Building the BIOS

There are two possible ways to build a BIOS. One is to use an interactive Windows program
called BIOStart, which not only builds a BIOS but also provides an interactive method of
updating options and parameters in the project include file. BIOStart is described in Chapter 6.

The other way to build a BIOS is via a DOS-compatible program called GSMAKE. This method
is intended to be used only by BIOS engineers. The GSMAKE method is described in Chapter 5.

Using the RAINIER1 project as an example, having successfully built a BIOS by either of these
methods, a 64k file named RAINIER1.ABS will have been created in the sub-directory
C:\EBIOS43\PROJECTS\RAINIER1. The first few times that you build a BIOS you should perform
two checks of the file RAINIER1.ABS to make sure that it looks reasonable.

Firstly, enter the following DOS command.

DIR C:\EBIOS43\PROJECTS\RAINIER1\RAINIER1.ABS

Note: The size of the .ABS file depends on the OPTION_BIOS_KBSIZE
configuration parameter. If the parameter is in the range 1KB-64KB, then the
.ABS file will be 64KB in size, with any padding at the front (so as to force the
boot vector at the top of the ROM space). When the parameter is increased to the
range 65KB-127KB, the size of the .ABS file will be 128KB. Similar rounding-up
occurs at 196KB and 256KB, the largest size available.

Secondly, enter the following DOS command.

DEBUG C:\EBIOS43\PROJECTS\RAINIER1\RAINIER1.ABS

DEBUG should respond with a prompt as follows.

-

Enter the following DEBUG command.

D 100

Debug should respond with something similar to the following, provided you’ve generated a
simple, 64KB BIOS. (If you’ve built a BIOS of a different size, then you need to account for
padding of the file from the beginning of the file).

0C9E:0100 30 30 30 30 30 30 30 30-30 30 30 30 30 30 30 30 0000000000000000

0C9E:0110 30 37 2F 30 34 2F 30 30-28 43 29 31 39 39 32 2D 07/04/00(C)1992-

0C9E:0120 32 30 30 30 20 47 65 6E-65 72 61 6C 20 53 6F 66 2000 General Sof

0C9E:0130 74 77 61 72 65 2C 20 49-6E 63 2E 20 76 34 2E 33 tware, Inc. v4.3

0C9E:0140 2E 31 67 00 00 00 FF FF-FF FF FF FF 34 0B 3C 0B .1g.........4.<.

0C9E:0150 44 0B 4C 0B 54 0B 5C 0B-64 0B 6C 0B FF FF 42 61 D.L.T.\.d.l...Ba

0C9E:0160 73 69 63 20 43 4D 4F 53-20 43 6F 6E 66 69 67 75 sic CMOS Configu

0C9E:0170 72 61 74 69 6F 6E 00 53-68 61 64 6F 77 20 43 6F ration.Shadow Co

348 EMBEDDED BIOS Adaptation Guide Chapter 8

General Software EMBEDDED BIOS Adaptation Guide

Exit from DEBUG by entering Q (for Quit).

Assuming that the above checks produced acceptable results, you should now load the BIOS into
the system by one of the mechanisms described in Chapter 5.

8.5 Getting Through POST

POST is an abbreviation for Power-On Self-Test. POST is the first code in the BIOS to be
executed after a CPU reset occurs. POST not only tests the hardware but it also initializes it.
When POST completes either the operating system (usually DOS) or an application program is
loaded, or a menu is displayed allowing the user to determine how to proceed.

Most of the difficult debugging problems faced by a BIOS engineer involve failures during
POST. Most of POST must execute before the video and keyboard sub-systems can be used.
The first part of POST executes before DRAM is operational.

8.5.1 Using the Speaker to Report POST Failures

On a traditional PC a failure during POST is reported to the user via a number of beeps on the
PC’s speaker. The user is expected to count the number of beeps and guess at a likely cause of
the failure based on that number. While this BIOS kit supports this method, it is almost always
useless to the BIOS engineer as a debugging tool.

8.5.2 Using POST Codes to Report POST Failures

During POST, most traditional PC’s generate an 8-bit number, called a Post Code, as POST
executes. Each time a new Post Code is generated it is written to port 80h. If POST fails to
complete properly, the last Post Code written to port 80h may provide a clue as to the nature of
the failure. A short 8-bit ISA card, which will capture and display the last value written to port
80h, is available from several vendors. These cards are known as Post Code Cards or Port 80
Cards.

This BIOS kit supports Post Code Cards and routinely displays codes to port 80h as POST
executes. The meaning of each code is briefly stated in the file POST.INC, which is in the sub-
directory C:\EBIOS43\INC.

It is highly recommended that bread-board designs incorporate a built-in Post Code display.

If there is neither a built-in Post Code display nor an 8-bit ISA compatible connector, a logic
analyzer may be required to capture Post Codes.

While Post Codes provide a more precise scheme than counting speaker beeps, Post Codes often
do little more than narrow down the point of failure.

8.5.3 Using a Serial Port to Report POST Failures

This BIOS kit supports an optional serial port based method of reporting POST failures. It is
known as POSTCODECOM and it can be enabled by inserting the following line in the project
include file.

OPTION_SUPPORT_POSTCODES_COM = 1

Chapter 8 EMBEDDED BIOS Adaptation Guide 349

General Software EMBEDDED BIOS Adaptation Guide

If this option is enabled, short, somewhat descriptive, ASCII strings are sent to a serial port as
each major block of code in POST is executed.

A PC connected to the system under test via a null modem or crossover cable and running a
terminal emulator program such as PROCOMM can be used to capture and view these ASCII
strings. By default the serial port at 3F8h is used with settings of 9600,8,N,1.

The BIOS engineer can easily include additional POSTCODECOM strings to help localize the
point of failure.

8.5.4 Using the Graphical POST Test Icons

When a graphical POST interface is enabled, and a progress bar is available, the system will
display icons showing the status of major devices tested by POST, such as low memory,
extended memory, floppy disks, hard drives, and CD-ROM devices. The OEM can add OEM-
defined devices and icons to this system. Note that the graphical POST system actually provides
more information than the legacy POST display for disk devices.

8.5.5 Attempt to Boot an Operating System (DOS)

Once a logic analyzer, Post Code Display, and/or serial port link have been set up, you are almost
ready to try booting.

If your test system includes an LCD display of the type which is sensitive to the order and timing
of the LCD power controls, you should temporarily disconnect it to protect it from damage
should POST fail at an unfortunate place.

Now go ahead and install the BIOS (if you have not already done so) and apply power to the
system. Be prepared to shut the power off quickly if there is any indication of excessive heating
(i.e., smoke, or a "hot" smell). Be very careful not to touch any hot components, nor to allow
them to come into contact with any flammable or volatile materials.

Observe the system for indications of activity.

8.5.6 When Nothing Happens . . .

If nothing happens, start by checking that the BIOS was properly programmed into a Flash or
EPROM and that the chip is properly installed in its socket. Check that all power connectors are
correctly installed. Remove all plug in cards (except the Post Code card, if any) and all DRAM.
Disconnect all peripherals (except the POSTCODECOM serial link, if any), and try again.

If nothing still happens, with the help of a hardware design engineer, identify a pin on the micro-
processor chip that is under direct software control. Attach an oscilloscope to this pin, or use a
logic probe to monitor the pin. It may be necessary to lift the pin or cut foils to prevent a fault or
external load from holding the pin high or low. Note that some output pins are tied high or low
externally and sensed during power-on reset to enable or disable features in the micro-processor
silicon. Add code to the routine BoardInit0 in the board personality module to toggle this pin on
and off at some frequency that can be conveniently scoped. Remember that the CPU could be
running as slow as one tenth its nominal speed because it is running with default speed and wait
state settings at this time.

350 EMBEDDED BIOS Adaptation Guide Chapter 8

General Software EMBEDDED BIOS Adaptation Guide

Assuming that there are no coding errors, if no square wave is seen at the scope then either the
wrong board personality module is being included in the BIOS, or there is a BIOS build problem,
or the hardware is broken. If no BIOS errors are found, attach a logic analyzer to the address,
data, and read strobe (probably output enable) pins of the Flash/EPROM and check for
reasonable operation. Note that because the CPU may be pre-fetching instructions, you cannot
easily determine which instructions are actually executed versus those that are pre-fetched and
discarded.

If the logic analyzer indicates that only a few instructions were executed, then there may well be
a bus contention, bus loading, or bus wiring problem. If no instructions are executed there may
be a clocking, reset, or power problem.

Part II EMBEDDED BIOS Adaptation Guide 351

General Software EMBEDDED BIOS Adaptation Guide

PART II

BIOS FEATURES

This part of the EMBEDDED BIOS reference documentation discusses the major architectural
features of EMBEDDED BIOS on an individual basis, and offers information about how to
configure and use them in practical ways.

Chapter 9 EMBEDDED BIOS Adaptation Guide 353

General Software EMBEDDED BIOS Adaptation Guide

Chapter 9

THE INTEGRATED BIOS DEBUGGER

This chapter describes the operation of the integrated BIOS debugger. The purpose of the
debugger is to provide BIOS-level debugging facilities to the BIOS customization and hardware
development team and to the operating system and application engineers involved in bringing up
the operating system or application software on the target. It is not intended for use as the only
debugging tool for application programmers; it is mainly used for ensuring that the application
software or source-level debugger is loaded properly in the system, and that all the BIOS services
are available to the higher layer software.

9.1 How to Use the Debugger

The debugger can be activated in four ways.

1. On a PC-compatible platform, the BIOS debugger can be invoked through the console by
pressing the keyboard’s CTRL and LEFT-SHIFT keys simultaneously. Breaking into the
debugger in this way suspends the execution stream in the system until it is resumed with
the "G" (go) command. As part of the standard configuration options, the OEM can
configure the debugger to communicate through a serial port rather than the console, if
desired.

2. The debugger can also receive programmed control from an "INT 3" instruction in the
DOS code, application code, or BIOS code. This can be useful in debugging
EMBEDDED BIOS adaptations running on new hardware that aren’t yet booting the
operating system. It can also be used to check-out new hardware by manipulating I/O
ports with debugger commands.

3. From the SETUP main menu, the ENTER SYSTEM BIOS DEBUGGER selection will
enter the debugger. After use, typing the "G" (go) command will return to the SETUP
screens.

4. As a boot action, as a last-ditch effort if the operating system cannot be booted from the
appropriate drives or out of ROM, and the Manufacturing Mode link cannot be
established.

354 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

To enable the debugger in your EMBEDDED BIOS adaptation, set
OPTION_SUPPORT_DEBUGGER to 1. The debugger contains quite a few commands and
also contains a disassembler, which includes a full opcode table (see related options of the form,
OPTION_DEBUG_xxx). This can take up quite a bit of space, and it may require that you
increase the size of the BIOS itself by increasing OPTION_BIOS_KBSIZE to 64.

To enable access to the debugger through the SETUP screen system, enable
OPTION_SETUP_DEBUGGER.

As with the SETUP system, the debugger can be configured to redirect its input and output over
an OEM-defined serial port. To redirect debugger I/O over an RS232 serial line, enable
OPTION_SUPPORT_CON_REDIRECTOR, and set CONFIG_CON_REDIR_DEBUG to
the serial port number (1=COM1, 2=COM2, etc.) to use for remote debugging.

9.2 Debugger Command Syntax

Nearly all debugger commands are specified as a single abbreviated word such as "BIOSDATA",
"REBOOT", or "G", followed possibly by expressions separated by tabs, spaces, or commas.
Depending on the command’s function, the address operand may default to the "next approriate
address" or it may be required in the event that there is no "next appropriate address".
Command names are case-insensitive, as are the names of registers in operands.

9.2.1 Operand Types

Commands all take different operand types, depending on their function. For example, the
command that outputs a 32-bit double word to a 32-bit I/O port requires a 32-bit datum, whereas
the command that dumps memory uses an address of the memory area to dump.

The debugger accepts 8-bit, 16-bit, and 32-bit operands, as needed for a given command. In
addition, real-mode (segment:offset) addresses, and 32-bit physical addresses, are often given.
The Flash programming commands require a 32-bit address formed by an xxxx:yyyy syntax that
looks like it should be a real-mode address, but is in fact a special way to enter a 32-bit physical
Flash media address in two components, separated by a semicolon.

The 8-bit, 16-bit, and 32-bit operands are built from expressions.

Real-mode addresses (often called 16:16 addresses) are composed of two 16-bit expressions
separated by a colon, where the 16-bit expression on the left hand side of the colon represents the
segment, and the 16-bit expression on the right hand side represents the offset.

Physical addresses are indicated by a percent sign (%) followed by a 32-bit expression.

9.2.2 Expressions

The basic components of expressions are simple values, such as hexadecimal constants, or
register names. For example, the constants 0, 1234, 17, DEADBEEF (an interesting-looking 32-
bit hexadecimal number), and register names AX, BX, CX, DX, SI, DI, SP, BP, FL, CS, DS, ES,
SS, FS, and GS are all simple values. The 8-bit register names are not valid simple values. The
32-bit register names EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP, are also valid when the

Chapter 9 EMBEDDED BIOS Adaptation Guide 355

General Software EMBEDDED BIOS Adaptation Guide

CONFIG_CPU_TYPE parameter has been set to CPU_386 or above. Whenever an expression
is called for, these values can be used alone.

In addition, parentheses may be used (without any intermixed white space) to specify a simple
expression consisting of an operation to be performed on two values. For example, it is possible
to take the sum, difference, logical AND, or logical OR of two values, or shift one value by the
number of bits specified by the second value. Finally, anywhere a value may be specified, a
simple expression may be specified.

This recursive definition leads to the following examples of 16-bit expressions that might be
used in debugger operands:

1234 (constant value)
BX (contents of BX general register)
(BX+1234) (contents of BX plus 1234h)
(AX-2345) (contents of AX minus 2345h)
(CX&55AA) (contents of CX ANDed with 55aah)
(BP|2) (contents of BP ORed with 0002h)
(FL>1) (contents of FL shifted right one bit)
(ES<AX) (contents of ES shifted left AX bits)

Here are some more complex 16-bit expressions:

(BX+(SI-23)) (add BX to the difference of SI and 23h)
((AX&7FFF)|(BX&8000)) (bottom 15 bits of AX ORed with top bit of BX)

Here is a more formal definition, using a modified BNF, of expression syntax:

<hex value> ::= <hex digit> | <hex digit> <hex value>

<reg16> ::= AX | BX | CX | DX | SI | DI | SP |

BP | DS | ES | CS | SS | FS | GS | FL

<reg32> ::= EAX | EBX | ECX | EDX |

ESI | EDI | ESP | EBP | EFL

<register> ::= <reg32> | <reg16>

<value> ::= <hex value> | <register>

<operator> ::= ’+’ | ’-’ | ’&’ | ’|’ | ’>’ | ’<’

<expr> ::= <value> | (<expr> <operator> <expr>)

9.2.3 Addresses

Some debugger commands, such as U[nassemble] and D[ump bytes], allow an address to be
specified. When this is the case, the address can be a real-mode address or a physical address.

Real-mode addresses consist of two 16-bit expressions separated by a colon without intervening
whitespace. For example, F000:1234 specifies offset 1234h with respect to real mode segment
F000h. Register names, and expressions involving constants and expressions, are supported. For

356 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

example, F000:(BX+52) specifies an offset calculated from the contents of the BX CPU register
summed with the hexadecimal constant, 52h.

Physical addresses are specified by a 32-bit expression prefixed by a percent sign (%). The
following are examples of 32-bit physical addresses:

%00800000 (address of first byte at 8MB boundary)
%00100000 (address of first byte of extended memory)
%00000000 (address of first byte of low memory)
%FFFFFFFF (address of last byte in Pentium-class machine)

Flash media commands use a special form of addressing to indicate 32-bit physical addresses.
This form consists of two 16-bit expressions separated by a colon, as with real-mode addresses.
However, the two 16-bit expressions do not correspond to a segment:offset pair. Instead, the first
16-bit expression becomes the high 16 bits of the 32-bit address, and the second 16-bit
expression becomes the low 16 bits of the 32-bit address. The following are examples of Flash
addresses:

0000:0000 (address of first byte of low memory)
0010:0000 (address of first byte of extended memory)
0080:0000 (address of first byte at 8MB boundary)
FFFF:FFFF (address of last byte in Pentium-class machine)

9.3 Command Reference

This section describes the individual debugger commands.

9.3.1 ? Command

The "?" command evaluates its operand as an expression and prints the resulting value.

Command Syntax:

? Expression

Parameters:

Expression - A required expression as specified earlier in this chapter.

Sample Output Display:

1234

9.3.2 + Command

The "+" command advances the instruction pointer (IP) by one byte. This command is useful
when skipping over instructions.

Command Syntax:

Chapter 9 EMBEDDED BIOS Adaptation Guide 357

General Software EMBEDDED BIOS Adaptation Guide

+

Parameters:

none.

Sample Output Display:

none.

9.3.3 - Command

The "-" command backs up the instruction pointer (IP) by one byte. This command is useful
when an instruction should be reexecuted.

Command Syntax:

-

Parameters:

none.

Sample Output Display:

none.

9.3.4 BC Command

The BC command allows the developer to clear an execution breakpoint.

Command Syntax:

BC BreakpointNumber

Parameters:

BreakpointNumber - A required expression parameter that specifies the number of the
breakpoint to be cleared. The number of a breakpoint can be displayed with the
BL command, and is displayed after the system processes a BP command.

Sample Output Display:

Breakpoint #0 cleared.

9.3.5 BIOSDATA Command

358 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The BIOSDATA command allows the developer to inspect the major low-memory fields in the
system at segment 40H.

Command Syntax:

BIOSDATA

Parameters:

none.

Sample Output Display:

--- BIOS Data Area at 0040:0000 ---

COM Ports: COM1=03F8 COM2=02F8 COM3=0000 COM4=0000

LPT Ports: LPT1=0378 LPT2=0000 LPT3=0000

Device Flags: 4427 BOOT_DRIVE MATH_COPROC MOUSE

Memory Size: 635 kb

Kbd Status: General=00h, Extended=00

Disk Status: Floppy=00h, Fixed=40h

18Hz Ticks: 0000:04BB

Reset Flag: 0000

--- Extended BIOS Data Area at 9EC0:0000 ---

CMOS Cache: 9EC0:034E

9.3.6 BL Command

The BL command allows the developer to list the breakpoints that are currently active. If a
breakpoint has a command string associated with it, the command string is displayed. Those
breakpoints with no command string have no command string display.

Command Syntax:

BL

Parameters:

none.

Sample Output Display:

#0 - 0500:1d49 “U CS:IP;G”
#1 - 12d9:ef7c “CSW 32 1A;R AX 1234;T”
#2 - 12e9:459a

9.3.7 BP Command

Chapter 9 EMBEDDED BIOS Adaptation Guide 359

General Software EMBEDDED BIOS Adaptation Guide

The BP command allows the developer to set an execution breakpoint at a specified address.
Multiple breakpoints may be set at any given time. Please note that breakpoints work by storing
an INT 3 instruction at the specified location; this is impossible in read-only memory.
Breakpoints may only be set in RAM.

Command Syntax:

BP Address [“ CommandString”]

Parameters:

Address - A required parameter that specifies the 16:16 real-mode address of a breakpoint
to be set.

CommandString - An optional parameter, enclosed in double quotes, that specifies a
sequence of commands separated by semicolons to be executed when the
breakpoint occurs. If this parameter is not specified, then the standard breakpoint
command is the R (register dump) command.

Sample Output Display:

Breakpoint #0 saved.

9.3.8 CIS Command

The CIS command allows the developer to display a portion of the memory address space with
the formatting of a Card Information Structure as found in the configuration space of PCMCIA
cards.

This command is intended for use in debugging embedded applications that have a dedicated
PCMCIA card that must be configured for use in the target without card or socket services.

Command Syntax:

CIS Address

Parameters:

Address - A required parameter that specifies the 16:16 real-mode address of memory
space to be formatted as a CIS.

Sample Output Display:

Dependent on PCMCIA Card Type.

9.3.9 CONSOLE Command

360 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The CONSOLE command allows the developer to redirect the debugger’s input and output to
another device. Available devices are:

CON - the system keyboard and video display monitor
COM1 - the first communications port at 3f8h
COM2 - the second communications port at 2f8h

Command Syntax:

CONSOLE Device

Parameters:

Device - A required parameter that specifies the new console to redirect debugger output
to, and to redirect debugger input from.

Sample Output Display:

none.

9.3.10 CSR Command

The CSR (“chip set read”) command allows the developer to display the value held in a chipset
register. If no chipset is configured for the BIOS adaptation, then this command cannot function
properly.

Note that some chipset registers are write-only, and some chipsets (or their equivalents on high-
integration CPUs such as the SC520) may have registers that read-out different values than the
values written to them (bits flip, and some may stay high or low).

This command is very useful in conjunction with CSW to test chipset configuration values
before building a new BIOS with best-guess values.

This debugger command calls the CsReadReg Chipset Personality Module function to perform
the actual I/O to the chipset.

Command Syntax:

CSR RegisterIndex

Parameters:

RegisterIndex - A required expression that specifies the index of the register in the chipset
to be read.

Sample Output Display:

1234h

Chapter 9 EMBEDDED BIOS Adaptation Guide 361

General Software EMBEDDED BIOS Adaptation Guide

9.3.11 CSW Command

The CSW (“chip set write”) command allows the developer to set a chipset register to a specific
value. If no chipset is configured for the BIOS adaptation, then this command cannot function
properly.

Note that some chipset registers are write-only, and some chipsets (or their equivalents on high-
integration CPUs such as the SC520) may have registers that read-out different values than the
values written to them (bits flip, and some may stay high or low).

This command is very useful in conjunction with CSR to test chipset configuration values before
building a new BIOS with best-guess values.

This debugger command calls the CsWriteReg Chipset Personality Module function to perform
the actual I/O to the chipset.

Command Syntax:

CSW RegisterIndex RegisterValue

Parameters:

RegisterIndex - A required expression that specifies the index of the register in the chipset
to be read.

RegisterValue - A required expression that specifies the value to be stored in the chipset
register. Note that some chipsets use 8-bit values, and others use 16-bit values.
See your chipset’s programming documentation for details.

Sample Output Display:

None.

9.3.12 D Command

The D command allows the developer to display memory at the specified address, or at the
address immediately following the last byte displayed with the last D, DB, DW, or DD
command.

Command Syntax:

D Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in the default format. If not specified, then the
address is assumed to be the address immediately following the last byte
displayed by the last D, DB, DW, or DD command.

362 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

0040:0000 f8 03 00 00 00 00 00 00:bc 03 78 03 00 00 00 00 o.......L.x.....
0040:0010 7d 82 00 80 02 00 00 00:00 00 2c 00 2c 00 13 1f }e.C......,.,...
0040:0020 13 1f 3f 35 0d 1c 03 2e:64 20 0d 1c 6f 18 75 16 ..>5....d...o.u.
0040:0030 74 14 0d 1c 62 30 6c 26:0d 1c 3f 35 0d 1c 01 00 t...b0l&..?5....
0040:0040 24 00 04 00 00 00 01 06:02 07 50 00 00 40 00 00 #.........P..@..
0040:0050 0b 18 00 00 00 00 00 00:00 00 00 00 00 00 00 00 <...............
0040:0060 07 00 00 b4 03 29 30 03:00 00 c8 00 b1 93 01 00 ).0......o..
0040:0070 00 00 00 00 00 01 81 00:14 14 14 14 01 01 01 01 u.........

9.3.13 DA20 Command

The DA20 command allows the developer disable the A20 gate using the method configured in
the BIOS adaptation.

Command Syntax:

DA20

Parameters:

none.

Sample Output Display:

A20 gate disabled.

9.3.14 DB Command

The DB command allows the developer to set the default memory display format to bytes, and
then to display memory at the specified address, or at the address immediately following the last
byte displayed with the last D, DB, DW, or DD command.

Command Syntax:

DB Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in bytes. If not specified, then the address is
assumed to be the address immediately following the last byte displayed by the
last D, DB, DW, or DD command.

Sample Output Display:

0040:0000 f8 03 00 00 00 00 00 00:bc 03 78 03 00 00 00 00 o.......L.x.....
0040:0010 7d 82 00 80 02 00 00 00:00 00 2c 00 2c 00 13 1f }e.C......,.,...
0040:0020 13 1f 3f 35 0d 1c 03 2e:64 20 0d 1c 6f 18 75 16 ..>5....d...o.u.
0040:0030 74 14 0d 1c 62 30 6c 26:0d 1c 3f 35 0d 1c 01 00 t...b0l&..?5....
0040:0040 24 00 04 00 00 00 01 06:02 07 50 00 00 40 00 00 #.........P..@..
0040:0050 0b 18 00 00 00 00 00 00:00 00 00 00 00 00 00 00 <...............

Chapter 9 EMBEDDED BIOS Adaptation Guide 363

General Software EMBEDDED BIOS Adaptation Guide

0040:0060 07 00 00 b4 03 29 30 03:00 00 c8 00 b1 93 01 00 ).0......o..
0040:0070 00 00 00 00 00 01 81 00:14 14 14 14 01 01 01 01 u.........

9.3.15 DCACHE Command

The DCACHE command allows the developer disable CPU (L1) and chipset (L2) cache in the
system using the methods configured in the BIOS adaptation. This can be used to determine if
the cache is working properly.

Command Syntax:

DCACHE

Parameters:

none.

Sample Output Display:

Cache disabled.

9.3.16 DD Command

The DD command allows the developer to set the default memory display format to
doublewords, and then to display memory at the specified address, or at the address immediately
following the last byte displayed with the last D, DB, DW, or DD command. Data displayed in
this format is in big-endian format (the numbers are real hexadecimal numbers that have been
formatted by the debugger by swapping the low and high bytes of each word, and the low and
high words of each doubleword).

Command Syntax:

DD Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in doublewords. If not specified, then the
address is assumed to be the address immediately following the last byte
displayed by the last D, DB, DW, or DD command.

Sample Output Display:

0090:0000 6483:b3ea 4300:0004 7279:706f 7468:6769
0090:0010 2943:2820 3839:3120 6547:2039 6172:656e
0090:0020 6f53:206c 6177:7466 2000:6572 2020:2020
0090:0030 2020:2020 2020:2020 2020:2020 2020:2020
0090:0040 454c:4946 4346:0053 4200:5342 4546:4655
0090:0050 4300:5352 544e:554f 4400:5952 434b:5349
0090:0060 4548:4341 4552:4200 5600:4b41 4649:5245
0090:0070 5346:0059 4544:0044 4543:4956 4d4f:4300

364 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

9.3.17 DW Command

The DW command allows the developer to set the default memory display format to words, and
then to display memory at the specified address, or at the address immediately following the last
byte displayed with the last D, DB, DW, or DD command. Data displayed in this format is in
big-endian format (the numbers are real hexadecimal numbers that have been formatted by the
debugger by swapping the low and high bytes of each word).

Command Syntax:

DW Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in words. If not specified, then the address is
assumed to be the address immediately following the last byte displayed by the
last D, DB, DW, or DD command.

Sample Output Display:

0090:0000 b3ea 6483 0004 4300 706f 7279 6769 7468
0090:0010 2820 2943 3120 3839 2039 6547 656e 6172
0090:0020 206c 6f53 7466 6177 6572 2000 2020 2020
0090:0030 2020 2020 2020 2020 2020 2020 2020 2020
0090:0040 4946 454c 0053 4346 5342 4200 4655 4546
0090:0050 5352 4300 554f 544e 5952 4400 5349 434b
0090:0060 4341 4548 4200 4552 4b41 5600 5245 4649
0090:0070 0059 5346 0044 4544 4956 4543 4300 4d4f

9.3.18 E Command

The E command allows the developer to change a series of consecutive 8-bit storage locations in
memory.

Command Syntax:

E Address Value1 [Value2 [Value3...]]

Parameters:

Address - A required parameter that specifies the 16:16 real-mode or or 0:32 physical
address where the first byte in the sequence is to be stored. Subsequent bytes (if
specified) are stored in consecutively higher bytes in memory.

Value1, Value2, etc. - A required set of one or more expressions that specify the
hexadecimal 8-bit values to be stored at the specified address in memory.

Sample Output Display:

none.

Chapter 9 EMBEDDED BIOS Adaptation Guide 365

General Software EMBEDDED BIOS Adaptation Guide

9.3.19 EA20 Command

The EA20 command allows the developer enable the A20 gate using the method configured in
the BIOS adaptation.

Command Syntax:

EA20

Parameters:

none.

Sample Output Display:

A20 gate enabled.

9.3.20 ECACHE Command

The ECACHE command allows the developer enable CPU (L1) and chipset (L2) cache in the
system using the methods configured in the BIOS adaptation. This can be used to determine if
the cache is working properly.

Command Syntax:

ECACHE

Parameters:

none.

Sample Output Display:

Cache enabled.

9.3.21 EFL Command

The EFL command allows the developer to erase a block of sectored Flash supported by the
Flash device driver enabled in the core BIOS, if available.

This command uses the debugger’s parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

Command Syntax:

EFL HighPhysAddr:LowPhysAddr

366 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first byte of
a Flash block to be erased.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
byte of a Flash block to be erased.

Sample Output Display:

Flash block erased.

9.3.22 G Command

The G command allows the developer to resume execution from within the debugger.

Command Syntax:

G [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode address of a
breakpoint to be set before execution begins at the current CS:IP address. If not
specified, no breakpoint will be set.

Sample Output Display:

none.

9.3.23 HELP Command

The HELP command allows the developer to display a summary of commands that are supported
by the debugger.

Command Syntax:

HELP

Parameters:

none.

Sample Output Display:

Short summary of available commands.

Chapter 9 EMBEDDED BIOS Adaptation Guide 367

General Software EMBEDDED BIOS Adaptation Guide

9.3.24 I Command

The I command allows the developer to issue a read to a byte-wide I/O port in the system. The
value read from the port is displayed on the console.

Command Syntax:

I IoAddress

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to read the 8-bit
quantity from.

Sample Output Display:

12

9.3.25 ID Command

The ID command allows the developer to issue a read to a dword-wide I/O port in the system.
The value read from the port is displayed on the console.

Command Syntax:

ID IoAddress

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to read the 32-
bit quantity from.

Sample Output Display:

12345678

9.3.26 IW Command

The IW command allows the developer to issue a read to a word-wide I/O port in the system.
The value read from the port is displayed on the console.

Command Syntax:

IW IoAddress

Parameters:

368 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

IoAddress - A required expression that specifies the hexadecimal I/O port to read the 16-
bit quantity from.

Sample Output Display:

1234

9.3.27 LFL Command

The LFL command allows the developer to lock a block of sectored Flash supported by the Flash
device driver enabled in the core BIOS, if available.

This command uses the debugger’s parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

Command Syntax:

LFL HighPhysAddr:LowPhysAddr

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first byte of
a Flash block to be locked.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
byte of a Flash block to be locked.

Sample Output Display:

Flash block locked.

9.3.28 MASK Command

The MASK command allows the developer to specify a bit mask, called the “enabled” bit mask,
that is used by Embedded DOS-ROM internal debugging macros (XPRINTF) at run-time, on
certain platforms.

XPRINTF statements in the Embedded DOS-ROM kernel specify a bit mask that is ORed with
the “enabled” bitmask. If any bits match, then the XPRINTF statement is executed.

This feature allows a developer to add or modify code to the Embedded DOS-ROM kernel and
place actual debugging code in the kernel, tied to developer-assigned bits in this bit mask. Then,
these bits can be selectively enabled or disabled using the Embedded BIOS debugger with this
command.

Command Syntax:

MASK BitMask

Chapter 9 EMBEDDED BIOS Adaptation Guide 369

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

BitMask - A required expression that specifies a 16-bit value containing a bit pattern to be
used by the XPRINTF macros in debug-aware Embedded DOS-ROM kernel
builds.

Sample Output Display:

None.

9.3.29 MODE Command

The MODE command allows the developer to change the mode of the current video output
device. This works by issuing an INT 10h, function 00h, specifying the operand’s value as the
video mode.

Most commonly, this feature is used to reset the video mode after some graphics program has
run, so that debugger output is visible on the screen. For example, if a graphics program, such as
Windows, has painted the screen in some graphics mode, and CTRL-SHIFT has been used to
break into the debugger, then the debugger’s output won’t be visible as text, but as a dot spray on
the screen. Typing “MODE 7” would cause the debugger to reset the video card (and monitor) to
mode 7, which is the standard monochrome mode.

Command Syntax:

MODE VideoMode

Parameters:

VideoMode - A required expression that specifies a new video mode to set on the current
video display.

Sample Output Display:

None.

9.3.30 O Command

The O command allows the developer to issue a write to a byte-wide I/O port in the system. The
value written to the port is specified as the second parameter.

Command Syntax:

O IoAddress Value [... Value]

Parameters:

370 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

IoAddress - A required expression that specifies the hexadecimal I/O port to write the 8-
bit quantity to.

Value - A required expression that specifies the hexadecimal 8-bit value to write to the
I/O port. If more than one Value is specified, then each value is written to the I/O
port in the specified order, with interrupts disabled and no intervening I/O cycles.

Sample Output Display:

none.

9.3.31 OD Command

The OD command allows the developer to issue a write to a dword-wide I/O port in the system.
The value written to the port is specified as the second parameter.

Command Syntax:

OD IoAddress Value [... Value]

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to write the 32-
bit quantity to.

Value - A required expression parameter that specifies the hexadecimal 32-bit value to
write to the I/O port. If more than one Value is specified, then each value is
written to the I/O port in the specified order, with interrupts disabled and no
intervening I/O cycles.

Sample Output Display:

none.

9.3.32 OW Command

The OW command allows the developer to issue a write to a word-wide I/O port in the system.
The value written to the port is specified as the second parameter.

Command Syntax:

OW IoAddress Value [... Value]

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to write the 16-
bit quantity to.

Chapter 9 EMBEDDED BIOS Adaptation Guide 371

General Software EMBEDDED BIOS Adaptation Guide

Value - A required expression that specifies the hexadecimal 16-bit value to write to the
I/O port. If more than one Value is specified, then each value is written to the I/O
port in the specified order, with interrupts disabled and no intervening I/O cycles.

Sample Output Display:

none.

9.3.33 PCID Command

The PCID command allows the developer to display the current configuration of the PCI
subsystem, including all devices and bridges recognized by the BIOS.

Command Syntax:

PCID

Parameters:

None.

Sample Output Display:

PCI Device Table.
Bus Dev Func VendID DevID Class Irq
 00 00 00 8086 7190 Host Bridge
 00 01 00 8086 7191 PCI-to-PCI Bridge
 00 07 00 8086 7110 ISA Bridge
 00 07 01 8086 7111 IDE Controller
 00 07 02 8086 7112 Serial Bus 5
 00 07 03 8086 7113 PCI Bridge
 00 12 00 1011 0014 Ethernet 10
 00 13 00 1101 9500 SCSI Controller 9

9.3.34 PCIR Command

The PCIR command allows the developer to read from the PCI configuration space associated
with a device, function, and bus specified by the user. The debugger assumes a byte read to be
the default when the system is started, otherwise it will use the last used value (i.e. B, W, or D).

Command Syntax:

PCIR Index [Function [Device [Bus]]]

Parameters:

Index - A required expression that specifies the index into the configuration space from
which the data will be read.

Function - An optional expression that specifies the device’s function number associated
with the information to be read. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

372 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Device - An optional expression parameter that specifies the number of the device from
which the data will be read. If not specified, debugger will assume an initial value
of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the device’s
bus number associated with the information to be read. If not specified, debugger
will assume an initial value of 0, or use the last supplied value.

Sample Output Display:

12

9.3.35 PCIRB Command

The PCIRB command allows the developer to read an 8-bit byte from the PCI configuration
space associated with a device, function, and bus specified by the user.

Command Syntax:

PCIRB Index [Function [Device [Bus]]]

Parameters:

Index - A required expression that specifies the index into the configuration space from
which the 8-bit byte will be read.

Function - An optional expression that specifies the device’s function number associated
with the information to be read. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

Device - An optional expression parameter that specifies the number of the device from
which the data will be read. If not specified, debugger will assume an initial value
of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the device’s
bus number associated with the information to be read. If not specified, debugger
will assume an initial value of 0, or use the last supplied value.

Sample Output Display:

12

9.3.36 PCIRW Command

The PCIRW command allows the developer to read a 16-bit word from the PCI configuration
space associated with a device, function , and bus specified by the user.

Command Syntax:

Chapter 9 EMBEDDED BIOS Adaptation Guide 373

General Software EMBEDDED BIOS Adaptation Guide

PCIRW Index [Function [Device [Bus]]]

Parameters:

Index - A required expression that specifies the index into the configuration space from
which the 16-bit word will be read.

Function - An optional expression that specifies the device’s function number associated
with the information to be read. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

Device - An optional expression parameter that specifies the number of the device from
which the data will be read. If not specified, debugger will assume an initial value
of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the device’s
bus number associated with the information to be read. If not specified, debugger
will assume an initial value of 0, or use the last supplied value.

Sample Output Display:

1234

9.3.37 PCIRD Command

The PCIRD command allows the developer to read a 32-bit doubleword from the PCI
configuration space associated with a device, function , and bus specified by the user.

Command Syntax:

PCIRD Index [Function [Device [Bus]]]

Parameters:

Index - A required expression that specifies the index into the configuration space from
which the 32-bit doubleword will be read.

Function - An optional expression that specifies the device’s function number associated
with the information to be read. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

Device - An optional expression parameter that specifies the number of the device from
which the data will be read. If not specified, debugger will assume an initial value
of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the device’s
bus number associated with the information to be read. If not specified, debugger
will assume an initial value of 0, or use the last supplied value.

374 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

12345678

9.3.38 PCIW Command

The PCIW command allows the developer to write to the PCI configuration space associated
with a device and function specified by the user. The debugger assumes a byte write to be the
default when the system is started, otherwise it will use the last used value (i.e. B, W, or D).

Command Syntax:

PCIW Index Data [Function [Device [Bus]]]

Parameters:

Index - A required expression that specifies the index into the configuration space where
the data will be written.

Data - A required expression that specifies the 8-bit, 16-bit, or 32-bit data to be written.

Function - An optional expression that specifies the device’s function number associated
with the information to be written. If not specified, debugger will assume an
initial value of 0, or use the last supplied value.

Device - An optional expression parameter that specifies the number of the device to
which the data will be written. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the bus of
the device to which the data will be written. If not specified, debugger will
assume an initial value of 0, or use the last supplied value.

Sample Output Display:

none.

9.3.39 PCIWB Command

The PCIWB command allows the developer to write an 8-bit byte to the PCI configuration space
associated with a device and function specified by the user.

Command Syntax:

PCIWB Index Data [Function [Device [Bus]]]

Parameters:

Chapter 9 EMBEDDED BIOS Adaptation Guide 375

General Software EMBEDDED BIOS Adaptation Guide

Index - A required expression that specifies the index into the configuration space where
the 8-bit byte will be written.

Data - A required expression that specifies the 8-bit hexadecimal data to be written.

Function - An optional expression that specifies the device’s function number associated
with the information to be written. If not specified, debugger will assume an
initial value of 0, or use the last supplied value.

Device - An optional expression parameter that specifies the number of the device to
which the data will be written. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the bus of
the device to which the data will be written. If not specified, debugger will
assume an initial value of 0, or use the last supplied value.

Sample Output Display:

none.

9.3.40 PCIWW Command

The PCIWW command allows the developer to write a 16-bit word to the PCI configuration
space associated with a device and function specified by the user.

Command Syntax:

PCIWW Index Data [Function [Device [Bus]]]

Parameters:

Index - A required expression that specifies the index into the configuration space where
the 16-bit word will be written.

Data - A required expression that specifies the 16-bit hexadecimal data to be written.

Function - An optional expression that specifies the device’s function number associated
with the information to be written. If not specified, debugger will assume an
initial value of 0, or use the last supplied value.

Device - An optional expression parameter that specifies the number of the device to
which the data will be written. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the bus of
the device to which the data will be written. If not specified, debugger will
assume an initial value of 0, or use the last supplied value.

Sample Output Display:

376 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

none.

9.3.41 PCIWD Command

The PCIWD command allows the developer to write a 32-bit doubleword to the PCI
configuration space associated with a device and function specified by the user.

Command Syntax:

PCIWD Index Data [Function [Device [Bus]]]

Parameters:

Index - A required expression that specifies the index into the configuration space where
the 32-bit doubleword will be written.

Data - A required expression that specifies the 32-bit hexadecimal data to be written.

Function - An optional expression that specifies the device’s function number associated
with the information to be written. If not specified, debugger will assume an
initial value of 0, or use the last supplied value.

Device - An optional expression parameter that specifies the number of the device to
which the data will be written. If not specified, debugger will assume an initial
value of 0, or use the last supplied value.

Bus - An optional expression parameter (ranging from 0 to 255) that specifies the bus of
the device to which the data will be written. If not specified, debugger will
assume an initial value of 0, or use the last supplied value.

Sample Output Display:

none.

9.3.42 R Command

The R command allows the developer to display the contents of the general register set using the
display format last commanded with R32 or R16. If this is the first register display command,
then the initial register display format is selected based on whether 386 registers are available on
the target or not.

Command Syntax:

R

Parameters:

none.

Chapter 9 EMBEDDED BIOS Adaptation Guide 377

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 2000 General Software
AX=0093 BX=007a CX=0001 DX=3d26 SI=001e DI=0000 BP=03b6
CS=f000 DS=0040 ES=157b SS=157b SP=037e IP=ebc3 NV UP EI NG NA PO ZR NC
f000:ebc3 cli

9.3.43 R16 Command

The R16 command allows the developer to display the contents of the general register set using
the 16-bit display format.

Command Syntax:

R16

Parameters:

none.

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 2000 General Software
AX=0093 BX=007a CX=0001 DX=3d26 SI=001e DI=0000 BP=03b6
CS=f000 DS=0040 ES=157b SS=157b SP=037e IP=ebc3 NV UP EI NG NA PO ZR NC
f000:ebc3 cli

9.3.44 R32 Command

The R32 command allows the developer to display the contents of the general register set using
the 32-bit display format.

Command Syntax:

R32

Parameters:

none.

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 2000 General Software
EAX = 12345678 CS:EIP = F000:00000149 EFL = 001c213A
EBX = 00000001 SS:ESP = 02C0:00007FFE EBP = 0000199C
ECX = 179D248E DS:ESI = 74AB:00000511 FS = 0000
EDX = 5555AAAA ES:EDI = F000:0000E000 GS = 0000
F000:00000149 cli

9.3.45 R32X Command

The R32X command allows the developer to display the contents of the general register set using
the 32-bit display format, along with the special CPU control register set available on 386 and

378 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

above CPUs. The display of CR0 is especially useful to determine the CPU’s cache and FPU
management policies.

Command Syntax:

R32X

Parameters:

none.

Sample Output Display:

Embedded BIOS Debugger Breakpoint Trap
EAX = 0000000D CS:EIP = E000:00002281 EFL = 00000296 NG nz .. AC .. PE .. nc
EBX = 756E000A SS:ESP = 0000:00001FF2 EBP = 00001FDA .. nt IOPL0 nv up EI ..
ECX = 6C65001A DS:ESI = E000:00000BAB FS = 2504 id vp vi al vm rf
EDX = 49650C1B ES:EDI = 9EC0:00002141 GS = 0000
CR0 = 00000012 CR2 = 00000000 CR3 = 00000000 CR4 = 00000000
E000:00002281 retn

9.3.46 RC Command

The RC command allows the developer to read the contents of battery-backed CMOS memory.
Either one byte of CMOS may be displayed, or the entire CMOS contents may be displayed.

Command Syntax:

RC [CmosIndex]

Parameters:

CmosIndex - An optional expression that specifies the CMOS address (actually, an index
into the part) of the CMOS memory to be displayed. If no index is supplied, then
the entire contents of CMOS are displayed.

Sample Output Display:

Addr CMOS memory contents...
0000: 00 00 00 00 00 00 01 01 : 01 80 00 00 00 80 00 00
0010: 40 00 00 00 31 80 02 00 : 04 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 : 00 00 00 00 00 00 00 f7
0030: 00 00 19 03

9.3.47 RD Command

The RD command allows the developer to issue an INT 13h read command so that hard drives,
floppy disks, and their emulators, may be tested in the debugger environment. Operands of the
RD command specify arguments that are normally passed in registers to INT 13h.

Command Syntax:

Chapter 9 EMBEDDED BIOS Adaptation Guide 379

General Software EMBEDDED BIOS Adaptation Guide

RD DriveNo SectorNo HeadNo TrackNo Address

Parameters:

DriveNo - An 8-bit expression that specifies the INT 13h unit number associated with the
device to be read. For example, 0 is the first floppy, 1 is the second floppy, 80 is
the first hard drive, and 81 (hexadecimal) is the second hard drive.

SectorNo - An 8-bit expression that specifies the sector number to be read. Sector
numbers start with 1 and continue to the last sector number per track. For
example, a 1.44MB diskette has sector numbers ranging from 1 to 18 (12
hexadecimal).

HeadNo - An 8-bit expression that specifies the head number to be read. Head numbers
start with 0 and continue to the last head number. For example, a 1.44MB
diskette has head numbers ranging from 0 to 1.

TrackNo - A 16-bit expression that specifies the track number to be read. Track numbers
start with 0 and continue to the last track per cylinder. For example, a 1.44MB
diskette has track numbers ranging from 0 to 79 (4f hexadecimal).

Address - A 16:16 real-mode address (physical addresses are not permitted) that specifies
the memory location where the 512 byte sector will be transferred.

Sample Output Display:

Drive 00h, Sector 01h, Head 01h, Track 0042h read, status=00h.

9.3.48 RDMSR Command

The RDMSR command allows the developer to read a model specific register associated with an
Intel Pentium or above CPU. Details about MSRs are beyond the scope of this document;
consult your Intel documentation for details about what MSRs are available for your CPU.

Command Syntax:

RDMSR RegisterNo

Parameters:

RegisterNo – A 32-bit expression that specifies the model specific register number to read
from. Consult your Intel documentation for details. This value is passed to a real
RDMSR instruction in the ECX register.

Sample Output Display:

MSR register 12345678 = 23456789.abcdef01.

9.3.49 REBOOT Command

380 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The REBOOT command allows the developer to reboot the system without removing power to
the machine. This command causes the core BIOS to execute the OEM-defined reboot sequence,
which may involve only the CPU, port 92h, the Chipset Personality Module, or the CPU
Personality Module.

Note that the CPU restart vector on 286 and above processors is not F000:FFF0. These CPUs
actually execute out of the very top of their physical address space, which in some cases is
occupied by a boot loader such as the one provided by CyberQuest. Even though the CPU is
executing out of memory above the 1MB address mark, it is still executing in real mode, not
protected mode (really, real mode). Once the CS register is reloaded with any value, the CPU
disables the upper address lines, and typically, continues to execute at the 8086-compatible
reboot address, F000:FFF0.

On 286 and above CPUs, EMBEDDED BIOS enables the A20 line before rebooting the system.
This allows special boot loaders to execute.

Command Syntax:

REBOOT

Parameters:

none.

Sample Output Display:

none.

9.3.50 RFL Command

The RFL command allows the developer to read data from a block of sectored Flash supported
by the Flash device driver enabled in the core BIOS, if available. The data are displayed in
words, because some Flash arrays only support word accesses.

This command uses the debugger’s parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

If the operand is not specified, then reading will continue where the last RFL command left off.

Command Syntax:

RFL [HighPhysAddr:LowPhysAddr]

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be read.

Chapter 9 EMBEDDED BIOS Adaptation Guide 381

General Software EMBEDDED BIOS Adaptation Guide

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be read.

Sample Output Display:

03a0:0000 b3ea 6483 0004 4300 706f 7279 6769 7468
03a0:0010 2820 2943 3120 3839 2039 6547 656e 6172
03a0:0020 206c 6f53 7466 6177 6572 2000 2020 2020
03a0:0030 2020 2020 2020 2020 2020 2020 2020 2020
03a0:0040 4946 454c 0053 4346 5342 4200 4655 4546
03a0:0050 5352 4300 554f 544e 5952 4400 5349 434b
03a0:0060 4341 4548 4200 4552 4b41 5600 5245 4649
03a0:0070 0059 5346 0044 4544 4956 4543 4300 4d4f

9.3.51 SFL Command

The SFL command allows the developer to write a 16-bit pattern to a specified number of words
in a Flash array. This is used in situations where a Flash block must be written with all zeroes
before erasing it.

Command Syntax:

SFL HighPhysAddr:LowPhysAddr Count Word

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be written.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be written.

Count - A required expression that specifies the number of words to write in
hexadecimal.

Word - A required expression that specifies the 16-bit value to be stored in each word.

Sample Output Display:

Data written to Flash.

9.3.52 SIOR Command

The SIOR command allows the developer to read an 8 or 16-bit value (depending on the
implementation of the BPM’s BoardSioReadReg function) from a specified register on a Super
I/O component managed by the board module. This command simplifies the task of reading
these higher-level registers by eliminating the need for programming individual index and data
registers at the I/O port level.

The organization of the register set on the Super I/O component varies with these parts, and the
partitioning of the register space is left to the BPM implementor.

382 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The resulting output is printed in 16-bit format; however, whether the Super I/O part supports 8
or 16-bit data registers determines whether all 16 bits (or simply the bottom 8 bits) are actually
meaningful.

Command Syntax:

SIOR RegisterNo

Parameters:

RegisterNo – An 8 or 16-bit register number (depending on the BPM implementation)
that specifies which register on the Super I/O part to read data from.

Sample Output Display:

1234h

9.3.53 SIOW Command

The SIOW command allows the developer to write an 8 or 16-bit value (depending on the
implementation of the BPM’s BoardSioWriteReg function) to a specified register on a Super
I/O component managed by the board module. This command simplifies the task of reading
these higher-level registers by eliminating the need for programming individual index and data
registers at the I/O port level.

The organization of the register set on the Super I/O component varies with these parts, and the
partitioning of the register space is left to the BPM implementor.

Whether the Super I/O part supports 8 or 16-bit data registers determines whether all 16 bits (or
simply the bottom 8 bits) supplied as the value parameter are actually used by the debugger.

Command Syntax:

SIOW RegisterNo Value

Parameters:

RegisterNo – An 8 or 16-bit register number (depending on the BPM implementation)
that specifies which register on the Super I/O part to write data to.

Value – An 8 or 16-bit register number (depending on the BPM implementation) that
specifies data to be written to the selected Super I/O register.

Sample Output Display:

none.

9.3.54 SO Command

Chapter 9 EMBEDDED BIOS Adaptation Guide 383

General Software EMBEDDED BIOS Adaptation Guide

The SO command allows the developer to redirect special debugging output from the XPRINTF
macro in Embedded DOS-ROM to its own output device, such as CON, or COM1-COM4. For
more information about XPRINTF debugging output see the section on the MASK command in this
chapter.

Command Syntax:

SO Device

Parameters:

Device - A required parameter that specifies the new console to redirect Embedded DOS-
ROM’s XPRINTF output to. Supported device names are: CON, COM1, COM2,
COM3, and COM4.

Sample Output Display:

none.

9.3.55 T Command

The T command allows the developer to trace through the current instruction and stop execution
before the next one is executed. CALL and INT instructions are single-stepped by pushing into
the called code; this command does not "step over" the instruction.

Command Syntax:

T

Parameters:

none.

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 2000 General Software
AX=0093 BX=007a CX=0001 DX=3d26 SI=001e DI=0000 BP=03b6
CS=f000 DS=0040 ES=157b SS=157b SP=037e IP=ebc3 NV UP EI NG NA PO ZR NC
f000:ebc3 cli

9.3.56 TIME Command

The TIME command allows the developer to obtain a concrete CPU performance number
associated with the target running the BIOS. The TIME command uses its operand value as a
number of times to execute a lengthy loop of instructions that perform no useful work other than
cause a delay before the prompt comes back.

As the operand’s value increases, so does the time it takes for the TIME command to complete
and return to the prompt. The relationship between the operand value and the time to complete
the command is linear, making it possible to determine how much of a performance
improvement certain changes in chipset programming, etc. is incurred.

384 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Here is a simple way of measuring performance improvements:

1. Start with a simple system before the modifications. Suppose, for the sake of argument, that
you are interested in how the CPU’s incoming clock divisor (manipulated through some chipset
register) affects CPU performance. Boot to the debugger, and type “TIME 10”. We’ve chosen
10 here because it is a good starting point. Measure how long this takes.

2. Probably, 10 turned out to be too short or too long. However, you’ll definitely know that,
because your measurement will be hard to make in the short case, or difficult to wait for, in the
long case. Come up with a better number (n) and run TIME on it. Use your stopwatch to
measure how much time it takes. For real accuracy, we recommend some interval on the order of
30 seconds or so, to account for delays in starting and stopping the watch. Record the number of
seconds it took to perform the TIME command. Call that x, here.

3. Now manipulate your chipset registers with the CSR and CSW commands.

4. Run the same TIME command with n as its parameter. Record the number of seconds it took
to perform this TIME command. Call that y, here.

5. Now compute the performance improvement as (y/x).

Command Syntax:

TIME DelayFactor

Parameters:

DelayFactor - A 16-bit expression specifying the amount of “work” to perform. There
are many factors which, combined with this factor, cause the TIME command to
delay a certain amount of time. DelayFactor is a linear parameter, which means
that time taken to perform the command increases linearly with an increase in
DelayFactor itself.

Sample Output Display:

none.

9.3.57 TORAM Command

The TORAM command copies the BIOS into low memory at CONFIG_FLASH_CODESEG
and transfers control to the BIOS there. This allows the BIOS to run from RAM during tests
involving reconfiguring chipset parameters that relate to the BIOS ROM.

Command Syntax:

TORAM

Parameters:

none.

Chapter 9 EMBEDDED BIOS Adaptation Guide 385

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

none.

9.3.58 TOROM Command

The TOROM command effectively cancels the TORAM command, causing execution to resume
from the original location in ROM. If the BIOS was already running from ROM, then no
operation takes place.

Command Syntax:

TOROM

Parameters:

none.

Sample Output Display:

none.

9.3.59 U Command

The U command allows the developer to display the contents of memory as a series of
consecutive machine instructions. The instructions are formatted as 16-bit or 32-bit, depending
on the last unassembly command, whether U, U16, or U32.

By default, the U command unassembles at the current CS:IP address after a debugger break-in.
Subsequent U commands display the next few instructions, and so on. Specifying a new address
with the U command causes subsequent U commands to display the instructions following the
last U command.

Command Syntax:

U [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of the first instruction to be decoded and displayed. If not specified, the
display will start with the first instruction that follows the one last displayed in a
U command.

Sample Output Display:

033f:620b mov di, [0068]
033f:620f mov [di+06], ss
033f:6212 mov [di+04], sp

386 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

033f:6215 mov [di+02], fffd
033f:6219 call 61b7h
033f:621c bkpt
033f:621d retn
033f:621e push ds

9.3.60 U16 Command

The U16 command allows the developer to display the contents of memory as a series of
consecutive machine instructions. The instructions are displayed in 16-bit format (16 bit
instruction offsets, etc.)

By default, the U command unassembles at the current CS:IP address after a debugger break-in.
Subsequent U commands display the next few instructions, and so on. Specifying a new address
with the U command causes subsequent U commands to display the instructions following the
last U command.

Command Syntax:

U16 [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of the first instruction to be decoded and displayed. If not specified, the
display will start with the first instruction that follows the one last displayed in a
U command.

Sample Output Display:

033f:620b mov di, [0068]
033f:620f mov [di+06], ss
033f:6212 mov [di+04], sp
033f:6215 mov [di+02], fffd
033f:6219 call 61b7h
033f:621c bkpt
033f:621d retn
033f:621e push ds

9.3.61 U32 Command

The U32 command allows the developer to display the contents of memory as a series of
consecutive machine instructions. The instructions are displayed in 32-bit format (32 bit
instruction offsets, etc.)

By default, the U32 command unassembles at the current CS:IP address after a debugger break-
in. Subsequent U commands display the next few instructions, and so on. Specifying a new
address with the U-type command causes subsequent U commands to display the instructions
following the last U command.

Command Syntax:

U32 [Address]

Chapter 9 EMBEDDED BIOS Adaptation Guide 387

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of the first instruction to be decoded and displayed. If not specified, the
display will start with the first instruction that follows the one last displayed in a
U command.

Sample Output Display:

033f:0000620b mov di, [00000068]
033f:0000620f mov [di+0006], ss
033f:00006212 mov [di+0004], sp
033f:00006215 mov [di+0002], fffffffd
033f:00006219 call 61b7h
033f:0000621c bkpt
033f:0000621d retn
033f:0000621e push ds

9.3.62 UFL Command

The UFL command allows the developer to update an area of Flash from another area of memory
(such as the BIOS area at F000:0000).

This command copies the contents of memory specified by the 16:16 real mode address to the
physical address.

The Flash must be erased before the update will work, because this command does not
automatically erase the Flash before writing to it.

Command Syntax:

UFL HighPhysAddr:LowPhysAddr Count SourceAddress

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be written.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be written.

Count - A required expression that specifies the number of words to copy in hexadecimal.

SourceAddress - Specifies the 16:16 real-mode address of an area of memory to be copied
to the Flash.

Sample Output Display:

Flash Updated.

9.3.63 V Command

388 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The V command allows the developer to display the contents of an interrupt vector by its number
and save the address for a U command so that the code pointed to by that interrupt vector can be
disassembled.

The V command is implemented solely to save the OEM time during debugging. The same
results can be achieved with the DD command to display the interrupt vector table.

Command Syntax:

V VectorNumber

Parameters:

VectorNumber - A 16-bit expression that specifies a vector number from 00h to ffh,
inclusive.

Sample Output Display:

Interrupt Vector 03h Contents:
033f: 620b mov di, [00000068]

9.3.64 WATCH Command

The WATCH command allows the developer to enable watchpoints inside the core BIOS flagged
with INTENTRY and INTEXIT macro instructions in the source code.

All of the major interrupt service handlers in the BIOS (such as those for INT 10h, INT 11h, and
so on) call these macros, one for entry and one for exit. Using the WATCH command, the
developer can cause these macros to invoke the debugger’s register dump facility to see the
general registers on entry and exit to those interrupt handlers. This allows debugging of new
BIOS code or analysis of requests made by higher-layer software such as DOS or Windows.

The WATCH command accepts one or more interrupt numbers as operands. If no operands are
specified, then the current list of interrupts being watched is displayed. If operands are specified,
then their watch status is toggled. So for example, to enable the watchpoint for the INT 10h
service, “WATCH 10” would be specified. To disable the same watchpoint, the same command
would be issued again.

Command Syntax:

WATCH [IntNo [...IntNo]]

Parameters:

IntNo - A 16-bit expression that specifies a BIOS service interrupt number to watch.
Several of these may be specified as arguments.

Sample Output Display:

Watchpoint list: 10 11 15 19

Chapter 9 EMBEDDED BIOS Adaptation Guide 389

General Software EMBEDDED BIOS Adaptation Guide

9.3.65 WC Command

The WC command allows the developer to write a byte to battery-backed CMOS memory at the
specified index.

Command Syntax:

WC CmosIndex Value

Parameters:

CmosIndex - A required expression that specifies the CMOS address (actually, an index
into the part) of the CMOS memory to write to.

Value - A required expression that specifies the value to be stored in the specified CMOS
location.

Sample Output Display:

none.

9.3.66 WCOMx Command

The WCOMx command allows the developer test a serial port by writing a hexadecimal value to
a specified COM port a specified number of times. With large repeat values, the same character
can be written out effectively continuously, so that serial ports can be tested with a logic
analyzer, remote terminal software, or logic probe.

A period is printed on the primary debugging console to show the progress of writing to the
UART, although the actual output goes out the specified device, which is typically not the debug
output device.

Command Syntax:

WCOMx ByteToWrite RepeatCount

Parameters:

x - 1 for COM1, or 2 for COM2.

ByteToWrite - A required 16-bit expression that specifies the value to be written to the
output data port of the UART.

RepeatCount - A required 16-bit expression that specifies the number of times to write
the value to the UART in succession.

Sample Output Display:

Writing to COM1..........

390 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

9.3.67 WD Command

The WD command allows the developer to issue an INT 13h write command so that hard drives,
floppy disks, and their emulators, may be tested in the debugger environment. Operands of the
WD command specify arguments that are normally passed in registers to INT 13h.

Command Syntax:

WD DriveNo SectorNo HeadNo TrackNo Address

Parameters:

DriveNo - An 8-bit expression that specifies the INT 13h unit number associated with the
device to be written. For example, 0 is the first floppy, 1 is the second floppy, 80
is the first hard drive, and 81 (hexadecimal) is the second hard drive.

SectorNo - An 8-bit expression that specifies the sector number to be written. Sector
numbers start with 1 and continue to the last sector number per track. For
example, a 1.44MB diskette has sector numbers ranging from 1 to 18 (12
hexadecimal).

HeadNo - An 8-bit expression that specifies the head number to be written. Head
numbers start with 0 and continue to the last head number. For example, a
1.44MB diskette has head numbers ranging from 0 to 1.

TrackNo - A 16-bit expression that specifies the track number to be written. Track
numbers start with 0 and continue to the last track per cylinder. For example, a
1.44MB diskette has track numbers ranging from 0 to 79 (4f hexadecimal).

Address - A 16:16 real-mode address (physical addresses are not permitted) that specifies
the memory location where the 512 byte sector will be copied from.

Sample Output Display:

Drive 00h, Sector 01h, Head 01h, Track 0042h written, status=00h.

9.3.68 WFL Command

The WFL command allows the developer to write words of data to a block of sectored Flash
supported by the Flash device driver enabled in the core BIOS, if available. The data are written
in words, because some Flash arrays only support word accesses.

This command uses the debugger’s parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

Multiple data words may be specified on the command line, indicating that these words should
be written to consecutive word addresses.

Chapter 9 EMBEDDED BIOS Adaptation Guide 391

General Software EMBEDDED BIOS Adaptation Guide

Command Syntax:

WFL HighPhysAddr:LowPhysAddr Word1 [Word2] [Word3]...

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be written.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be written.

Sample Output Display:

Data written to Flash.

9.3.69 WP Command

The WP command allows the developer to set a data watchpoint on a 16-bit storage area at the
specified address. While the watchpoint is set, the processor enters trace mode, allowing the
debugger to check the status of the storage area after the execution of each instruction to see if it
has changed.

While it slows execution considerably (10x or more), a watchpoint can be very useful for finding
instructions that are trashing memory.

Command Syntax:

WP [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode address of a 16-bit
storage location in memory to be monitored. If not specified, the active
watchpoint (if any) is cleared.

Sample Output Display:

Watchpoint saved.

9.3.70 WRMSR Command

The WRMSR command allows the developer to write a 64-bit value to a model specific register
associated with an Intel Pentium or above CPU. Details about MSRs are beyond the scope of
this document; consult your Intel documentation for details about what MSRs are available for
your CPU.

Command Syntax:

392 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

WRMSR RegisterNo HighValue LowValue

Parameters:

RegisterNo – A 32-bit expression that specifies the model specific register number to
write to. Consult your Intel documentation for details. This value is passed to a
real WRMSR instruction in the ECX register.

HighValue – A 32-bit expression that specifies the high 32 bits of the data to be written to
the MSR. This value is passed to the WRMSR instruction in the EDX register.

LowValue – A 32-bit expression that specifies the low 32 bits of the data to be written to
the MSR. This value is passed to the WRMSR instruction in the EAX register.

Sample Output Display:

Setting MSR register 12345678 = 23456789.abcdef01.

9.4 PRINTF Output Formatting Macro

The integrated BIOS debugger provides output-formatting services in the style of the C-language
printf() library function for use in debugging an adaptation of EMBEDDED BIOS. These
services are available through a PRINTF macro in modules of the BIOS.

A PRINTF macro is defined in MACROS.INC for output formatting within the BIOS itself.
PRINTF provides unconditional output, as is used by the system initialization code that displays
the sign-on banner.

The PRINTF macros function very similarly to the C library's printf function. The remainder of
this chapter discusses how to use the PRINTF macro and explains all of the formatting options.

The basic PRINTF macro syntax is as follows:

label PRINTF <fmtstr> [, <arg1 [,argn]>]

The label field is used by the assembler and can be used to transfer control to the PRINTF
statement. PRINTF doesn't do anything with the label itself.

The formatting string, fmtstr, is any sequence of characters that your assembler will accept as a
string. The angle brackets surrounding the formatting string are used by the assembler to group
the string's characters together, even if the string contains commas and other separators. Be
aware that the PRINTF macro actually uses a DB statement in its expansion and surrounds the
formatting string with single quotes; consequently, you must use two single quotes in succession
whenever you wish to have one single quote printed in the string.

The formatting string is the basic template for the output to be performed. If no characters are
present in the formatting string, then no output will be performed, regardless of the parameters
specified in the argument list. The following is an example of a PRINTF statement that prints
"Hello World.\n":

 PRINTF <Hello World!\n>

Chapter 9 EMBEDDED BIOS Adaptation Guide 393

General Software EMBEDDED BIOS Adaptation Guide

9.4.1 Literal Specifications

Notice that, as with the C-library printf function, PRINTF accepts literal characters, including the
following:

\n newline (CR/LF pair)
\r carriage return (CR only)
\t tab to next tab stop (1, 9, 17, etc.)
\b bell character; beeps using BIOS
\\ display backslash character
\$ dollar sign (normally, $ is a formatting escape)

9.4.2 Format Specifications

Using PRINTF to output strings with literals is a basic function. Of course, you probably also
have data that needs to be formatted in many ways, because you will most lkely hav ethe data in
binary form in a register or in memory. To display data such as binary words and strings using
PRINTF, we add two more components to the PRINTF macro calls. First, we add an argument
list after the print formatting string. Second, we introduce formatting specifiers inside the
formatting string.

The PRINTF macro accepts either one parameter or two parameters. If one parameter (enclosed
in angle brackets) is specified, then that parameter is assumed to be a formatting string. If two
parameters (both enclosed in their own angle brackets) are specified, separated by a comma, then
the first parmaeter is assumed to be a formatting string, and the second parameter is assumed to
contain a variable length list of arguments to be printed.

The argument list may contain zero, one, or more items to be formatted. The number of data
items actually printed is a function of the print formatting string, and not the argument list.
Hence the two parameters must be carefully and precisely coordinated.

Data items to be printed can be general processor registers, memory words, memory bytes, or
strings in memory that are either fixed or variable length. Variable length strings may be
terminated by a zero byte (00h) or a dollar sign ($).

The way that the data items are to be formatted is specified in your formatting string. All format
specifications start with a dollar sign ($) and include a character after the dollar sign that
indicates what type of formatting should be performed. The following table shows what
formatting specifications are possible:

$c prints bottom byte of word argument as raw character
$u prints word argument as unsigned short number
$d prints word argument as signed short number
$x prints word argument as four hex digits
$lu prints dword argument as unsigned long number
$ld prints dword argument as signed long number
$lx prints dword argument as eight hex digits
$b prints bottom byte of word argument as two hex digits
$s prints ASCIIZ string addressed by two word arguments
s prints ’$’-terminated string addressed by two word arguments

394 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

$s[n] prints fixed length string of n characters

9.4.2.1 $c Format Specification

The following example displays the character in the AL register as an ASCII (raw) character:

 PRINTF <The character in AL is $c.\n>, <ax>

Similarly, to print the contents of a byte located in memory, you would declare the byte with the
DB statement, but actually specify a WORD in the PRINTF argument list:

OurChar DB ’A’ ; character to print.

 PRINTF <OurChar contains $c.\n>, <word ptr OurChar>

9.4.2.2 $b Format Specification

To display the contents of an 8-bit location in hexadecimal, the $b format specification must be
used. While $c printed the quantity as a single character, the $b specification interprets the byte
as a binary number from 0-255, and then formats the number in base 16. The result is two digits
that can take on values from 00 to ff.

Because an 8-bit quantity is being displayed, the same rules for passing 8-bit arguments as
defined in the $c formatting section apply here also. Therefore, you must fool the assembler and
actually pass a word to the PRINTF macro to satisfy the macro expansion.

The following is an example call to display the contents of the CL register in hexadecimal
format:

 PRINTF <The hex value in CL is $b.\n>, <cx>

9.4.2.3 $x Format Specification

The $x format specification is similar to $b, except that a 16-bit quantity is displayed in
hexadecimal format instead of an 8-bit quantity.

The following example shows how to print the contents of the SI register using the PRINTF $x
format specification:

 PRINTF <The hex value in SI is $x.\n>, <si>

Similarly, you can print the contents of a memory word with some form of the following
example:

MyWord DW 12345 ; a word in memory.

 PRINTF <MyWord in hex is $x.\n>, <MyWord>

Don’t forget that the output is printed in hexadecimal. Therefore, this example doesn’t print
"12345", because that is the decimal value of the contents of MyWord. Instead, the $x format
specification will display this value as "3039", because it is printed in base 16, not base 10.

Chapter 9 EMBEDDED BIOS Adaptation Guide 395

General Software EMBEDDED BIOS Adaptation Guide

9.4.2.4 $u Format Specification

The $u format specification is similar to $x, except that the 16-bit quantity is displayed in
decimal (base 10) format instead of hexadecimal (base 16). The following example shows how
to print the contents of the BX register using the PRINTF $u format specification:

 PRINTF <The value in BX is $u.\n>, <bx>

9.4.2.5 $d Format Specification

The $d format specification is similar to $u, except that the 16-bit quantity is displayed in integer
decimal (base 10) format instead of unsigned base 10 format. Thus, if the top bit in the word is
set, then the value is treated as a 2’s complement negative number, and is displayed after a minus
sign to indicate that it is a negative quantity. Keep in mind that 16-bit words can hold positive
nubmers in the range 0 to 32767 and negative numbers -1 to -32768. Thus, if you store the
unsigned value 32768 in a word and then format it with the $d format specification, it will be
printed as -1.

The following example shows how to print the contents of the AX register using the PRINTF $d
format specification:

 PRINTF <The value in AX is $d.\n>, <ax>

9.4.2.6 $lx Format Specification

The $lx format specification is similar to $x, except that a 32-bit quantity is displayed in
hexadecimal format instead of a 16-bit quantity.

The following example shows how to print the contents of the 32-bit quantity in the register pair
(DX:AX) using the PRINTF $lx format specification:

 PRINTF <The hex value in DX:AX is $lx.\n>, <dx, ax>

9.4.2.7 $lu Format Specification

The $lu format specification is similar to $lx, except that the 32-bit quantity is displayed in
decimal (base 10) format. The following example shows how to print the contents of the 32-bit
quantity represented by the CX:BX register pair using the PRINTF $lu format specification:

 PRINTF <The 32-bit value in CX:BX is $lu.\n>, <cx, bx>

9.4.2.8 $ld Format Specification

The $ld format specification is similar to $lu, except that the 32-bit quantity is displayed in
integer decimal (base 10) format instead of unsigned format. Keep in mind that 32-bit dwords
can hold positive numbers in the range 0 to 2^31-1 and negative numbers -1 to -2^31. Thus, if
you store the unsigned value 4292967295 (the decimal equivalent of 2^31) in a longword and
then format it with the $ld format specification, it will be printed as -1.

396 EMBEDDED BIOS Adaptation Guide Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The following example shows how to print the contents of the DX:AX register pair using the
PRINTF $ld format specification:

 PRINTF <The 32-bit value in DX:AX is $ld.\n>, <dx, ax>

9.4.2.9 $s Format Specification

The $s format specification allows you to display strings within your output. There are three
forms of this format specification.

First, without any other modifiers, $s will simply output an ASCIIZ string (a variable length
string containing a zero-byte at the end of it).

Second, by placing a dollar sign directly after the ’$s’, you can instruct PRINTF to display a
variable length string terminated by a dollar sign instead of a zero byte. This string format is
commonly found in DOS programs that use DOS function 09h, DosConStrOutput.

Third, you can use a format specification derived from the general form, ’$s[n]’, where the
brackets tell PRINTF that the base 10 number inside the brackets is the length of the string.

Regardless of how the string is terminated or how long it is, its address must be fully specified in
the argument list. Because strings are in general larger than one word, the address of the string
instead of the string itself is passed in the argument list. And because the string may be located
in any segment, both the segment and offset components of the string’s address must be
specified. As a result, you must specify two arguments (not one) in your argument list for every
string formatter you use. The first argument is the segment address of the string, and the second
argument is the offset address relative to that segment.

Finally, processors designed before the 80286 did not have a PUSH immediate instruction. As a
consequence, it is not possible to push a segment value or an offset value of something without
first putting it into a register, and then pushing the contents of the register. There is simply no
instruction for pushing immediate data. We get around this processor limitation by simply
storing string addresses in memory words or processor registers, and then passing the memory
words or registers to PRINTF’s argument list.

The following example shows how to print the contents of a string that is pointed to by the ES:DI
register pair (there is nothing magic about ES and DI, it could have been AX:BX or BP:DX).
The string is zero-byte terminated.

 PRINTF <The string contains "$s".\n>, <es, di>

This next example shows how to print the contents of a string that is statically declared as a
memory array of bytes using the DB directive. The string is zero-byte terminated. We assume
that MyString is in the data segment (addressable with DS).

MyString DB ’Hi there.’, 0

 lea ax, DGROUP:MyString
 PRINTF <The string is $s.\n>, <ds, ax>

Chapter 9 EMBEDDED BIOS Adaptation Guide 397

General Software EMBEDDED BIOS Adaptation Guide

If MyString had been assembled in the code segment, then the argument list <cs, ax> would have
been appropriate. Remember that the LEA instruction is only one of several ways to get the
address of MyString into the AX register. Another would be to use the MOV instruction with
the OFFSET operator:

MyString DB ’Hi there.’, 0

 mov ax, OFFSET DGROUP:MyString
 PRINTF <The string contains "$s".\n>, <ds, ax>

Notice that we used the syntax "DGROUP:MyString". This indicates to the assembler that the
offset component of the address is to be calculated relative to the group or segment called
"DGROUP. DGROUP is not a magic name to the assembler, it is simply the most common
name for the group of segments in the data group that most people use. If MyString had been in
the code segment, and you were using CGROUP as a code group, then you would substitute
"CGROUP" for "DGROUP" in the above example.

9.4.2.10 s Format Specification

So far, we have seen ways to print zero-byte terminated (ASCIIZ) strings with many different
kinds of addressing. The s format specification allows the same addressing methods to be
used, but simply defines the end of the string to be printed as the first occurrance of a dollar sign
($) in the string instead of a zero byte. here is an example where a $-terminated string is printed
using the LEA-style addressing:

MyString DB ’Hi there.$’

 lea ax, DGROUP:MyString
 PRINTF <The string contains "s".\n>, <ds, ax>

9.4.2.11 $s[n] Format Specification

Still a third way to define the end of a string to be printed with $s is to include the syntax, [n],
following the $s specification. This tells PRINTF that the string is exactly n characters long, and
that no characters in the string are to be treated as end-of-string terminators.

The following example shows how a fixed-length string can be printed with the PRINTF macro:

MyString DB ’abcdefghijklmnop’

 lea ax, DGROUP:MyString
 PRINTF <The string contains "$s[16]".\n>, <ds, ax>

Chapter 12 EMBEDDED BIOS Adaptation Guide 399

General Software EMBEDDED BIOS Adaptation Guide

Chapter 10

THE BIOS POST INTERFACE

EMBEDDED BIOS can have a flexible interaction with the end-user, from a totally headless
approach, to the common memory count-up display found on PCs, to a graphical POST with
splash screen, optional icon progress bar and OEM-defined animations, which could be used by
the OEM for announcements or advertisements, for example. This Chapter discusses how the
user interface is configured from the project and IDF files.

10.1 Legacy POST Interface

Most desktop PCs provide the user with a text-based POST display that shows the BIOS
vendor’s copyright, a short description and encoded text about the nature of the platform, and
then a memory count-up (perhaps with speaker clicks) that shows progress while memory is
being tested. This interface has become so well-known that it expected on desktop computers.

This same interface can be used in embedded systems, but it may need to be more flexible. For
example, POST messages themselves may need to be removed, or critical and soft errors (such as
the detection of a missing keyboard) need to have different handling, or the entire output might
need to be redirected over a serial port if it exists. The classic BIOS-based embedded system,
such as a router or home gateway, often makes this basic interface available via an RS232
connection to test gear if it is present.

10.1.1 POST Messages

POST messages include all text-based characters displayed during POST’s operation. This set
includes the sign-on banner with General Software copyright, name of processor or chipset, the
technical information displayed at the bottom of the screen, memory count-up display, and
messages and queries such as “press to enter Setup”. These messages can be disabled
by disabling OPTION_SUPPORT_POSTMSGS in the project file. Disabling these messages
improves boot time.

The PCI subsystem also displays a table that shows the resource assignments of discovered PCI
devices in the system. This table can be disabled by disabling
OPTION_SUPPORT_PCI_POSTMSGS.

400 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

Soft errors (such as missing LPT port, memory mismatch, or invalid CMOS) can cause text
displays during POST as well. These messages can be disabled by disabling
OPTION_SUPPORT_SOFT_ERR.

The memory count-up is timed, to allow the user to see the count-up on faster boards. The delay
used in the count-up is configurable in the project file with the CONFIG_WAIT_COUNT
parameter, or it can be disabled by disabling OPTION_MEMTEST_WAIT. The
OPTION_MEMTEST_CLICK option, when enabled, causes the PC speaker to click for each
64KB chunk of memory as it is tested.

Some options in the project file provide a way to control user queries during POST. There are
optional queries to enter the debugger, enter the Setup screen, format RAM disks, format RFD
disks, and verify RFD disk integrity. These can all be disabled in the project file to streamline
POST and make an automated and unattended POST work without user intervention.

Finally, a “configuration box” can be displayed after POST has completed, but right before
control is passed to the boot activities, such as loading the operating system from disk, or
launching Manufacturing Mode or the debugger. This configuration box is painted using INT
10h services (which work when using console redirection as well) and is enabled or disabled
with the OPTION_SUPPORT_CONFIGBOX parameter.

10.1.2 Critical Errors

Critical errors occur during POST before hardware is sufficiently initialized to allow the display
of textual messages on the console device. Commonly on the desktop, critical errors are signaled
by a beep on the PC speaker. The end user counts the number of beeps, or records a pattern of
beeps, and then consults a manual to determine the nature of the pre-boot failure.

EMBEDDED BIOS provides critical errors, and provides for them to generate legacy PC speaker
beeps, and/or other activities, including blinking of a floppy drive light, invocation of
Manufacturing Mode, or execution of an OEM-written routine in the Board Personality Module
(routine BoardPostError). This flexibility allows the OEM to implement any policy desired in
the embedded target. By default, OPTION_CRITICAL_BEEP is enabled, and the other
options are disabled, causing the BIOS to behave as expected for a legacy PC situation.

Critical errors are caused by error sources called hard errors. These sources can be enabled and
disabled on an individual basis. Thus, the results of certain equipment tests can be ignored,
allowing POST to continue even when the error occurs. These options, named
OPTION_HARDERR_xxx, where xxx is the name of the test, are selectable in the project file.

10.1.3 Soft Errors

Soft errors are like critical errors, but are generated after video is generally available, and so they
generate textual messages instead of beeps. Like their critical error brothers, they are multi-
sourced and configurable on an individual basis.

Soft error sources include LPT ports missing, memory size mismatch (legacy PC/AT soft error
used to notify when installed memory has changed size), invalid CMOS contents (usually due to
battery or power failure), as well as errors generated by the OEM’s code in the Board, Chipset,
and CPU Personality Modules. The options for selectively enabling and disabling these error
generators, are named OPTION_SOFTERR_xxx, where xxx is the name of the test.

Chapter 12 EMBEDDED BIOS Adaptation Guide 401

General Software EMBEDDED BIOS Adaptation Guide

10.1.4 Console Redirection

Console redirection is an integrated feature of EMBEDDED BIOS that provides a way for INT
10h video output requests and INT 16h keyboard input requests to be routed over an RS232
connection, normally to terminal emulation software such as HyperTerminal or PROCOMM
running on a host PC. Console redirection supports three functional channels of I/O, including
POST/DOS, Setup, and the integrated debugger. Each of these channels is independently
routable to the standard keyboard and video drivers (the traditional PC keyboard and screen) or
any configured serial ports.

Console redirection is a highly-configurable component of EMBEDDED BIOS. The feature can
be enabled independently of the selection of the drivers for the standard video and keyboard
devices, allowing the feature to remain at the ready should the console need to be redirected on-
the-fly at runtime or even when a specific component (such as Setup or the Debugger) are
executing. To enable the feature, set OPTION_SUPPORT_CON_REDIRECTOR to 1.

There are many qualifiers for this feature, allowing it to be tailored to meet the policy needs of
the OEM. The default I/O channels for console redirection are specified with
CONFIG_CON_REDIR_POST, CONFIG_CON_REDIR_DEBUG, and
CONFIG_CON_REDIR_SETUP. Additional options provide for the cancellation (i.e.,
dynamic resetting of these channels to 0, the standard keyboard and screen) under various
conditions. To disable the console redirection if a serial timeout occurs, set
OPTION_CON_REDIR_TIMEOUT. To disable the console redirection if a keypress is
detected at the main keyboard, set OPTION_CON_REDIR_CANCEL. To disable the console
redirection if no video device is present, set OPTION_CON_REDIR_AUTO. This last
redirection cancellation feature causes a Board Pesonality Module routine, BoardAutoRedirect,
to be called, allowing the OEM to change the way the BIOS detects the presence or absence of a
video controller.

10.2 Graphical POST Interface

While desktop PCs must all operate substantially the same during the pre-boot environment in
order to allow a huge user base to interact with them without any significant training, visually-
intensive embedded PCs, like factory controllers and internet appliances, have quite a different
goal. Most visual embedded systems need to establish distinctive qualities that separate them
from other products on the market. This requirement makes it essential to have a non-legacy,
graphical interface available during the pre-boot environment.

The graphical environment addresses many needs. First, it provides a less-technical indication to
the user that the embedded system is working. Second, it allows the OEM to brand the system
and control its visual look-and-feel, moving it away from a thinly-disguised PC. Third, it
provides a way to graphically display the progress of the pre-boot environment, by displaying
icons instead of error messages and memory count-up displays. Finally, it bridges the gap
seamlessly from the moment the display is activated to the point where the application program
takes over control of the screen.

The graphical POST environment can be enabled at the same time that the legacy POST
messages, critical errors, soft errors, and configuration box options are enabled. This allows the
user to select which type of POST interface will be used on the next boot with a setting in the
Basic Setup screen. When the graphical POST system is activated, it automatically intercepts all
INT 10h cursor updating and character display functions so that they don’t overlay the graphical

402 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

system. Then, when the first “set mode” INT 10h function is detected, the graphical POST
releases control over the INT 10h service, allowing the operating system and/or the application to
manage the display.

10.2.1 Splash Screens

The most commonly-used feature of the
graphical POST system is the splash
screen. Using a statement in the
SPLASH_TABLE in the project file, a
bitmapped graphic may be selected
from any of several graphic resources
merged into the final BIOS image for
display as early as possible during
POST. This effectively makes the
interface graphical, and allows the
OEM to define the look-and-feel of the
system, and brand it as well with
completely custom graphics.

There are many design issues to
consider when planning a splash screen
to be displayed, including palette
organization, and how the palette is
shared among all the graphical images
in the system. Additionally, there may be space constraints in the system that make it necessary
to simplify the graphic in order to make it fit in the target’s media address space.

The graphic above shows how a simple graphic and some text can be put together to create a
splash screen that identifies the device, reinforces what it does, and brands it with the
manufacturer’s name. Legal notice: The graphic used here is copyright General Software, Inc.
and cannot be used by anyone without written permission from General Software, Inc. The text
is purely fictional and is not intended to represent any offerings by any third parties.

10.2.2 POST Progress Icons

Just as the text-based POST displays its
progress in the form of critical errors,
soft errors, and memory count-up, the
graphical POST system provides a way
to visually show the user how POST is
proceeding, and the status of the POST
tests. This is done by associating
special events in POST (such as the
start and end of a memory test, or disk
test, etc.) with graphic resources, again
using the SPLASH_TABLE table in
the project file. The next graphic
shows how the above graphic can
support overlayed icons that show
POST’s progress.

Chapter 12 EMBEDDED BIOS Adaptation Guide 403

General Software EMBEDDED BIOS Adaptation Guide

These icons can be regularly spaced horizontally, vertically, or even at X/Y displacements to
produce cascading effects. Commonly, they are placed at the bottom of the screen, or on the left-
hand side. Note in the example design shown here, the design of the graphic’s text had to be
adjusted to fit the icon bar in the system.

OEMs can add their own icons to the system, or can replace the icons supplied by General
Software. This can be useful to support specific markets, such as non-English speaking ones, or
ones requiring totally graphic representation without any text.

10.2.3 Still and Animated Bitmaps

While the splash screen which we’ve already seen is an example of a still bitmap that spans the
entire height and width of the screen, it is possible to display other bitmaps without covering the
entire screen, and even overlay or redraw the same bitmaps in several different places on the
screen. With these basic tools in hand, it is possible to create a splash screen that makes room
for overlayed animated sequences, or advertisements, or moving objects that make the display
more active while POST runs.

Probably the simplest paradigm for this is the addition of web-style advertisement banners to the
splash screen. To add this, simply create room in the screen-sized splash screen for the
advertisement banners to be placed. Then, specify in the SPLASH_TABLE those additional
graphic resources and associate them with the rotating advertisement POST events. This will
cause POST to select a different advertisement on each boot, rotating all of them in a sequence
on successive boots.

To display all of the advertisements for each boot, the same technique is used, but instead of
associating the advertisement graphics with the advertisement POST events, they are all
associated with the initialization event, and specified in the proper sequence in the
SPLASH_SCREEN table in the project file. Finally, delays may be inserted in between these
graphics by coding a special resource ID as an object to be “displayed”.

10.2.4 Configuration

The EMBEDDED BIOS graphical POST is configurable by the OEM in a number of ways. The
OEM can specify certain graphical resources, or bitmaps, to be displayed in a specific order, and
when certain events occur during POST. The central mechanism for managing these resources
within the 16-bit BIOS build is the SPLASH_TABLE table, in the project file.

Once specified, the images may be created by the OEM using standard Windows .BMP
development tools, such as Paint or Photoshop, to list two commonly-known tools. Careful
planning and attention to procedure is necessary to manage the palette and limit resource size.

Finally, the graphics engine that draws the images can also be configured to accommodate
certain variances in the hardware.

10.2.4.1 The SPLASH_TABLE Table

The SPLASH_TABLE table, specified in the project file, is used to define all the elements of
the graphical POST system, including the splash screen, POST progress icons, banner
advertisement graphics, and even the delays inserted between graphics drawn for the same

404 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

system event. Although a practical how-to discussion will be presented here, a more formal
discussion of this project file statement is provided in Chapter 7.

The graphical POST system uses the run-time services of the EMBEDDED BIOS External
Resource Manager to retrieve graphics by their Graphics Resource ID, a 16-bit identifying
number specified in the .IDF file read by GSMERGE when combining various components of
the composite BIOS. The GSMERGE step is where graphic resources, such as icons and splash
screen bitmaps, get converted to the proper (internal RLE) format and merged into the final
BIOS image. At the same time that this is done, GSMERGE creates an external object directory
that EMBEDDED BIOS uses at runtime to find all the external resources. GSMERGE is
therefore responsible for the link between Resource Ids and graphics files.

The splash table itself is specified in a tabular format with SPLASH_TABLE entries in the
project file. Each line in the table specifies a new graphical component of the total graphical
POST sequence, and begins with the identifying macro command, SPLASH_TABLE. Each
line contains exactly four (4) operands, as in the following hypothetical example:

SPLASH_TABLE EVENT_SPLASH_INIT, RESOURCE_ID_SPLASH, SPLASH_CENTER, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_INIT, RESOURCE_ID_BOOTMSG, SPLASH_CENTER, 9800

SPLASH_TABLE EVENT_SPLASH_MSG1, RESOURCE_ID_ADVERT1, SPLASH_CENTER, SPLASH_TOP

SPLASH_TABLE EVENT_SPLASH_MSG2, RESOURCE_ID_ADVERT2, SPLASH_CENTER, SPLASH_TOP

SPLASH_TABLE EVENT_SPLASH_MSG3, RESOURCE_ID_ADVERT3, SPLASH_RIGHT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_MSG3, RESOURCE_ID_ADVERT4, SPLASH_LEFT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_MSG3, 0FF10h, SPLASH_LEFT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_MSG3, RESOURCE_ID_ADVERT5, SPLASH_LEFT, SPLASH_CENTER

SPLASH_TABLE EVENT_SPLASH_ICON, SPLASH_ICON_RIGHT+32, 131, 9868 ; define progress bar

The first operand specifies an event code that is associated with the entry. Multiple entries may
be associated with the same event code, in which case they are all activated when that event
occurs in the system. (Note: Only one instance of EVENT_SPLASH_ICON is permitted,
however.) The following events are defined by the architecture:

EVENT_SPLASH_INIT (00h) – The initial call to the splash screen.
EVENT_SPLASH_ICON (01h) – Progress bar Icon location/ordering request.
RESERVED (02h-0fh) – Reserved for future expansion.
EVENT_SPLASH_MSG1 (10h) – First boot advertisement after initial splash screen.
EVENT_SPLASH_MSG2 (11h) – Second boot advertisement after initial splash screen.
EVENT_SPLASH_MSG3 (12h) – Third boot advertisement after initial splash screen.
EVENT_SPLASH_MSG4 (13h) – Fourth boot advertisement after initial splash screen.
EVENT_SPLASH_MSG5 (14h) – Fifth boot advertisement after initial splash screen.
EVENT_SPLASH_MSG6 (15h) – Sixth boot advertisement after initial splash screen.

The second operand specifies the graphic resource ID to be associated with the event. When the
event occurs, all of the graphics defined in the SPLASH_TABLE with a matching event code
are displayed in the order they occur. If this parameter is specified to be a value of the form
0ffxxh, then the system will delay for xxh 55ms timer ticks instead of displaying a graphic.

The third operand specifies the horizontal component of the location at which the associated
graphic will be drawn. If SPLASH_CENTER (5000) is specified, the graphic will be centered
on the screen. If SPLASH_LEFT (0) is specified, the graphic will be left-justified. If
SPLASH_RIGHT (10000) is specified, the graphic will be right-justified. Any other value will
be used as a virtual position within this framework (think of 5000 as 50.00 percent of the screen,
0 as 0.00 percent of the screen, and 10000 as 100.00 percent of the screen, so that a new number
like 7500 would represent 3/4th of the way across the screen.

Chapter 12 EMBEDDED BIOS Adaptation Guide 405

General Software EMBEDDED BIOS Adaptation Guide

The fourth operand specifies the vertical component of the location at which the associated
graphic will be drawn. If SPLASH_CENTER (5000) is specified, the graphic will be cetnered
between the top and bottom of the screen. If SPLASH_TOP (0) is specified, the graphic will be
displayed at the top of the screen. If SPLASH_BOTTOM (10000) is specified, the graphic wil
be displayed at the bottom of the screen. Any other value will be used as a virtual position
within this framework (see the description for the 3rd operand, above).

For the EVENT_SPLASH_ICON table entry, the second, third, and fourth operands have
different meanings. This table entry, when specified, includes the graphical progress bar as a
visible component of the graphical POST system. The second parameter defines both the X and
Y travel directions and a scalar displacement, used in each direction specified, of each icon with
respect to its predecessor. The third parameter specifies the starting X location in the range 0-
10000, and the fourth parameter specifies the starting Y location in the range 0-10000, of the first
icon in the graphical progress bar.

In the above example, some entries share the same event in the table. When those events are
triggered, more than one graphic is drawn. This feature provides the ability to perform animation
by drawing successive graphics, not necessarily in the same location.

A different feature is the ability to use the same graphic ID in different entries in the table. This
allows reuse of the graphic for different situations, saving the need to duplicate the graphic
physically in the build.

10.2.4.2 Graphical Resources

Although the External Resource Manager supports many types of external resources, the
graphical POST system only supports a run-length-encoded file format designed by General
Software (.RLE extension). This is not the same as the RLE compression format used when
saving .BMP files in PhotoShop.

The Windows .BMP format was chosen for the graphical POST system because it is in
widespread use in the industry. There are some features of that format that are not supported,
however:

First, Microsoft documentation states that DDB (Device Dependent Bitmaps) are hardly used any
more for graphics files. Therefore, they aren’t supported. Only DIB (Device Independent
Bitmap) files are supported.

To keep the decoding/encoding steps simple, only uncompressed .BMP files are supported.
GSMERGE automatically performs RLE compression on these files before combining them with
the BIOS image as external resources. Do not enable any kind of compression when saving
.BMP files that will be used as input by GSMERGE for the graphical POST system.

Although the encoder in GSMERGE supports 16-bit and 24-bit images, there is no decoder for
these formats in the graphical display drivers in the graphical POST system. This may be
supported in the future.

Since images with more than one bit plane are rare, and because multiple planes are normally
used in DDB, not DIB-based files, there is no support for them. If your image editor stores 16-
color .BMP files using bit planes, simply save the file as a 256-color image instead. This will
have no discernable impact on the size or support of the final .RLE file unless you actually use
all 256 colors.

406 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

10.2.4.3 Creating Bitmaps and Icons

Bitmaps and icons are best created in a graphics design tool, such as PhotoShop. It is possible to
create .BMP files compatible with EMBEDDED BIOS in Windows Paint, but it is difficult to do
so, since Paint has no palette management tools. Thus, it is difficult to define 16 colors, which
can match-up to the capabilities of the hardware in 640x480x16 mode.

Some general rules of thumb should be followed in order to keep the size of graphical images
within reasonable bounds so they don’t exceed the ROM space available in the target. These are
not hard-and-fast rules, but simply recommendations. For example, if you absolutely must use
the standard corporate graphics already pre-approved by a legal department, it can be
accommodated by the system, provided it stays within the 16 color budget, and provided those
colors are supported by the hardware in the mode used by the graphical POST system, and then
provided all of the images can be combined with the other BIOS components to produce a final
output file that can fit in the ROM component.

1. Avoid large numbers of colors. Using more than four colors will start to bloat the file size. If
more than 16 colors are used, it will not be displayed properly by the graphical POST system.

2. When storing the length of each consecutive string of colors, the RLE compression bit packs
the line length. Fewer bits are used to represent details on the right side of the screen. If you
must include large amounts of text, try to place the text as close to the right edge of the screen as
you can, or take care of it separately. You can also make images smaller by making them less
wide.

3. Do not use image enhancements such as dithering, horizontal gradient shading, anti-aliasing,
or other techniques that would increase the number of breaks (changes in color) in a given
horizontal line. Vertical gradients do not increase the file size as much as horizontal ones do.

The most common embedded designs make use of 16-color modes. This is because all
EGA/VGA devices support them through standard interfaces that have existed for some time.
Out of all the non-VESA VGA modes, 16-color modes are the highest resolution and have been
supported for the longest time. In the future, VESA support may be added, in which case 256-
color mode may be supported at higher resolutions.

While there is no guarantee that a VGA card will support VESA, all VGA cards must support
640x480, 16-color mode, or they are no longer VGA compatible. Although VGA cards must
also support the 320x200, 256-color mode, it is less desirable due to its lack of resolution.

Most EGA/VGA, 16-color modes use a palette of 16 colors selected from a total of 64 different
hues. The 64 colors are selected using two bits each for red, green, and blue. This means that
you will have four shades of red, green, and blue scaling up in 33 percent increments from no
intensity (off) to full intensity. All the combinations of these are then available for use in the
palette. Note that some colors may be significantly altered when translated to the hardware
palette. This is particularly true of colors that use 50% red, green, or blue, since the rounding
error is extreme for these cases in 16 color modes.

Unfortunately, since Windows provides eight bits for red, green, and blue for every entry in a
plaette, you must keep in mind that your palette may be changed significantly when it is actually
used. If you do not keep this in mind when designing your palette, you may notice some strange
discrepancies between the colors you intended to have displayed, and the colors that are actually
displayed at run time.

Chapter 12 EMBEDDED BIOS Adaptation Guide 407

General Software EMBEDDED BIOS Adaptation Guide

With the above as a technical background, here is a simple procedure for creating splash screen
images using PhotoShop:

1. Create the image you wish to use as a splash screen. Place your logos and text, select your
colors, and keep it simple. Once you finish creating the original splash screen, save it. Be sure
to keep the original under a different name from your working copy, because you will want to
open both the original image and the working copy at the same time in later steps.

2. On your working copy of the image, use flood fill or color adjustment to change your colors
so they are significnatly different from each other. It’s a good idea to be sure that the different
colors in the working copy constrast sharply with each other before going to step 3, otherwise
PhotoShop may anti-alias the image using similar colors. Don’t worry if the colors you use for
sharp contrast are the colors you want (or like) since you will be changing them back later.

3. On your working copy, click on “Mode” and select “Indexed Color”. Under “Other”, enter
the number of colors you will be using plus one. Under “Palette” select “Adaptive” and under
“Dither” select “None”. Finally, click on [OK].

4. Open your original splash screen, and place it so it is visible when you select your working
copy. Click on “Mode” and then on “Color Table”. This will bring up a dialog box that will
show all the colors currently used in the image. Select each entry in turn and use the color picker
to adjust the palette entries in the color table, so that your working copy begins to resemble the
original. When adjusting palette entries, be sure that the R, G, and B entries are 0, 85, 170, or
255. This will result in the colors in your color table turning out the closest to the final colors
displayed on the splash screen (if your target is in 16-color mode).

5. Clean up the final image. In step 3, PhotoShop will have set some random pixels on diagonal
lines and color boundaries in an attempt to reproduce something closer to the original image.
You may need to clean these up so that the final image is less jagged. Of course, this only
happens if you used anti-aliasing when designing the original art, so this step can be eliminated if
you avoid anti-aliasing early-on in the process.

6. Save your final image as a Windows .BMP file. Select four bits per pixel (if you used less
than 16 colors). Do not select RLE compression. Your images must be uncompressed .BMP
files without RLE encoding. GSMERGE will convert your file to its own, internal RLE format,
which incidently does not match the format of a Windows RLE-encoded .BMP file.

7. From the command prompt, you can run the CVTBMP utility to view your output as it will be
displayed by the graphical POST system, before trying to create an IDF file that includes it. This
utility works under DOS, and also in a full-screen DOS box under Windows. CVTBMP accepts
two parameters. The first parameter is the name of the .BMP file with the .BMP extension
explicitly provided. The second parameter is the name of a scratch file (you may choose to
create an .RLE extension to remind you) that CVTBMP will write the actual compressed
resource file just as GSMERGE would convert it to. This allows you to see just how large the
file will be, for ROM space budgeting. Here is an example of invoking CVTBMP from the DOS
prompt:

C> CVTBMP splash1.bmp splash1.rle
… graphic displays here; press space bar to exit graphic display …
C> DIR splash1.rle
… display of size of splash1.rle here …

408 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

10.2.4.4 Creating Timed Sequences

Displaying an animated sequence of frames requires a delay to be inserted between the frames,
so that the end user has a chance to see each frame before the next one is displayed. These delays
can be specified in the SPLASH_TABLE by inserting special entries with a resource ID that is
between 0FF00h and 0FFFFh. An example of this is shown in the table above, where two
different graphics images (RESOURCE_ID_ADVERT4 and RESOURCE_ID_ADVERT5)
are displayed in response to EVENT_SPLASH_MSG3, but separated by a delay of 10h timer
ticks (approximately 16*55ms=880ms, or about 9/10 of a second).

10.2.4.5 Configuring the Graphics Driver Software

The graphical POST system contains a graphics driver subsystem that is configurable with
parameters in the project file. The following parameters may be tuned (see Chapter 7 for more
detail) to support the exact hardware to be used in the embedded design.

Enable the system by enabling OPTION_SUPPORT_SPLASHSCR. This system requires that
you also enable OPTION_SUPPORT_EXTRES, so that the External Resource Manager can
find your graphical bitmaps as resources “external” to the 16-bit core BIOS compilation.

Use the CONFIG_SPLASH_WIDTH and CONFIG_SPLASH_HEIGHT to specify the
dimensions of the display device itself in pixels and scan lines, respectively. These dimensions
should not be confused with the frame buffer width, specified using the
CONFIG_SPLASH_WBYTES parameter. Thus, it is possible to have a display device
connected to a video controller that has a much wider frame buffer than can be displayed by the
device.

The CONFIG_SPLASH_COLORS parameter is used to determine how to interpret the
graphical resources. Only 16-color and 256-color modes are supported at this version. Do not
attempt to set this parameter to values other than those supported.

The CONFIG_SPLASH_SEG parameter provides a way for the OEM to redefine the scratch
segment used by the display routines when decompressing the RLE-encoded images. Normally,
this is not necessary, but could become an issue with systems that have limited low memory (i.e.,
less than 640KB of low memory).

The CONFIG_SPLASH_BOOTS parameter provides a way for the OEM to limit the number
of boots for which the graphical POST can be disabled in the setup screen system until it is
restored again.

Chapter 12 EMBEDDED BIOS Adaptation Guide 409

General Software EMBEDDED BIOS Adaptation Guide

Chapter 11

PCI Subsystem

EMBEDDED BIOS provides support for managing Peripheral Component Interconnect (PCI)
busses, devices, and bridges in an embedded system. This Chapter discusses the functions of the
PCI subsystem and how it is configured from the project file and from the Board Personality
Module.

11.1 Overview

EMBEDDED BIOS provides support for configuring and initializing devices on a PCI bus, and
provides the industry standard PCI API functions for use by operating systems and device
drivers.

During POST, a process called PCI enumeration scans the PCI bus hierarchy for PCI devices and
PCI-PCI bridges. During PCI enumeration, each device and bridge is queried to determine the
resources that it is requesting. A second pass through PCI bus scanning then allocates and maps
memory, I/O, and IRQ resources so that the devices and bridges can perform their functions. As
each device is configured and enabled, it is initialized so that it may begin servicing its device(s).
As each bridge is configured and enabled, it provides the gateway through which other PCI
devices and bridges may be visible on the other side of the bridge.

During the system’s steady-state operation, EMBEDDED BIOS can provide 16-bit and 32-bit
services callable by application programs and operating systems for external management of PCI
devices and bridges. The 16-bit services are built directly into the 16-bit core BIOS image. The
32-bit services are built as a separate component, using a 32-bit assembly and 32-bit linker. The
32-bit services module presents its services through another 32-bit component, the 32-bit BIOS
directory service, which is used by 32-bit applications and operating systems to locate 32-bit
BIOS services in general. The 16-bit services are always built when the PCI feature is enabled in
EMBEDDED BIOS; however, the 32-bit services are optional and need only be included in the
final binary on the target if applications or operating systems require them.

Configuration of PCI support in EMBEDDED BIOS is managed in two ways: build parameters
and tables in the project file, as well as tables and custom code in the Board Personality Module.
Build parameters help to guide the policies used during PCI enumeration for assigning resources
to PCI devices. Tables in the project file are used to define external ROM images, combined

410 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

with the BIOS image, that support embedded PCI devices without on-board option ROMs. A
table in the Board Personality Module describes the IRQ routing used in the board’s design
(barber pole issues, etc.) Optional code in the Board Personality Module allows the OEM to
change the standard behavior of the PCI subsystem to meet the needs of an embedded design.

11.2 PCI Services

PCI services are made available to callers running in 16-bit real mode (or virtual 86 mode), 16-
bit protected mode (using the same 16-bit code path) and 32-bit protected mode. These services
provide functionality for reading and writing the PCI configuration space for a given bus, device,
and function on the device in units of bytes, 16-bit words, or 32-bit doublewords. Additional
services are provided to find a PCI device in the bus hierarchy, find a PCI device by its class
code (i.e., video output device), and manage hardware interrupt routing.

The 16-bit PCI services are callable by 16-bit applications through the INT 1Ah function B1h.
These services are not designed to be called from a 32-bit application or operating system.
Instead, a separate 32-bit interface is available for 32-bit callers. This API is defined in the PCI
Specification version 2.1.

The 32-bit PCI services are not handled by the 16-bit INT 1Ah function B1h. Instead, 32-bit
callers can obtain the address of the 32-bit PCI services entry point by scanning the BIOS image
from physical address E0000h to physical address FFFFFh, looking for “_32_” aligned on a 16-
byte boundary. This method conforms to the industry standard, “32-bit BIOS Directory Services
Specification”.

Documentation for both PCI service APIs is widely-available; however, the PCI Specification is
the original, official source.

11.3 The 32-Bit PCI Build Process

The PCI API supports both 16-bit and 32-bit callers. This introduces complexity to the system,
in the source code, the build process, and at run time. Some OEMs may not require 32-bit PCI
services; environment variables may be defined to disable or control the build process to
eliminate these extra services. In order to provide entry points for 16-bit and 32-bit callers, two
separate builds of source code are required which are merged together in a final step. Some
source code is shared between both builds, and certain restrictions apply to coding methods in
this dual-use code. The 16-bit build is performed first to build the majority of the BIOS and the
16-bit entry points for the PCI API. Typically, the 32-bit build is then performed, and the
GSMERGE utility is invoked automatically by GSMAKE to merge the 32-bit BIOS components
such as 32-bit PCI and 32-bit BIOS directory services with the 16-bit image, resulting in a final
image to be used to program the BIOS boot ROM. Either Borland or Microsoft tool sets can be
used to build the 16-bit and 32-bit components; however, they may not be mixed.

The 16-bit build produces a raw image of the 16-bit core BIOS with a name of the form,
proj.ABS, where proj is the name fo the project (for more background on this process, see
Chapters 4 and 5. Versions of EMBEDDED BIOS prior to 4.3 only build the proj.ABS file,
which contained the entire image to be used to program the BIOS boot ROM.

An OEM may not require 32-bit PCI services if the target platform or operating system does not
utilize them. Alternatively, the 32-bit binary may already exist and not require rebuilding. In
these cases, the 32-bit build may be disabled by defining the NOPCI32 environment variable
prior to running GSMAKE for a given project. The actual contents of the environment variable

Chapter 12 EMBEDDED BIOS Adaptation Guide 411

General Software EMBEDDED BIOS Adaptation Guide

are not important, but by convention “YES” or “Y” is used to make the sense of the variable
clear. The following command clears the environment variable, allowing the 32-bit PCI build to
take place:

C> SET NOPCI32=
C>

The following command sets the environment variable, disabling the 32-bit PCI build:

C> SET NOPCI32=YES
C>

The GSMERGE utility is still executed to perform any functions that may be defined in the .IDF

file, also located in the project directory. GSMERGE may be required to merge other
components with the 16-bit core BIOS, including VGA binaries, OEM ROM extensions, splash
screens, or other resources. If the .IDF file does not exist, then GSMERGE does not run. The
OEM can force GSMERGE to ignore a .IDF file and not run at all by setting another
environment variable, NOGSMERGE, to a non-null value. Thus, for purposes of building 32-
bit PCI, setting NOGSMERGE also effectively implies NOPCI32. The actual contents of the
environment variable are not important, but by convention “YES” or “Y” is used to make the
sense of the variable clear. The following command clears the environment variable, allowing
the GSMERGE portion of the build to take place:

C> SET NOGSMERGE=
C>

The following command sets the environment variable, disabling the final merge portion of the
build:

C> SET NOGSMERGE=YES
C>

If the 32-bit build is performed, the PCIAPI32.DLL file is created (in Portable Executable
format). The GSMERGE utility reads the .IDF file (Image Definition File), which contains
statements that cause GSMERGE to read the PCIAPI32.DLL file and merge it into the final
output file. In typical adaptations, the output from this process is the .BIN file, containing the
patched .ABS image, the 32-bit BIOS directory services, and the 32-bit PCI services.

The 32-bit binary may already exist because of a prior build, or may be provided by General
Software, one of its technology centers, or a third party. Since the 32-bit build requires more
build tools that may need to run in a 32-bit environment such as Windows 95/98/NT, not all
workstations may be able to execute them or have the tools installed. In this case, the
PCIAPI32.DLL and PCIAPI32.MAP files (for example) should be placed in the project subdirectory
and the NOPCI32 environment variable should be defined. When GSMAKE is subsequently
executed, the 16-bit code will be updated and the provided DLL and MAP files will be used by
GSMERGE without recompilation.

Some source files are shared between the 16-bit and 32-bit builds. This includes some of the
Board Personality Module and Chipset Personality Module routines. The shared routines are
kept in separate .ASM files which are included in the 16-bit and 32-bit board and chipset module
builds. The dual-build routines for the BPM are kept in a file named BRD1632.ASM in the BPM’s
source directory. Similarly, the dual-build routines for the CSPM are kept in a file named
CS1632.ASM in the CSPM’s source directory. These dual-build files are subject to additional
restrictions so that the code they contain can build correctly in both the 16-bit and 32-bit build

412 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

environments. This code must not make segment references or assume CS has any attribute
besides execute-only. Among other things, this means that look-up tables must be used with
care. The BIOS_16 and BIOS_32 symbols are defined for the respective build environments, so
that the code may make use of conditional assembly by testing these symbols with IF statements.
The GSMERGE_LINKAGE macro may be used to patch a 32-bit portion of the image with
addresses to stored data in the 16-bit image.

11.4 Configuring PCI in the Project File

PCI support in general is enabled in the project file by setting OPTION_SUPPORT_PCI.
Normally, OPTION_SUPPORT_BIOS32 should also be enabled, to support the 32-bit BIOS
directory services so operating systems may gain access to 32-bit PCI services. Setting both
these options enables all the code paths to make PCI functional in the BIOS.

The PCI subsystem can be directed to display a table of PCI devices and resource assignments
during POST; this display is enabled by setting OPTION_SUPPORT_PCI_POSTMSGS.

If the PCI subsystem encounters hard errors during POST, the BIOS can be configured to
continue or halt. Setting OPTION_HARDERR_PCI causes the hard error to be fatal, whereas
clearing it allows the POST process to continue, despite hard errors. The other PCI configuration
parameters in the project file are qualitative.

The CONFIG_PCI_ROM_MAP parameter specifies the starting addres of an area in the
address space that can be used by the PCI ROM scan code to map option ROMs temporarily into
the address space while copying them to their final destination below the 1MB address marker.
For systems that have preassigned uses for the memory address space at the top of physical
memory, this allows the OEM to reconfigure this temporary location.

The CONFIG_PCI_MEM_AVAIL parameter defines the first physical address that is allocated
to devices that are requesting physical memory address space as a resource for runtime purposes.
The default should work for nearly all systems, but it is possible that your chipset may impose
restrictions on the area where this address space starts.

The CONFIG_PCI_IO_PORT_BASE parameter defines the first I/O address that the PCI
subsystem may use to allocate to devices that are requesting physical I/O address space as a
resource for runtime purposes. Unlike physical memory allocation, I/O addresses go down as
they are allocated; CONFIG_PCI_IO_ALLOC is subtracted from
CONFIG_PCI_IO_PORT_BASE to obtain the next available I/O address range for allocation.

The CONFIG_PCI_ROM_SHADOW_START parameter defines the first location in the ISA
space below the 1MB address marker where PCI option ROMs may be shadowed; normally, this
starts at C000h, but can be adjusted for special memory map considerations.

The CONFIG_PCI_IRQ_BITMAP parameter is a 16-bit mask that specifies which system
IRQs are available for PCI use. Although any IRQ from 0 to 16 may be assignable to PCI INTx#
lines, in practice chipsets only support a limited subset. Of that subset, certain IRQs may be
further restricted because they are used for other purposes in the design, so they must be made
unavailable to PCI. The OEM should specify the IRQs that are truly available to the PCI
subsystem for assignments to PCI devices during POST, by setting the corresponding bits in this
bitmask, so that the PCI subsystem does not allocate reserved IRQs. Up to four, but no more, of
these IRQs are used by the PCI subsystem, because only INTA#, INTB#, INTC#, and INTD# are
supported in the hardware.

Chapter 12 EMBEDDED BIOS Adaptation Guide 413

General Software EMBEDDED BIOS Adaptation Guide

Additional configurable parameters allow the OEM to adjust temporary workspace addresses
used within the PCI subsystem; these parameters are brought out to eliminate hard-coded
constants and allow for special memory map considerations during POST. These parameters are
discussed in detail in Chapter 7.

One special project file table, PCI_ROM, is not actually a parameter. It allows the OEM to
specify the physical addresses of PCI option ROMs to be associated with a specific bus, device,
and function. This feature should (and in fact must) be used for all PCI option ROMs that need
to run, but which are not detectable by the PCI subsystem when it enumerates the PCI devices.
Thus, while a common PCI VGA or SCSI card inserted into a real PCI slot would have an option
ROM detectable during enumeration because the PCI device header indicates this, an embedded
VGA or SCSI controller might require an external ROM that needs to be specified with
PCI_ROM. It should be noted that, unlike ISA ROM extensions, the copy of the PCI option
ROM as specified using this parameter must not be visible in the ISA ROM scan range, or it will
be accidently executed by the ISA ROM scan range as an ISA ROM, and because it is a PCI
option ROM, it will not be executed in the proper context (shadow RAM enabled; bus, device,
and function number passed in as parameters, etc.). For detailed information about the
PCI_ROM table, consult Chapter 7.

11.5 Configuring PCI in the Board Personality Module

In general, the Board Personality Module contains code and data that implements board-level
policy for all components of the BIOS, including 16-bit and 32-bit PCI. PCI policy includes how
PCI interrupt lines are routed among the slots and devices, and the mechanism by which IRQs
are assigned to INT#A, INT#B, INT#C, and INT#D by the chipset.

11.5.1 PCI Interrupt Routing Table

In order to support assignment and reassignment of PCI IRQs, operating systems such as
Windows 98 need to know how the system board has wired each PCI slot’s interrupt pins to the
PCI Interrupt Router’s interrupt pins. This information is obtained by the operating system from
the PCI Interrupt Routing Table, implemented in the Board Personality Module of an
EMBEDDED BIOS adaptation because it describes board-level policy.

Each PCI system board consists of one or more slots and a PCI Interrupt Router (a component of
the PCI bus controller). Embedded devices that are not plugged into slots can be thought of as
taking their own “slot” as well, for purposes of this discussion. Each slot has four interrupt pins,
known as INTA#, INTB#, INTC#, and INTD#. The PCI Interrupt Router has several interrupt
pins, known as PIRQ1#, PIRQ2#, PIRQ3#, … PIRQn#. There is no PIRQ0#. The INTn# pins
for each slot may be wire OR’d with other INTn# pins from the same or other slots, and these
groups of pins may also be connected to a PIRQn# pin on the Interrupt Router. The actual PIRQ
value assigned to each interrupt pin on each Interrupt Router is assigned by the PCI resource
allocation code in the EMBEDDED BIOS PCI Subsystem.

The PCI IRQ routing information is stored in a table, defined in the Board Personality Module’s
shared 16-bit/32-bit source file called BRD1632.ASM. The bit mask of system IRQs to use for
PCI is also defined and typically used by this table.

Here is an example of the board PciIrqTbl and PCI_IRQ bit mask definitions for a hypothetical
board. It shows a table that might be build which actually matches the standard barber-poling
method for PCI INT line routing. In practice, this table would not be necessary since the PCI
enumeration code defaults to this routing method. However, it provides a useful example for

414 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

reference. If you have a board with nonstandard PCI interrupt assignments, or one with
embedded devices that have specific interrupt lines routed to them, then you should start with
this as a first pass, and modify as appropriate for your own custom table.

IF OPTION_SUPPORT_PCI

; Evaluation Board wiring (from schematic)
;
; Device PCI INT line ->: INTA INTB INTC INTD
; Device
; Slot 3 (device 12h): SYSINTA, SYSINTB, SYSINTC, SYSINTD
; Slot 4 (device 13h): SYSINTB, SYSINTC, SYSINTD, SYSINTA
; Slot 5 (device 14h): SYSINTC, SYSINTD, SYSINTA, SYSINTD
; Onboard (device 11h): SYSINTD, N/A, N/A, N/A
;
; Thus Slot3 (SLT3 in silkscreen on the board) has its
; INTA* pin tied to the system board PCI INTA* signal, but SLT4 has its
; INTA* pin tied to the system board PCI INTB* signal, and so on.

; Bits that are set in CONFIG_PCI_IRQ_BITMAP indicate the associated
; IRQ is available for use by PCI.
;
; In most cases, IRQ14 and IRQ15 must be reserved for the IDE controller.
; IRQ13 is reserved for the FPU, and IRQ’s 0-2, 6, and 8 are reserved by
; various timers, keyboard, etc. IRQ12 is typically reserved for the mouse.

; No more than 4 IRQs need be in this list, assuming no conflicts exist
; with the IRQ bitmaps provided in the table. If fewer are available, PCI INT
; lines may share a system IRQ, which may result in higher interrupt latency.

; PCI_IRQ contains the list (bitmap) of allowed PCI IRQs.

PCI_IRQ = CONFIG_PCI_IRQ_BITMAP ; allowed IRQs for PCI use.

; The PciIrqTable is only defined once, in the 16-bit case. The 32-bit
; code is patched with the start and end addresses of the table by GSMERGE.

IF BIOS_16

; Define the link values for the PCI INT routing on the system board.

SYSINTA = 1
SYSINTB = 2
SYSINTC = 3
SYSINTD = 4

PciIrqTbl label byte

; Bus 0, Device 12h, Slot 3.

PCIIRQENT 0, 12h,\
 SYSINTA, PCI_IRQ,\ ; Slot 3 PCI INTA routes to system board PCI INTA.
 SYSINTB, PCI_IRQ,\
 SYSINTC, PCI_IRQ,\
 SYSINTD, PCI_IRQ,\
 3

; Bus 0, Device 13h, Slot 4.

PCIIRQENT 0, 13h,\
 SYSINTB, PCI_IRQ,\ ; Slot 4 PCI INTA routes to system board PCI INTB.
 SYSINTC, PCI_IRQ,\
 SYSINTD, PCI_IRQ,\
 SYSINTA, PCI_IRQ,\
 4

; Bus 0, Device 14h, Slot 5.

PCIIRQENT 0, 14h,\
 SYSINTC, PCI_IRQ,\ ; Slot 5 PCI INTA routes to system board PCI INTC.
 SYSINTD, PCI_IRQ,\
 SYSINTA, PCI_IRQ,\
 SYSINTB, PCI_IRQ,\
 5

Chapter 12 EMBEDDED BIOS Adaptation Guide 415

General Software EMBEDDED BIOS Adaptation Guide

; Bus 0, Device 11h, Ethernet controller.

PCIIRQENT 0, 11h,\
 SYSINTD, PCI_IRQ,\
 SYSINTA, PCI_IRQ,\
 SYSINTB, PCI_IRQ,\
 SYSINTC, PCI_IRQ,\
 0FFh

PCI_TABLE_INFO_SIZE = ($-PciIrqTbl) ; Size of table in bytes.
PciIrqTblEnd label byte ; Public end of table.

ENDIF ; (BIOS_16) ; (Define table only once.)
ENDIF ; (OPTION_SUPPORT_PCI)

11.5.2 Board Personality Module Routines

The interrupt routing policy is handled by an implementation of the PCI Interrupt Routing Table,
and the BoardGetPciInfo BPM function, which uses the table. See Chapter 20 for the definition
of this BPM function.

The BoardAssignPciIrq BPM function is called from the PCI subsystem in the core BIOS to
map a system IRQ level to a PCI interrupt line by programming the hardware (typically, the
Edge-Level Control register of the PIC as well as the chipset’s PCI interrupt steering control
registers). As part of its work, it calls CsAssignPciIrq to perform the chipset programming.

Hint: Normally, it should not be necessary for the OEM to override the
CsAssignPciIrq function, but if it does become necessary, it is better to comment
out the call to the CSPM function, and in the place of the call, insert the new
code. This preserves the integrity of the CSPM and keeps all policy in the BPM.

Two additional BPM functions, BoardPciReadScratch and BoardPciWriteScratch, are used
by the PCI subsystem to save information about the configured system (such as the discovered
number of busses in the system) for later use by API functions. This information must be saved
in a place where it can be retrieved even by protected mode code that may not have direct access
to RAM save areas under control of the BIOS such as the BDA and EBDA. The default versions
of these routines use CMOS cells to save this information; however, if no CMOS is present in
the system, the OEM must redefine these routines in the BPM to save the information elsewhere.

11.5.3 Chipset Personality Module Routines

As mentioned earlier, the PCI subsystem calls BPM functions to manage PCI policies, and BPM
functions may call CSPM functions to perform chipset-specific work. OEMs implementing new
CSPMs must implement routines CsAssignPciIrq and CsGetPciInfo to enable the PCI
subsystem to correctly perform its work. For more information about these functions, consult
Chapter 19.

Chapter 12 EMBEDDED BIOS Adaptation Guide 417

General Software EMBEDDED BIOS Adaptation Guide

Chapter 12

DISK FILE SYSTEM MANAGEMENT

EMBEDDED BIOS provides support for file system mass storage (disks and their emulators)
through the File System Control Layer (FSCL) and File System Drivers (FSDs). This chapter
presents the overall architecture of this software, documents how it interacts with the rest of the
system through architected programming interfaces, and then discusses the practical aspects of
configuring mass storage devices in the project file.

In addition to the standard PC floppy, IDE, ATA, and CD-ROM devices, EMBEDDED BIOS
provides solid-state emulation of disk drives, both hard disk partitions and floppy diskettes, with
file system drivers supporting various media organizations. The ROM disk file system driver
provides read-only disk I/O services over media managed by the Rom MTD. The RAM disk file
system driver provides read/write disk I/O services over media managed by the Ram MTD. And
the Flash disk file system driver provides read/write disk I/O services over NOR Flash MTDs
(several types are supported). This Chapter explains the uses and tradeoffs of using these disk
emulators, and describes the procedures to define and troubleshoot them.

12.1 File System Control Layer

The File System Control Layer (FSCL) provides INT 13h disk device I/O services for client
software, including operating systems, application software, and BIOS components such as
Manufacturing Mode.

All FSCL clients request disk I/O services through the INT 13h BIOS software API, as described
in Chapter 21. FSCL in turn routes I/O requests for specific disks to the appropriate File System
Driver (FSD) associated with the disk file system.

FSCL hides the actual implementation of file systems, and presents them as floppy diskettes or
hard disk drives. The underlying media may be real disk drives; or emulators using memory
technologies such as RAM, ROM, or Flash; or network drives.

EMBEDDED BIOS provides standard FSDs for real floppy disk drives, real IDE/ATA drives,
ATA “El Torito” bootable CD-ROM drives, ROM disk drive emulators, RAM disk drive
emulators, and Flash disk drive emulators. The OEM can even extend the architecture with a
user-defined file system without modifying the core source code.

418 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

Because all disk I/O requests are handled by the FSCL, one FSD (perhaps the User-defined FSD)
may call other FSDs through the INT 13h interface. This makes it possible for an FSD to
implement disk duplexing, mirroring, striping, or other logical tasks, transparently to the
operating system or application software in the system.

12.1.1 FSCL Architecture

The FSCL architecture provides a way for file system drivers (FSDs), including those supporting
floppy disks, IDE drives, ROM disks, RAM disks, Flash disks, and OEM-defined drivers, to
participate in the system in a cooperative way. File systems can be mapped to specific BIOS unit
numbers by the OEM using the SETUP screen system, transparently to the drivers themselves.
FSCL initializes each participating file system during POST, and routes INT 13h I/O requests to
the appropriate FSD, based on this BIOS unit mapping.

The architecture provides for each file system to provide access to multiple devices in the same
class within the same system. This allows support for up to four real physical floppy drives, four
real physical IDE drives, and a virtually unlimited number of ROM, RAM, and Flash disks.

The architecture also permits FSDs to support both soft-style (floppy format) and hard-style
(hard disk partitioned) file system layouts. The purpose of this feature is to provide the OEM
with a choice of floppy-format or partitioned ROM, RAM, and Flash disks, although the idea can
be logically extended to treating real IDE drives as floppy units, and real floppy drives as
partitioned media, all transparently to the operating system.

FSCL is responsible for receiving disk I/O requests from client software via INT 13h. FSCL
interprets these requests and by comparing the drive number passed in the DL register with table
entries in the FILE_SYSTEM table, routes the requests to the appropriate FSD. Some
functions, such as 00h (reset) and 08h (get drive parameters) are handled in a special way by
FSCL, since they involve controlling or returning information about the entire mass storage
subsystem.

In order to perform its work, an FSD may require some specialized FS Helper services (FSHLP
API) provided by FSCL. These services provide a unified way to manage conversions from
cylinder/head/sector coordinates to 32-bit sector numbers, and to initialize table entries during
POST.

12.1.2 File System Types

FSCL supports both floppy-like and hard disk-like devices. Floppy-like devices, with no
partition table, are called Soft file systems, and are always presented to operating system and
application software as drives numbered from 00h through 7fh. Soft devices have a Partition
Boot Record (PBR) located in their first logical sector number (LSN) 0. The PBR contains the
file system’s logical geometry (such as information about FAT size and cluster size, etc.), and is
written by the operating system’s FORMAT utility (or its equivalent).

Hard disk-like devices, which are normally partitioned with an FDISK utility or its equivalent,
are called Hard file systems, and are always presented to operating system and application
software as drives numbered from 80h through ffh. Hard file systems have a Master Boot
Record (MBR) located in their first logical sector number (LSN) 0. The MBR contains the
partition table written by the operating system’s FDISK utility (or its equivalent), and defines

Chapter 12 EMBEDDED BIOS Adaptation Guide 419

General Software EMBEDDED BIOS Adaptation Guide

where the disk’s file system partitions are located. Each DOS-compatible file system partition
contains a Partition Boot Record (PBR) in its first sector.

While FSCL can be configured to have IDE drives respond with Soft drive numbers or floppy
drives respond with Hard drive numbers, this usage is obviously nonstandard and is discouraged.
It is the operating system and its application software that implicitly assume that a disk device
mapped to one of the above ranges has a certain file system layout.

In general, an FSD may support both Hard and Soft formatted devices, but this is not always the
case. The Floppy FSD in the BIOS for example, only supports the Soft format, and the Ide FSD
in the BIOS only supports the Hard format, in accordance with industry standards. The
EMBEDDED BIOS CD-ROM file system driver, ROM Disk, RAM Disk, and Flash Disk FSDs
support both Hard and Soft disk emulation.

12.1.3 FILE_SYSTEM Table

The functionality of FSCL is largely data-driven, based on a table created with the
FILE_SYSTEM macro in the project file at BIOS build time.

The FILE_SYSTEM macro is used to define the specific file systems that will be supported in
the system. As previously mentioned, a given FSD may support multiple file systems. These
file systems, as defined by the FILE_SYSTEM macro, are then mapped to drives in the SETUP
screen, according to the user’s needs. Not all of the entries in the FILE_SYSTEM table need be
selected by the user. Only those enabled will actually be initialized by FSCL. The
FILE_SYSTEM table entries represent the possible file systems that the BIOS will support.

When FSCL receives INT 13h requests for a specific drive, they are routed to the FSD that is
handling the file system for the drive. The dispatching mechanism indexes into the
FILE_SYSTEM table to locate the FSD associated with the file system itself.

The file system table is specified in a tabular format with FILE_SYSTEM entries. Each line in
the table specifies a new file system that is governed by a particular FSD. Each line contains
exactly five (5) operands, as in the following hypothetical example:

; Type Device Start Addr Length SETUP name (unique)

; ---- ------ ---------- ---------- -------------------

FILE_SYSTEM Soft, Floppy, 0h, 0h, "Floppy 0"

FILE_SYSTEM Soft, Flash, 080000000h, 400000h, "4MB Flash Disk 0"

FILE_SYSTEM Hard, Ide, 0h, 0h, "IDE Drive 0"

FILE_SYSTEM Hard, Ide, 1h, 0h, "IDE Drive 1"

The first operand specifies the type of file system (soft or hard). Soft file systems are configured
by the BIOS to respond as floppies to the operating system; that is, they are associated with unit
numbers in the range 00h-7fh (bit 7 clear). Hard file systems are configured by the BIOS to
respond as hard disks to the operating system; that is, they are associated with unit numbers in
the range 80h-ffh (bit 7 set). Soft file systems are never partitioned, whereas hard file systems
are always partitioned.

The second operand specifies the file system driver (FSD) to be associated with the file system.
There is a set of standard FSDs provided in the core BIOS, and the OEM can add new FSDs if
needed. The following is a list of built-in file systems supported by the core BIOS:

Floppy True floppy disk drives (360K, 1.2M, 720K, 1.44M, 2.88M)

420 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

Ide IDE hard drives and relatives (ATA cards as well)
Cdrom ATA CD-ROM drives with bootable “El Torito” CD-ROM media
Rom ROM disk driver (read-only, sectors direct-mapped to memory)
Ram RAM disk driver (read/write, sectors direct-mapped to memory)
Flash Flash disk driver (read/write, sectors movable in memory)

OEM-defined file systems may be added in the system by assigning them a unique name (say,
User), adding an entry in the FILE_SYSTEM table with that name, and then naming the
entrypoint of the new file system according to the naming conventions described in the chapter
on File System Drivers.

The third operand identifies the location of the underlying media for the file system, to the FSD.
For FSDs that emulate drives with memory (ROM, RAM, or Flash disks), the starting media
address of the memory array is specified here. This is illustrated in the example above with the
entry for a Flash file system called "4MB Flash Disk 0", which starts at media address
80000000h.

For FSDs that need to identify physical equipment, this field may be divided into several
bitfields. For IDE drives, bit 0 indicates whether the physical drive is a master or slave device,
and bit 1 indicates whether the controller I/O base address is 1f0h (0) or 170h (1). For Floppy
drives, this field is simply the floppy drive unit number, from 0 to 3.

The fourth operand provides additional information about the file system to the FSD, and this
information is FSD-specific. For FSDs that emulate drives with memory (ROM, RAM, or Flash
disks), the size of the memory array is specified here in bytes. In the example above, the 4MB
Flash Disk is assigned a length field of 400000h, or 4MB.

For FSDs that identify physical equipment like floppy disks and IDE drives, this field is not
used.

The fifth operand is the human-readable name assigned to the file system, for purposes of display
in the SETUP screens and in operator prompts (such as when the user is prompted to verify an
RFD, for example). This name should not exceed 16 characters, or the SETUP screen may not
be displayed correctly.

Entries in the FILE_SYSTEM table are assigned a table index, which is then used when
mapping drives with CONFIG_CMOS_ASSIGN_x, where x ranges from A: through K:. The
BIOS build automatically numbers the Soft file system entries first, from 1 through however
many there are. Then, Hard file system entries follow that number. So in our above example,
there are four entries, numbered 1 through 4. If the Hard entries had been declared first, or
interspersed between the Soft entries, the two Soft entries would still be assigned indexes 1 and
2, and the Hard entries would be assigned indexes 3 and 4, due to this automatic sorting during
the BIOS build process.

Each FILE_SYSTEM table entry is compiled into an instance of the FS_BASE structure.
Those FS_BASE structures with type Soft are stored in a table labelled FsSoftTbl; those with
type Hard are stored in a table labelled FsHardTbl. The number of entries in each table are
automatically defined by the symbols FsSoftCount and FsHardCount, respectively. These
structures and values are copied to the Extended BIOS Data Area during POST.

12.1.4 FSCL Data Structures

Chapter 12 EMBEDDED BIOS Adaptation Guide 421

General Software EMBEDDED BIOS Adaptation Guide

FSCL uses data structures to maintain the definitions for file systems and their associated FSDs.
The user need not be concerned with these structures as they are hidden from the INT 13h
interface. OEMs using existing FSDs in their designs need not be concerned with these
structures since they are managed by FSDs already written. FSD implementors, however, need
to understand these structures since the FSD is responsible for initializing them and receiving
parameters from them to perform work.

12.1.4.1 FS_BASE Structure

The FS_BASE structure (defined in file INC\STRUC.INC) is compiled into the BIOS from the
parameters specified in the FILE_SYSTEM macro. It contains the following members:

FsbCall - A 16-bit near pointer, with respect to BIOS_GRP, to the File System handler
entrypoint associated with a File System Driver. The naming convention for File
System entrypoints is _p_FileSysXxx, where "Xxx" is the "device" field in the
FILE_SYSTEM macro.

FsbName - A 16-bit near pointer relative to BIOS_GRP containing the ASCIIZ-printable
name of the device (from the "name" field in the FILE_SYSTEM macro).

FsbAddr - A 32-bit value derived from the "startaddr" field of the FILE_SYSTEM
macro.

FsbLen - A 32-bit value derived from the "length" field of the FILE_SYSTEM macro.

12.1.4.2 FS_UNIT Structure

The FS_UNIT structure (defined in file INC\STRUC.INC) is built by FSCL in RAM, in the
Extended BIOS Data Area, for each drive properly configured in the Setup system.

As can be seen, it is derived from the FS_BASE structure in ROM, and adds additional fields
calculated by the FSD at initialization time. It contains the following members:

FsuCall - A 16-bit near pointer, with respect to BIOS_GRP, to the File System handler
entrypoint associated with a File System Driver. The naming convention for File
System entrypoints is _p_FileSysXxx, where "Xxx" is the "device" field in the
FILE_SYSTEM macro. This field is copied by FSCL from the FS_BASE
structure.

FsuName - A 16-bit near pointer relative to BIOS_GRP containing the ASCIIZ-printable
name of the device (from the "name" field in the FILE_SYSTEM macro). This
field is copied by FSCL from the FS_BASE structure.

FsuAddr - A 32-bit value derived from the "startaddr" field of the FILE_SYSTEM
macro. This field is copied by FSCL from the FS_BASE structure.

FsuLen - A 32-bit value derived from the "length" field of the FILE_SYSTEM macro.
This field is copied by FSCL from the FS_BASE structure.

422 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

FsuCyls - A 32-bit doubleword specifying the number of cylinders on the device, for
purposes of reporting to the operating system via INT 13h. This field must be
initialized by the FSD during file system initialization.

FsuHds - A 16-bit word specifying the number of heads on the device, for purposes of
reporting to the operating system via INT 13h. This field must be initialized by
the FSD during file system initialization.

FsuSpTk - A 16-bit word specifying the number of sectors per track on the device, for
purposes of reporting to the operating system via INT 13h. This field must be
initialized by the FSD during file system initialization.

FsuSpCl - A 16-bit word specifying the number of sectors per cylinder on the device, as
calculated by multiplying FsuSpTk by FsuHds. This field must be initialized by
the FSD during file system initialization.

FsuStat - An 8-bit storage location reserved for use by the FSD. Its use is unarchitected.

FsuCtrl - An 8-bit storage location reserved for use by the FSD. Its use is unarchitected.

FsuOpt - An 8-bit storage location reserved for use by the FSD. Its use is unarchitected.

FsuByte - An 8-bit storage location reserved for use by the FSD. Its use is unarchitected.

FsuWrd1 - A 16-bit storage location reserved for use by the FSD. Its use is
unarchitected.

FsuWrd2 - A 16-bit storage location reserved for use by the FSD. Its use is
unarchitected.

FsuWrd3 - A 16-bit storage location reserved for use by the FSD. Its use is
unarchitected.

12.1.4.3 FS_PACKET Structure

The FS_PACKET structure (defined in file INC\STRUC.INC) is built by FSCL in RAM, as a
method of passing parameters to the FSD when calling the File System handler entrypoint. All
members, except for FspWork, are initialized by FSCL before calling the FSD.

This structure contains the following members:

FspType - An 8-bit value specifying the type of call. During POST, the File System
handler is called for device initialization with this field set to FSCALL_INIT.
For normal INT 13h I/O requests, this field contains FSCALL_HARD or
FSCALL_SOFT, depending on the setting of bit 7 of the DL register when the
INT 13h call was received by FSCL.

FspFunc - An 8-bit value specifying a subfunction code. For normal INT 13h I/O
requests, this field contains the value in register AH at the time of the INT 13h
call. During POST, this field contains FSCALL_HARD or FSCALL_SOFT, as
derived from the file system type specified in the FILE_SYSTEM macro (either
Hard or Soft, respectively).

Chapter 12 EMBEDDED BIOS Adaptation Guide 423

General Software EMBEDDED BIOS Adaptation Guide

FspUnit - A 16:16 segment offset pointer to the FS_UNIT structure maintained in RAM
by FSCL for the file system governed by the FSD.

FspNdta - A 16:16 segment offset pointer to the data transfer area. This pointer has been
normalized so that the offset value will not exceed 16 (000fh). For
FSCALL_INIT request types, this data transfer area can be used as a work area
for reads and writes to determine the media’s geometry.

FspCnt - A 16-bit value containing the number of sectors to transfer. For
FSCALL_INIT request types, this value is set to 1 by FSCL.

FspLba - A 32-bit value containing the media logical block address (relative to 0), of the
data to transfer. This value is computed by FSCL from FspCyl, FspHead, and
FspSect below, using values in FS_UNIT). This field set to 0 for
FSCALL_INIT request types.

FspCyl - A 32-bit value containing the 0-based cylinder number of the data to transfer.
This field is set to 0 for FSCALL_INIT request types.

FspHead - A 16-bit value containing the 0-based head number of the data to be
transferred. This field is set to 0 for FSCALL_INIT request types.

FspSect - A 16-bit value specifying the 1-based sector number of the data to be
transferred. This field is set to 1 for FSCALL_INIT request types.

FspRegs - A 16:16 segment offset pointer to a StackReg structure, containing the general
registers of the CPU as saved from the INT 13h call by FSCL. This pointer may
be used to modify user-level registers as necessary to implement certain non-
standard OEM INT 13h functions. This field is undefined for FSCALL_INIT
request types.

FspWork - An 8-byte unarchitected field that may be used by the FSD as a temporary
work area; provided however, that the contents upon entry to the FSD are
undefined, and that the contents will not be preserved after the FSD returns to
FSCL. This field is not retained across calls to FSDs.

12.1.5 FSHLP API

The FSHLP API provides a set of standard tools for FSD writers to simplify FSD design. Use of
the FSHLP API functions over ad hoc methods allows FSDs to leverage existing working code to
perform translation of cylinder/head/sector units to 32-bit sector numbers, and perform file
system initialization.

While it is possible to write an FSD without calling the FSHLP API functions it would be best to
use them, since these functions may be abstracted in future versions of the architecture, allowing
FSDs that use them to gain functionality through improved architecture.

The FSHLP API functions are not callable directly by application programs or operating
systems; they are always called from FSDs.

These API functions are only callable in real mode, and must preserve registers unless they are
used to return values in specific cases. The carry flag (CY) is used to indicate either a successful
or failing outcome from a function call, unless otherwise specified in the API definition.

424 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

FSDs should keep stack depth to a minimum. A suggested maximum amount of stack usage by
the FSD is 64 bytes. Do not assume that it is acceptable to allocate data buffers or other such
data structures on the stack in an FSD.

If you need to allocate memory for run-time use in the FSD, this should be done when the file
system driver receives the FsInit call during POST for each file system that it governs.

12.1.5.1 FsHlpInit Function

The FsHlpInit FSHLP function may be called by the FSD to retrieve the logical geometry
(number of cylinders, heads, and tracks) from an existing partition table or BPB record. It is
called from the File System handler, normally during initialization, but may be called at any
time.

FsHlpInit assumes that FspNdta[BP] is a far pointer to memory containing the first sector of the
logical device. If FspFunc[BP] (during POST) or FspType[BP] (after POST) contains
FSCALL_HARD, the memory area is assumed to contain the partition table, and the entries are
scanned to determine the logical geometry o the device. Otherwise, the memory area is assumed
to contain a DOS BPB and boot record, and the geometry is determined from that BPB.

In either case, the data are verified by the FsHlpInit function, and FsHlpInit returns CY set if
the data do not appear to be valid enough to make a sound determination about the file system’s
geometry.

If the geometry can be determined, then the CY flag is cleared upon return, and the FsuCyls,
FsuHds, FsuSpTk, and FsuSpCl fields in the FS_UNIT structure are updated with the new
geometry for the file system, as determined from the memory data.

Input Parameters:

SS:BP - 16:16 segment offset pointer to FS_PACKET structure as originally passed to
the FSD’s entrypoint in the SS:BP register pair.

Output Parameters:

FsuCyls - Number of cylinders supported by the file system.

FsuHds - Number of heads supported by the file system.

FsuSpTk - Number of sectors per track supported by the file system.

FspSpCl - Number of sectors per track supported by the file system.

CY - Set if failure, else clear if success.

Unpreserved Registers:

Flags.

12.1.5.2 FsHlpFind Function

Chapter 12 EMBEDDED BIOS Adaptation Guide 425

General Software EMBEDDED BIOS Adaptation Guide

The FsHlpFind FSHLP function may be called by the FSD to find all devices of a certain type
(i.e., those governed by a specified File System Driver).

This feature is used by the Flash FSD to enumerate all of the file systems governed by the FSD
when it is called by the SETUP screen’s FORMAT RFD menu item. It could also be used by an
FSD performing a logical function, such as drive mirroring or striping, to enumerate all file
systems beneath it.

Input Parameters:

AX - A 16-bit near pointer to the File System handler entrypoint for the type of device to
be searched for (relative to the BIOS_GRP group).

DL - The starting drive number to be scanned, from 00h to ffh.

Output Parameters:

DL - Drive number of matching file system.

SI - File system type (either FSCALL_SOFT or FSCALL_HARD).

DS:SI - A 16:16 segment offset pointer to the FS_UNIT structure for the matching
device.

CY - Set if failure (no more devices or device not found), else clear if success.

Unpreserved Registers:

Flags.

12.2 File System Drivers

The EMBEDDED BIOS FSCL architecture provides for the flexibility of supporting many types
of mass storage simultaneously, without the need for OEM-level customization of the core BIOS
itself. This architecture is client-server based; with the operating system and application
software being the clients of FSCL, and the FSDs being the servers that handle file system
requests.

FSDs provide an element of abstraction in the BIOS, so that the underlying implementation of
mass storage is not directly visible to the operating system or application program. ROM, RAM,
and Flash disks appear just as their IDE and Floppy counterparts to the application software.

FSDs can easily be added to the system without reworking control paths and data structures in
the BIOS, as would be necessary with other systems. FSDs are self-contained, simple to
implement, and may even use other BIOS services, or DOS services if it can be determined that
DOS is loaded in the system.

12.2.1 FSD Architecture

426 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

The purpose of an FSD is to provide a specific set of services for a class of mass storage, hiding
the programming details of the mass storage media or device from the FSCL. FSDs are typically
small, minimalistic, and are procedural, rather than focussed on details such as register
manipulation.

FSDs only process requests in real mode, unlike their MTD counterparts. FSDs may of course
call upon the services of MCL to access media, but MCL requests are always made in real mode,
and the details concerning MTDs switching to protected mode and back are hidden by the MCL
interface.

FSDs may take part in the system’s overall poower management, if they are included in the
power device tree table created with the POWER_DEVID macro. When specified in this table,
FSDs must accept and handle power management requests through their corresponding power
control entrypoint (see the POWER_DEVID macro definition for details).

Some FSD functions may not be valid operations for certain classes of mass storage. For
example, the INT 13h functions specific to floppies are not available for hard drives, and vice
versa. Generally speaking, the INT 13h functions that provide for initializing, reading from, and
writing to mass storage are supported by all FSDs.

The application or operating system software initially requests a mass storage I/O operation via
an INT 13h software interrupt request. This is handled by FSCL by generating a request packet
and calling the entrypoint of the FSD associated with the device specified in the original INT 13h
request. The processing is handled by the FSD, and then the FSD returns control to FSCL,
which returns the results of the operation to the application or operating system software in the
general register set.

12.2.2 FSD Entrypoint

Each file system driver in the system has an entrypoint, properly named to match the file system
device name as specified in the FILE_SYSTEM table entries in the project file.

The naming convention established for FSDs is as follows: _p_FileSysXxx, where Xxx is the
device name field in the FILE_SYSTEM macro. Thus, the entrypoint for the Floppy FSD is
_p_FileSysFloppy, and the entrypoint for the Ide FSD is _p_FileSysIde. Similarly, the OEM
could define a special User type as _p_FileSysUser. The DefProc macro actually automatically
generates the _p_ portion of the identifier, so that the OEM only sees the FileSysXxx in the
code.

The entrypoint for the FSD is called with a 16-bit near CALL instruction within FSCL, and must
return with a near RET instruction back to FSCL. Parameters are passed to the FSD entrypoint
in an FS_PACKET structure pointed to by the SS:BP register pair. FSCL is responsible for
converting the INT 13h call’s register arguments into the FS_PACKET structure before calling
the FSD, and translating the FS_PACKET structure’s contents into register contents as output
before FSCL returns to the INT 13h requestor.

The FSD should process each call by interpreting the request type as follows.

Processing FSCALL_INIT Requests

If the FspType field contains the value FSCALL_INIT, then the FSD should perform
initialization functions relating to device initialization, and must set fields FsuCyl, FsuHds,
FsuSpTk, and FsuSpcl in the RAM-based FS_UNIT structure. This FS_UNIT structure is

Chapter 12 EMBEDDED BIOS Adaptation Guide 427

General Software EMBEDDED BIOS Adaptation Guide

pointed to by FspUnit and DS:DI on entry. In addition to setting these mandatory fields, the
FSD may also at its option initialize FsuStat, FsuCtrl, FsuOpt, FsuByte, FsuWrd1, FsuWrd2,
and FsuWrd3 for its own use in processing future requests.

During processing of FSCALL_INIT, the FSD may also need to acquire additional RAM to
service requests associated with this file system. This is the time for the FSD to determine the
top of available RAM by making the INT 12h BIOS call, then update the low-memory size in
BIOS segment 40h as necessary to reserve any memory it might need.

Processing FSCALL_SOFT or FSCALL_HARD Requests

If FspType contains the value FSCALL_SOFT or FSCALL_HARD, then the FSD is being called
to perform a normal INT 13h I/O requests. In this case, FspFunc contains the INT 13h register
AH value.

Certain INT 13h functions are preprocessed by FSCL in a special way, as follows:

00h - Reset. The File System handler for each FSD is called in succession, so that each
FSD in the system gets called once, and possibly more than once, as it may handle
multiple file systems.

01h - Get Status. The File System handler is not called; the result of the last INT 13h
operation of this type (Soft or Hard) is returned instead, in accordance with the
industry standard definitions for reporting the status of floppy and hard drives.

08h - Get Drive Parameters. The File System handler is called. If the File System
handler returns no error (CY clear), FSCL obtains values from the FS_UNIT
structure and returns them to the user. For Soft devices, the File System handler
is expected to return the CMOS type in register BX, and a far pointer to the DPT
in register pair DX:CX. These concepts are reviewed in Chapter 3.

15h - Get DASD Type. The File System handler is called. If the File System handler
returns no error (CY clear), FSCL obtains values from the FS_UNIT structure to
return to the user.

Input Parameters:

SS:BP - 16:16 segment offset pointer to FS_PACKET structure, defined earlier in this
chapter.

AH - A copy of the FspType field of the FS_PACKET structure for convenience.

SI - A copy of the FspFunc field of the FS_PACKET structure for convenience.

DX:CX - A copy of the FspLba field of the FS_PACKET structure for convenience.

ES:DI - A copy of the FspUnit field of the FS_PACKET structure for convenience.

DS - A copy of the ES register, for convenience.

Output Parameters:

428 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

AX - Returned to the caller of INT 13h. The AH portion of this register is preserved by
FSCL in the system and is returned on subsequent calls to function 01h (Get
Status) calls for the same device class.

CY - Set if failure, else clear if success.

Unpreserved Registers:

AX, BX, CX, DX, SI, DI, DS, ES, BP, and Flags.

12.3 Floppy Disk Drive Support

Floppy disk drives are mostly mechanical, with no real controller on them at all. Instead, a
Floppy Disk Controller (FDC) is supplied on the motherboard either as a stand-alone
82077/82078 part or as a part of the chipset or Super I/O companion chip.

Remember that "floppy support" does not refer to emulators, such as ROM, RAM, or Flash
disks. Those are discussed in Chapter 12. In this Chapter, we are discussing the configuration of
real physical disk drives.

12.3.1 Enabling Floppy Disk Support in the Build

The EMBEDDED BIOS floppy disk support is provided by the Floppy file system driver,
enabled with the FILE_SYSTEM macro in the project file. See Chapter 7 for a detailed
description of this macro. The FILE_SYSTEM macro does not define the only configuration of
floppy disks in the system; it defines all the possible configurations. Thus, in full-featured
system with four floppy disk drives, we would have the following table entries covering all four
floppy disk drives:

FILE_SYSTEM Soft, Floppy, 0, 0, "First Floppy"
FILE_SYSTEM Soft, Floppy, 1, 0, "Second Floppy"
FILE_SYSTEM Soft, Floppy, 2, 0, "Third Floppy"
FILE_SYSTEM Soft, Floppy, 3, 0, "Fourth Floppy"

In the above example, the first parameter (Soft) indicates that the file system to be defined is
floppy-like, and not formatted in the style of a hard disk partition. The second parameter
indicates that the Floppy file system driver will govern the file system. The third parameter (0-
3) specifies the unit number (in this case, floppies 0-3 attached to the FDC’s cable). The fourth
parameter is not used for floppy disks and must be zero. The fifth parameter is an ASCII string
inside quotes that specifies the name that is to be displayed in the Setup screen.

If your system will not ever use more than two floppy disk drives, then the last two table entries
could be removed. If no floppy disks are to be supported in the system, then no
FILE_SYSTEM entries specifying the Floppy file system driver should be specified.

12.3.2 Configuring Floppy Disks in Setup

While the build process uses the FILE_SYSTEM macro to specify which floppy disk drives are
to be supported in the target, the Setup screen is used on the target itself to map the various
drives to actual drive letters.

Chapter 12 EMBEDDED BIOS Adaptation Guide 429

General Software EMBEDDED BIOS Adaptation Guide

Remember that we used ASCII names to represent the various floppy disks with the
FILE_SYSTEM macro. By going into the Basic Setup screen, the drive mapping section
allows the user to select assignments for drives A: through K:. Only drives A: through D:
support real floppy disks. Simply scroll through the possible assignments (made possible at
build time), until the right ones are selected.

12.3.3 Tuning the Floppy Disk Driver

Most embedded systems have special needs when supporting floppy disk drives. For example,
some systems have no DMA controller attached to the FDC, or have a nonstandard one
connected to it. These systems require polled I/O, for example, and that is selectable with a
configuration option.

The following configuration options can be manipulated in the project file to control how the
floppy disk driver works:

OPTION_FLOPPY_82077 FIFO support
OPTION_FLOPPY_SEEK Seek floppy at boot
OPTION_FLOPPY_WATCHIO Display registers in/out of service routine
OPTION_FLOPPY_DMA Select between DMA and polling
OPTION_FLOPPY_144_ONLY Only allow 1.44 floppies in state machine
OPTION_FLOPPY_FAST_POLL Improve performance with fast polling

12.3.3.1 82077 FIFOs

The 82077 option, if set, specifies that the floppy disk driver should enable the FIFO on the
FDC. This allows more relaxed timing in the software, making a more reliable system.

12.3.3.2 Seek During Boot

The SEEK option, if set, enables the seek during POST before boot, common to many desktop
systems. This is not really necessary in most embedded applications and only consumes extra
boot time.

12.3.3.3 Debugging Polled I/O

The WATCHIO option, if set, enables a register dump before and after each disk I/O operation,
so that the system can be debugged. This is useful when getting polling to work on new
hardware that does not support DMA.

12.3.3.4 DMA or Polled Data Transfers

The DMA option, which is normally set, specifies that the FDC will use pseudo-DMA in
conjunction with an 8237A DMA controller to perform device I/O without the CPU performing
manual IN or OUT instructions. Without this mechanism, the FDC must be polled very rapidly
by the CPU, meaning interrupts have to be disabled, and error checking may be limited. Several
options (that follow) augment the polled approach, which is selected when DMA is disabled.

The 144_ONLY option, if set, indicates that the floppy disk driver state machine should not
attempt to determine what type of diskette was inserted in the drive; instead, a 1.44MB disk is
assumed. This is important if the CPU is operating slowly enough with respect to the FDC in a

430 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

polled situation that it simply can’t handle the error condition that comes up when retrying the
I/O with various floppy form factors.

The FAST_POLL option, if set, indicates that the floppy disk driver read/write path should be
optimized for performance in a polled I/O situation so that the minimum number of conditional
jumps are taken, at some expense in code size. This affords the best possible CPU performance
as compared with the FDC data rate, so that polled I/O has the best chance of working.

Systems employing special DMA controllers, such as those on the Intel 386-EX CPU, may need
to implement the BoardInitDma, BoardEnableDmaCtrl, BoardDisableDmaCtrl, and
BoardFloppyDma functions to support floppy disk DMA in the hardware.

12.4 Hard Disk (IDE/ATA) Support

In contrast to floppy drives, IDE drives, or more generally ATA drives, are more electronic than
mechanical. PC Card ATA drives, for example, rarely contain a spindle and instead are usually
based on a Flash memory array managed by a microcontroller that offers a register-based
interface to the host CPU. Whether the drive has a spindle or is memory-based, the ATA
interface is active; that is, the host motherboard does not require a special controller to send
commands via a protocol to the drive. Instead, the CPU sends commands and engages in
protocol with the controller that is located on the drive itself.

Remember that "IDE/ATA support" does not refer to emulators, such as ROM, RAM, or Flash
disks. Likewise, IDE/ATA does not refer to the “El Torito” CD-ROM emulation of a drive,
described later.

12.4.1 Enabling IDE/ATA Disk Support in the Build

The EMBEDDED BIOS IDE/ATA disk support is provided by the Ide file system driver,
enabled with the FILE_SYSTEM macro in the project file. See Chapter 7 for a detailed
description of this macro. The FILE_SYSTEM macro does not define the only configuration of
IDE/ATA disks in the system; it defines all the possible configurations. Thus, in full-featured
system with four IDE disk drives, we would have the following table entries covering all four
IDE disk drives, two on each controller:

FILE_SYSTEM Hard, Ide, 0, 0, "Master on 1F0h"
FILE_SYSTEM Hard, Ide, 1, 0, "Slave on 1F0h"
FILE_SYSTEM Hard, Ide, 2, 0, "Master on 170h"
FILE_SYSTEM Hard, Ide, 3, 0, "Slave on 170h"

In the above example, the first parameter (Hard) indicates that the file system to be defined is
hard disk-like (partitioned), and not formatted in the style of a floppy diskette. The second
parameter indicates that the Ide file system driver will govern the file system. The third
parameter is partitioned into two bitfields for this driver. Bit 0 indicates whether the drive is
master (0) or slave (1). Bit 1 indicates which controller will be used; either 0 for 1f0h or 1 for
170h. The fourth parameter is unused by the Ide FSD. The fifth parameter is an ASCII string
inside quotes that specifies the name that is to be displayed in the Setup screen.

If your system will not ever use more than two IDE disk drives, then the last two table entries
could be removed. If no IDE/ATA disks are to be supported in the system, then no
FILE_SYSTEM entries specifying the Ide file system driver should be specified.

Chapter 12 EMBEDDED BIOS Adaptation Guide 431

General Software EMBEDDED BIOS Adaptation Guide

12.4.2 Configuring IDE/ATA Disks in Setup

While the build process uses the FILE_SYSTEM macro to specify which IDE disk drives are to
be supported in the target, the Setup screen is used on the target itself to map the various drives
to actual drive letters.

Remember that we used ASCII names to represent the various IDE/ATA disks with the
FILE_SYSTEM macro. By going into the Basic Setup screen, the drive mapping section
allows the user to select assignments for drives A: through K:. Only drives C: through K:
support real IDE/ATA disks. Simply scroll through the possible assignments (made possible at
build time), until the right ones are selected.

12.4.3 Tuning the IDE/ATA Disk Driver

Most embedded systems have special needs when supporting IDE/ATA disk drives. For
example, many IDE drives support autodetection protocols and LBA transfers, but some do not.
These options, and others, are selectable as configuration options in the project file.

The following configuration options can be manipulated in the project file to control how the
IDE disk driver works:

OPTION_IDE_AUTODETECT Autodetect drive geometry during POST
OPTION_IDE_CHS Support CHS drive geometry translation
OPTION_IDE_LBA Support LBA drive geometry translation
OPTION_IDE_POLLED Support polled .vs. interrupt driven I/O
OPTION_IDE_DISABLE_INTS Disable interrupts during disk I/O
OPTION_IDE_SLOWDOWN Delay after each word transfer for I/O
OPTION_IDE_RESET Reset drive during POST
OPTION_IDE_SEEK Seek drive during POST

12.4.3.1 Drive Autodetection

The AUTODETECT option, when set, enables code that can automatically query IDE/ATA
drives and determine the number of heads, cylinders, and sectors per track for the drive. These
raw values may be augmented by a translation mechanism, either CHS or LBA, so that drives
larger than 512MB may be used in a design. The dominant standard is LBA.

12.4.3.2 Drive Geometry Translation (LBA and CHS)

The CHS option, when set, enables code that supports the Phoenix formula for translation of the
raw drive parameters. This is becoming less and less of a standard but is provided for
compatibility.

The LBA option, when set, enables code that supports what has emerged as the dominant
standard for drive geometry.

12.4.3.3 Polled .vs. Interrupt-Driven I/O Completion

The POLLED option, if set, causes the driver to poll the status register on a drive to wait for it to
complete its I/O, rather than use an interrupt to signal I/O completion. Some embedded targets
may reassign the standard interrupt (IRQ 14) for other purposes, requiring polled I/O to be used.

432 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

12.4.3.4 Disabling Interrupts During Transfers

The DISABLE_INTS option, when set, causes the driver to disable CPU interrupts around data
transfers, so that application software cannot interrupt the progress of a sector transfer.

12.4.3.5 Slowing Down I/O Transfers

The SLOWDOWN option, when set, causes the driver to not use REP INSW or REP OUTSW
instructions for data transfer, but instead uses a LOOP construct that reads or writes a word at a
time, delaying between successive I/O instructions. This is provided for systems where the
device emulating a hard drive cannot keep up with back-to-back I/O requests.

12.4.3.6 Drive Reset During POST

The RESET option, when set, causes the drive to be reset during POST. This consumes extra
boot time and use is discouraged. Some drives may need to be reset during POST or they won’t
operate properly. The OEM can determine if this is necessary for the target in question, and
enable or disable the option appropriately.

12.4.3.7 Drive Seek During POST

The SEEK option, when set, causes the drive head to be seeked during POST. This consumes
extra time as RESET does, and is not really necessary except for making the system sound like a
desktop machine when it boots.

12.5 “El Torito” CD-ROM Support

EMBEDDED BIOS supports bootable CD-ROMs as described in the “El Torito” BIOS
specification. This specification defines a method by which an image of a floppy or hard disk
can be stored in a prescribed area on the CD-ROM. “El Torito”-aware BIOS software can then
autodetect these images and create drives that map to them. The built-in CD-ROM file system
drive provides this drive emulation directly in the BIOS core, making it possible to use CD-ROM
devices as boot devices in embedded applications.

12.5.1 Enabling CD-ROM Support in the Build

The EMBEDDED BIOS CD-ROM support is provided by the Cdrom file system driver, enabled
with the FILE_SYSTEM macro in the project file. See Chapter 7 for a detailed description of
this macro. The FILE_SYSTEM macro does not define the only configuration of CD-ROM
drives in the system; it defines all the possible configurations. Thus, in full-featured system with
four CD-ROM drives, we would have the following table entries covering all eight CD-ROM file
systems (both soft and hard images supported on each of two drives per controller):

FILE_SYSTEM Soft, Cdrom,001f00000h, 00E0003f6h, "CD Fl/Pri Master"
FILE_SYSTEM Soft, Cdrom,001f00001h, 00E0103f6h, "CD Fl/Pri Slave "
FILE_SYSTEM Soft, Cdrom,001700002h, 00E000376h, "CD Fl/Sec Master"
FILE_SYSTEM Soft, Cdrom,001700003h, 00E010376h, "CD Fl/Sec Slave "

FILE_SYSTEM Hard, Cdrom,001f00000h, 00E0003f6h, "CD Hd/Pri Master"
FILE_SYSTEM Hard, Cdrom,001f00001h, 00E0103f6h, "CD Hd/Pri Slave "

Chapter 12 EMBEDDED BIOS Adaptation Guide 433

General Software EMBEDDED BIOS Adaptation Guide

FILE_SYSTEM Hard, Cdrom,001700002h, 00E000376h, "CD Hd/Sec Master"
FILE_SYSTEM Hard, Cdrom,001700003h, 00E010376h, "CD Hd/Sec Slave "

In the above example, the first parameter (Soft/Hard) indicates the type of bootable image that
the file system will support (either floppy-like [Soft] or hard disk-like [Hard]). The second
parameter indicates that the Cdrom file system driver will govern the file system.

The third parameter is partitioned into two bitfields for this driver. Bit 0 indicates whether the
drive is master (0) or slave (1). Bit 1 indicates which controller will be used; either 0 for 1f0h or
1 for 170h. Bits 16-31 specify the I/O base address of the controller itself (commonly, 1f0h for
the primary controller and 170h for the secondary controller).

The fourth parameter is partitioned into two bitfields for this driver. Bits 0-15 specify the
secondary I/O base address of the controller itself (commonly, 3f6h for the primary controller
and 376h for the secondary controller). Bits 16-31 should be set to E00h for the master drive and
E01h for the slave drive, on either controller.

The fifth parameter is an ASCII string inside quotes that specifies the name that is to be
displayed in the Setup screen.

Note that CD-ROM drives use similar controller addresses as IDE drives do; however, care must
be taken to not enable a CD-ROM file system at the same address as an IDE file system (this is
sorted out in Basic Setup). Also note that the third and fourth parameter fields (with hex
numbers) are used differently by the CDROM file system driver and the IDE file system driver.

12.5.2 Configuring CD-ROM Drives in Setup

While the build process uses the FILE_SYSTEM macro to specify which CD-ROM drives are
to be supported in the target, the Setup screen is used on the target itself to map the various
drives to actual drive letters.

Remember that we used ASCII names to represent the various CD-ROM drives with the
FILE_SYSTEM macro. By going into the Basic Setup screen, the drive mapping section
allows the user to select assignments for drives A: through K:. Simply scroll through the
possible assignments (made possible at build time), until the right ones are selected.

12.6 Emulating Disks With ROM

The EMBEDDED BIOS ROM disk provides emulation of a floppy disk drive by performing
memory copies from a ROM image of a floppy disk or a hard disk partition. The ROM disk
provides read-only operation; it does not allow emulation of writes or formatting.

The ROM disk is an ideal long-term storage solution for software that is not intended to be
updated in the field. If updating is required, then the Resident Flash Disk (RFD) should be used
with Flash components instead.

In some systems, it may make sense to use both the RFD and the ROM disk. The RFD can be
used for application program and data storage that may require updating in the field, and the
ROM disk can contain a backup set of software in case the Flash becomes destroyed during field
reprogramming. With a hybrid system like this, it is possible to make a field-programmable
device fail-safe.

434 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

Both the ROM disk and the RFD offer superb read performance, because reads consist almost
entirely of data copies from ROM into RAM. Both disks are also extremely reliable, because
they have no moving parts.

The ROM disk works on a copy of a file system that is obtained with a special program
(DISKIMAG.EXE) from a floppy disk or hard disk partition that you fill with your own contents.
Thus, if you can make a bootable diskette or hard drive, you can create a ROM disk version of
that exact disk or partition.

Don’t forget that although the diskette you’re making a copy of probably supports 1.44MB of
space, you may not have 1.44MB of ROMs that you’re copying the image into. You need to
review the special procedures outlined later in this chapter to ensure that you copy all of your
data into the ROMs that the ROM disk software uses. The same logic applies to hard drive
partitions; the ROM is probably much smaller than the hard drive partition you’re using.

12.6.1 Enabling the ROM Disk Support Options

Before using the ROM disk feature, you’ll need to have configured EMBEDDED BIOS properly.
This is done by enabling the ROM disk’s file system driver for each ROM disk you wish to
configure in the system with the FILE_SYSTEM macro in the project file.

The FILE_SYSTEM macro specifies whether the ROM disk will emulate a floppy or hard disk,
and the media address of the ROM image itself (see Chapter 13 for more about media addresses).

FILE_SYSTEM Soft, Rom, 80000000h, 200000h, "First ROM Disk"
FILE_SYSTEM Hard, Rom, 40000000h, 180000h, "Second ROM Disk"

In the above examples, the first declares a soft-formatted (Floppy) ROM disk named "First ROM
Disk" that is mapped to the ROM image at media address 80000000h and is 200000h bytes long
(2MB). The second example shows a hard-formatted (Partitioned) ROM disk named "Second
ROM Disk" that is mapped to the ROM image at media address 40000000h and is 180000h bytes
long (1.5MB).

Note: The names specified in quotes must have more than four characters in
them, or the assembler will not interpret the strings correctly (instead, it will
wrongly assume that you’re specifying a 16-bit or 32-bit binary value). Use
longer, more descriptive names, as shown above.

The range of 32-bit addresses in the ROM array must correspond to a range of addresses as
specified with the MEDIA_REGION macro in the project file. The MEDIA_REGION macro
generates table entries that tell the core BIOS which MTD is associated with each 32-bit address
region. For details about how to set-up that table, consult the MEDIA_REGION macro
description in Chapter 6. The name of the MTD associated with ROM addresses is Rom. If you
don’t have any MEDIA_REGION macro entries in your project file, then one will automatically
be assigned to the entire address range (00000000h-ffffffffh) for you.

12.6.2 Enabling the ROM Disk in SETUP

From the user's standpoint, ROM disks are mapped to drive letters by entering the Basic Setup
screen and cycling through the options on each drive letter. Hard-formatted (partitioned) ROM
disk drives are not available for drives A: and B:, but are available for all other drives. Soft-
formatted (floppy) ROM disk drives are available for drives A:, B:, C:, and D: only.

Chapter 12 EMBEDDED BIOS Adaptation Guide 435

General Software EMBEDDED BIOS Adaptation Guide

To hard-code the factory default for a drive (say, drive A:) to map to the ROM disk, set
CONFIG_CMOS_ASSIGN_A (or B for drive B:) to the index corresponding to the file system
defined in the file system table. In our above example, the "First ROM Disk" has an index of 1
(the zero index means no drive assignment), and the "Second ROM Disk" has an index of 2.
Thus, we might set CONFIG_CMOS_ASSIGN_A to 1, and CONFIG_CMOS_ASSIGN_C to
2, so that the "First ROM Disk" was assigned to drive A: and the "Second ROM Disk was
assigned to drive C:.

12.6.3 Building a ROM Disk Image

Enabling the ROM disk feature in EMBEDDED BIOS is easy, as the above procedures show.
Creating the ROM disk image to be stored at the ROM location you select is even easier.

To build a ROM disk image that is stored in a file, you need a floppy that you have made
bootable, and copied your files to. Then, run the DISKIMAG utility (found in the TOOLS
directory) on the disk, specifying the number of kilobytes to copy. For hard disk partitions, use
the drive partition letter (say, C:), and then use the /P switch to indicate to DISKIMAG that it
should create a partition table as a part of the disk image itself. This creates the master boot
record that DOS and other operating systems need to properly recognize the image as a hard
drive.

Beware of the "optimization" that DOS uses when storing files on your disk (either soft or hard).
If you create a file and then delete it, the space is reclaimed by the operating system, but DOS
maintains a roving pointer that points to the next area beyond the one just allocated by the file
you deleted as a "sure bet" for allocating more data. This technique eliminates DOS’s long scan
through the FAT when creating new files on a reasonably full disk, but it also causes files to be
stored toward the end of the disk, even when adequate space exists at the beginning.

This optimization can cause problems when you are creating a disk that is to be copied by
DISKIMAG. If you are not transferring the entire diskette or partition to ROM, but instead are
transferring only a portion of it, you must make certain that the file system on the disk, including
the files you intend to copy, are located within the sectors to be transferred. If not, then the file
data won’t be copied by DISKIMAG.

You can be sure you’ve packed files towards the beginning of the disk by starting with a freshly-
formatted floppy or disk partition, and then issue COPY commands without any intervening
DELETE commands. Or, if you do delete files, remove the diskette from the drive for at least
two seconds (this doesn’t apply to hard drives of course), and return it to the drive. DOS will
detect that the media has changed, and restore its roving "optimization" pointer.

The following example shows how to build a bootable DOS floppy whose contents are then
transferred to a file by DISKIMAGE, so that it can be burned into ROM or Flash:

C:\EBIOS43\UTIL> FORMAT A: /S

C:\EBIOS43\UTIL> COPY MYPROG.EXE A:

C:\EBIOS43\UTIL> DISKIMAG A: THEFILE 128

[the 128KB binary result is in THEFILE]

The following example shows how to create an image of the operating system on drive D: (a
hard disk partition) whose contents are then transferred to a file by DISKIMAGE, so that it can

436 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

be burned into ROM or Flash. The DEFRAG command packs the system files toward the front
of the disk:

C:\EBIOS43\UTIL> DEFRAG D:

C:\EBIOS43\UTIL> DISKIMAG D: THEFILE 1024 /P

[the 1MB binary result is in THEFILE, complete with a partition table]

12.6.4 Troubleshooting the ROM Disk

The best way to debug the operation of the ROM disk is to go through a checklist process. Here
is a recommended procedure for bringing up a ROM disk assigned to drive A:

1. Verify that the FILE_SYSTEM macro definition is correct. See Chapter 13.

2. Verify that OPTION_SUPPORT_DISKIO is enabled (the default is enabled).

3. Verify that CONFIG_CMOS_ASSIGN_x is set to the index associated with the right
file system as defined in your FILE_SYSTEM table. The 0 index means no assignment.

At this point, you’re ready to boot the target and enter the debugger. We aren’t going to try to
boot the system, because it will only distract us from the methodical step-by-step procedure
necessary to verify that each part of the ROM disk initialization is working properly. Even if
you think the ROM disk is working because you get the A: prompt and can see files, that doesn’t
mean the BIOS ROM disk is actually working. Consider that Embedded DOS-ROM has a built-
in ROM disk scan, which may be detecting your ROM disk and you may be seeing that drive
instead of the BIOS ROM disk. We don’t want two drives mapped to the same thing in different
ways, because it will cause problems later.

4. Boot the target and enter the debugger.

5. Using the RFL (read Flash memory) command, display the area of the address space
where the ROM image should be. The RFL command is a bit like the D[ump] command,
but it displays data at media addresses instead of physical addresses. Let’s suppose the
FILE_SYSTEM macro defines the ROM disk starting media address to be 03ff0000h.
The sample RFL command would look like this (note the colon between the two sets of
four hex digits is a peculiarity of RFL, and does not mean we have a segment:offset
notation):

EBDEBUG: RFL 03ff:0000

03ff0000 EB 52 90 4D 53 44 4F 53-33 2E 33 00 02 01 01 00 .R.MSDOS3.3.....

03ff0010 02 E0 00 40 0B F0 09 00-12 00 02 00 00 00 00 00 ...@............

03ff0020 00 00 00 00 00 00 00 00-21 00 24 00 00 00 00 FF !.$.....

03ff0030 FF 00 00 80 00 72 7C 00-11 44 4F 53 20 20 20 20 r|..DOS

03ff0040 20 53 59 53 4E 6F 20 73-79 73 00 44 69 73 6B 20 SYSNo sys.Disk

03ff0050 62 61 64 00 B8 00 11 8E-D0 BC 00 7A 8E C0 2B C0 bad........z..+.

03ff0060 8E D8 BF 00 7C 8B F7 FC-B9 00 02 F3 A4 2E FF 2E |...........

03ff0070 35 7C 0E 1F A1 18 7C 8B-16 1A 7C F6 E2 A3 2A 7C 5|....|...|...*|

EBDEBUG: RFL

03ff0080 2A E4 A0 10 7C F7 26 16-7C 03 06 0E 7C 8B 0E 11 *...|.&.|...|...

Chapter 12 EMBEDDED BIOS Adaptation Guide 437

General Software EMBEDDED BIOS Adaptation Guide

03ff0090 7C 83 C1 0F D1 E9 D1 E9-D1 E9 D1 E9 03 C8 89 0E |...............

03ff00A0 28 7C BB 00 7A E8 04 01-BA 10 00 26 38 37 74 16 (|..z......&87t.

03ff00B0 BE 39 7C 8B FB B9 0B 00-FC F3 A6 74 36 83 C3 20 .9|........t6..

03ff00C0 4A 75 E8 40 EB DC BE 44-7C B4 0E AC 0A C0 74 08 Ju.@...D|.....t.

03ff00D0 B3 07 56 CD 10 5E EB F1-2B C0 CD 16 CD 19 C4 1E ..V..^..+.......

03ff00E0 31 7C 26 8B 57 05 03 16-2D 7C 52 8A 16 2C 7C FF 1|&.W...-|R..,|.

03ff00F0 2E 31 7C 8B 36 24 7C 26-8B 47 1C A3 2D 7C 26 8B .1|.6$|&.G..-|&.

EBDEBUG: RFL

03ff0100 47 1A A3 26 7C B8 20 11-8E C0 A1 0E 7C 8B 0E 16 G..&|.|...

03ff0110 7C 2B DB E8 96 00 40 03-1E 0B 7C E2 F6 B8 80 00 |+....@...|.....

03ff0120 8E C0 2B DB A1 26 7C 0B-C0 74 9B B9 F8 FF 0B F6 ..+..&|..t......

03ff0130 75 02 B5 0F 23 C1 3B C1-74 A4 A1 26 7C 83 E8 02 u...#.;.t..&|...

03ff0140 53 8A 1E 0D 7C 2A FF F7-E3 5B 03 06 28 7C 83 D2 S...|*...[..(|..

03ff0150 00 2A ED 8A 0E 0D 7C E8-52 00 40 83 D2 00 03 1E .*....|.R.@.....

03ff0160 0B 7C E2 F3 06 B8 20 11-8E C0 8B 3E 26 7C 03 FF .|....>&|..

03ff0170 0B F6 74 0A 26 8B 15 89-16 26 7C 07 EB A6 03 3E ..t.&....&|....>

EBDEBUG: RFL

03ff0180 26 7C D1 EF 26 8B 15 73-04 B1 04 D3 EA 81 E2 FF &|..&..s........

03ff0190 0F 89 16 26 7C 07 EB 8C-51 50 2B C0 8A 16 2C 7C ...&|...QP+...,|

03ff01A0 CD 13 58 59 E2 0A BE 4B-7C E9 1D FF 51 B9 05 00 ..XY...K|...Q...

03ff01B0 E8 04 00 72 E3 59 C3 50-53 51 52 56 57 1E 06 8B ...r.Y.PSQRVW...

03ff01C0 16 1E 7C 03 06 1C 7C 83-D2 00 F7 36 2A 7C 8A E8 ..|...|....6*|..

03ff01D0 8A CC 80 E1 03 D0 C9 D0-C9 8B C2 8B 16 18 7C F6 |.

03ff01E0 F2 8A F0 FE C4 0A CC 8A-16 2C 7C B8 01 02 CD 13 ,|.....

03ff01F0 07 1F 5F 5E 5A 59 5B 58-C3 00 00 00 00 00 55 AA .._^ZY[X......U.

6. From this display, you can recognize the key ROM disk image components in the
floppy’s boot record, because it is the first sector in the ROM disk image itself. First, at
the end of this 512-byte display, note that the last two bytes in the sector are 55h and aah.
These must be present in order for the ROM disk to recognize the image properly. If the
signature is reversed, then you need to use a more standard tool for formatting the floppy
disk you used with DISKIMAG. If the signature isn’t there, then the ROM disk certainly
won’t find this image in the area you’re looking. If it is there, skip to step 8.

7. If the whole display, in fact, seems to contain repeating values, such as ffh or 00h, then
you’ve found the problem, but there are several possibilities:

a) The chipset or high-integration CPU has not been properly programmed to cause the
ROM’s contents to be accessable at the address you’ve specified as the ROM disk
address. Use the CSR and CSW debugger commands to verify that the chip select
registers, PGP pins, or ROMCS0 pins are set-up properly, and then repeat the procedure.

b) The address you’ve specified may be incorrect. Take a look at the syntax of the RFL
command in Chapter 9. RFL takes a single 32-bit media address with a colon in the
middle of it. It does not accept physical addresses, nor does it accept segment:offset
notation. You can try to view the BIOS ROM image by using "RFL 000F:0000". If this
displays the Embedded BIOS image, you're on the right track, but that doesn't mean that
you have the right media technology driver selected for the region containing your ROM
disk image. If you don't see it, try using "D F000:0000". If this shows the beginning of
the Embedded BIOS image, then there is probably a problem with MMU mapping.

438 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

Check your CONFIG_PAGED_MEM_SEG parameter to see if it matches what your
board or chipset MMU hardware can support.

c) If the BIOS image can be displayed, then try the location where this same ROM is
mapped in the extended memory address space. On 386-EX and SC300/SC400-class
designs, you can try this: "DB %03FF0000". If you see the BIOS image, then you know
that protect mode memory accesses are working, and that the A20 gate is working. If this
shows the vector table or some low memory area instead, then you most likely need to
focus on A20 gating problems.

d) If the BIOS image can be found at %03FF0000 or the corresponding address for your
target, then double-check the ROM disk address. If your ROM disk is actually mapped to
the physical address space, use a DB command to display it at the physical address space.
If it appears there, but not through the MMU, then there is an MMU programming
problem which may be related to the window starting address specified by
CONFIG_PAGED_MEM_SEG.

If you still believe you are using DB to dump the correct address, and the chipset registers
are programmed properly to allow you to gain access to the ROM, and you’ve seen DB
work on other extended memory addresses as in (c) above, then it is time to suspect that
your ROM disk image is in fact not burned into the ROM, or that the ROM isn’t in the
socket, or is not wired to the CPU properly, etc. For this stage, use a logic probe (very
inexpensive, if you don’t already have one), and verify that the chip select pin on the
ROM device actually strobes when you use the same DB command for the ROM’s
starting address, but that when you choose another address in the system where the ROM
shouldn’t respond, that the chip select does not strobe. If the strobe is not working
properly, then you have a wiring problem or a chipset register configuration problem.

e) If it appears that the chip select is strobing properly, then you should start to suspect
that the image you created on your floppy disk or hard disk partition did not make it into
your file, or that your file didn’t make it into the correct place in the ROM. Use your
PROM programmer’s display feature to verify that what is actually burned into the ROM
at the location you expect to be mapped to the ROM disk address is actually the data. If
you see the data here, but can’t see it with the debugger command, then you should start
to suspect that the image starts in the wrong place in the ROM. To determine if this is so,
replicate your ROM disk image with a DOS COPY command (be sure to use /B to make
BINARY copies), so that you have enough data to fill the entire ROM. For example, if
you have a 256KB ROM disk, and a 1MB ROM part, you could use the following DOS
COPY command to create a file called 1MB.BIN that can be burned into the ROM:

COPY /B 256KB.ROM+256KB.ROM+256KB.ROM+256KB.ROM 1MB.BIN

Now try using the debugger with this ROM in place to see if this caused data to become
available at the address where the ROM disk should be located. If it did, then you have
bracketed the problem to programming the image in the wrong place in the part. At this
point, it would be good to not trust your PROM programming procedure.

f) If this test still doesn’t produce any image at the address you’re expecting it to appear,
then rethink again the possibility that this is a chipset configuration problem, but not
something involving just basic addressing. Consider wait states, command timing, and
things of that nature. Fortunately, the chipset registers can be programmed and inspected
with the CSW and CSR debugger commands, so you can try experiments and then use
DB to display the ROM’s contents.

Chapter 12 EMBEDDED BIOS Adaptation Guide 439

General Software EMBEDDED BIOS Adaptation Guide

8. Assuming that you’ve been able to display what seems to be actual data at the ROM disk
address, you should verify that the contents of the first 512 bytes (an example is shown
earlier in this section) have the format that the ROM disk needs to operate correctly. The
first byte should be an EBh. If it isn’t, then this boot record was created using some
FORMAT program that is unusual, as all standard MS-DOS compatible FORMAT
programs create this in the first byte.

9. Check the media descriptor byte on the second line; it is the sixth hexadecimal byte
displayed on the line after the address at the beginning. In the example above, it is F0h.
If your media descriptor doesn’t start with an F, then it isn’t a valid media descriptor. It
should be F0h if you used a 1.44MB floppy during the DISKIMAG process. If
everything looks good here, and keeping in mind that your signature as checked in step 8
looks correct, then you’re ready to try to read the sector using the RD debugger
command:

EBDEBUG: RD 0 1 0 0 4000:0

Sector 1, head 0, track 0, read from unit 0 into 4000:0000.

EBDEBUG: DB 4000:0

4000:0000 EB 52 90 4D 53 44 4F 53-33 2E 33 00 02 01 01 00 .R.MSDOS3.3.....

4000:0010 02 E0 00 40 0B F0 09 00-12 00 02 00 00 00 00 00 ...@............

4000:0020 00 00 00 00 00 00 00 00-21 00 24 00 00 00 00 FF !.$.....

4000:0030 FF 00 00 80 00 72 7C 00-11 44 4F 53 20 20 20 20 r|..DOS

4000:0040 20 53 59 53 4E 6F 20 73-79 73 00 44 69 73 6B 20 SYSNo sys.Disk

4000:0050 62 61 64 00 B8 00 11 8E-D0 BC 00 7A 8E C0 2B C0 bad........z..+.

4000:0060 8E D8 BF 00 7C 8B F7 FC-B9 00 02 F3 A4 2E FF 2E |...........

4000:0070 35 7C 0E 1F A1 18 7C 8B-16 1A 7C F6 E2 A3 2A 7C 5|....|...|...*|

If this display looks reasonable; i.e., the same as the display we obtained with the RFL
statement that was used to examine the contents of the ROM itself, then the INT 13h
ROM disk is working. You now have a confirmation that INT 13h services are being
provided correctly to DOS, so if there are ROM disk problems at the command-prompt
level, then it is not the BIOS that is at issue, but the DOS configuration.

If this command doesn’t display the same data, then make sure you specified the correct
drive number in the RD command above (use 0 for A: or 1 for B:), and that it reported
successful data transfer. If there are still problems, consult General Software.

12.6.5 Using Paged or Windowed ROM Disks

Most targets have hardware (either a chipset or external windowing logic) that, under program
control, can map portions of ROM arrays into a narrow region of memory (16K, 32K, or 64K)
below 1MB. The ROM disk software calls the MCL to handle access to the ROM itself, and
because the MCL calls the Board Personality Module’s (BPM) BoardMapAddress routine to
determine whether windowing or protected mode access should be used, the OEM can modify
BoardMapAddress as necessary to use any windowing scheme.

The default BoardMapAddress routine (if none is supplied by the OEM in the BPM) calls the
Chipset Personality Module’s (CSPM) CsMapAddress routine. When using mainstream
processors with chipset-like qualities such as the AMD SC300, SC310, SC400, and SC410, the
CSPM as supplied by General Software provides the control software necessary to program the
memory management units in the silicon. The OEM can choose to use the underlying
CsMapAddress routine, or if a different method is desired, new code can be placed in the BPM
or a new CSPM.

440 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

Still further, it may be desirable for a target to use real-mode addressing for address ranges below
1MB, windowed addressing for certain addresses above 1MB, and protected mode addressing for
selected regions above 1MB. This flexibility can easily be built-into the BoardMapAddress
routine in the OEM’s BPM.

12.7 Emulating Disks With RAM

The EMBEDDED BIOS RAM disk provides emulation of a floppy disk or hard disk partition by
performing memory copies from a RAM image of a floppy disk or hard disk partition. The
RAM disk provides read and write operations, and can be formatted either with a DOS
FORMAT command, or can be formatted from the SETUP screen system (see Chapter 16 for
details).

The RAM disk is an ideal solution for short-term storage that is needed when the target is
powered-on but can lose its state afterwards. It is also an excellent driver for PCMCIA battery-
backed SRAM cards that hold their data even when power is removed. The EMBEDDED BIOS
formatting procedure is compatible with 1MB, 2MB, 4MB, 8MB, 16MB, and 32MB PC cards.

CAUTION: Do not attempt to specify RAM disk sizes other than the powers of two above.
Doing so will not allow the RAM disk software to create the proper BPB for DOS.

As with the ROM disk, the RAM disk offers exceptional read performance, and its write
performance is essentially equal to read performance. It is quite reliable (however subject to the
effects of power failures in non-battery-backed targets).

12.7.1 Enabling the RAM Disk Support Options

Before using the RAM disk feature, you'll need to have configured EMBEDDED BIOS properly.
This is done by enabling the RAM disk's file system driver for each RAM disk you wish to
configure in the system with the FILE_SYSTEM macro in the project file.

The FILE_SYSTEM macro specifies whether the RAM disk will emulate a floppy or hard disk,
and the media address of the RAM image itself (see Chapter 13 for more about media addresses).

FILE_SYSTEM Soft, Ram, 80000000h, 200000h, "First RAM Disk"
FILE_SYSTEM Hard, Ram, 40000000h, 180000h, "Second RAM Disk"

In the above examples, the first declares a soft-formatted (Floppy) RAM disk named "First RAM
Disk" that is mapped to the RAM area at media address 80000000h and is 200000h bytes long
(2MB). The second example shows a hard-formatted (Partitioned) RAM disk named "Second
RAM Disk" that is mapped to the RAM area at media address 40000000h and is 180000h bytes
long (1.5MB).

Note: The names specified in quotes must have more than four characters in
them, or the assembler will not interpret the strings correctly (instead, it will
wrongly assume that you’re specifying a 16-bit or 32-bit binary value). Use
longer, more descriptive names, as shown above.

The range of 32-bit addresses in the RAM array must correspond to a range of addresses as
specified with the MEDIA_REGION macro in the project file. The MEDIA_REGION macro
generates table entries that tell the core BIOS which MTD is associated with each 32-bit address
region. For details about how to set-up that table, consult the MEDIA_REGION macro
description in Chapter 6. The name of the MTD associated with RAM addresses is Ram. If you

Chapter 12 EMBEDDED BIOS Adaptation Guide 441

General Software EMBEDDED BIOS Adaptation Guide

don’t have any MEDIA_REGION macro entries in your project file, then one will automatically
be assigned to the entire address range (00000000h-ffffffffh) for you.

Be certain that if you decide to use main system memory for the RAM disk, that you tell
EMBEDDED BIOS and application software to stay clear of it. We suggest using the top of
either the lower or extended memory spaces for RAM disks that use main system memory, and
then setting false upper limits for either low or extended memory with the
CONFIG_MAX_LOW_MEMORY and CONFIG_MAX_EXT_MEMORY parameters in
your project file. For example, if you have decided to map the RAM disk into low memory at
the 512KB boundary (segment address 8000h), then you’ll want to set
CONFIG_MAX_LOW_MEMORY to 512 instead of 640.

12.7.2 Enabling the RAM Disk in SETUP

From the user's standpoint, RAM disks are mapped to drive letters by entering the Basic Setup
screen and cycling through the options on each drive letter. Hard-formatted (partitioned) RAM
disk drives are not available for drives A: and B:, but are available for all other drives. Soft-
formatted (floppy) RAM disk drives are available for drives A:, B:, C:, and D: only.

To hard-code the factory default for a drive (say, drive A:) to map to the RAM disk, set
CONFIG_CMOS_ASSIGN_A (or B for drive B:) to the index corresponding to the file system
defined in the file system table. In our above example, the "First RAM Disk" has an index of 1
(the zero index means no drive assignment), and the "Second RAM Disk" has an index of 2.
Thus, we might set CONFIG_CMOS_ASSIGN_A to 1, and CONFIG_CMOS_ASSIGN_C to
2, so that the "First RAM Disk" was assigned to drive A: and the "Second RAM Disk was
assigned to drive C:.

12.7.3 Initializing the RAM Disk

The RAM disk memory can already be loaded with a file system and user application files if it is
a battery-backed SRAM card. In this case, no additional formatting is required for the RAM disk
to begin functioning. The RAM disk is even bootable as drive A: or C: if desired.

If the SRAM card is not formatted, or if you will be using uninitialized memory, then you will
need to format the RAM disk with either the DOS format utility, or the built-in formatting utility
in the SETUP screen system. The built-in formatting utility in the SETUP screen is enabled in
the BIOS build with the OPTION_SETUP_RAMDISK option. If available, selecting this
option will cause the RAM disk to be automatically reformatted with a boot record, two FATs,
and an empty root directory. This is actually the high-level file system format, not a low-level
one.

Note that the BPBs supplied by the RAM disk may not correspond to the ones supplied by the
FORMAT program for your brand of DOS, since these are within limits at the discretion of the
FORMAT program’s designer. General Software recommends reformatting the RAM disk at the
higher layer with the FORMAT program supplied by the DOS vendor.

12.7.4 Troubleshooting the RAM Disk

Here is a recommended procedure for bringing up a RAM disk assigned to drive A:

1. Verify that the FILE_SYSTEM macro definition is correct. See Chapter 13.

2. Verify that OPTION_SUPPORT_DISKIO is enabled (the default is enabled).

442 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

3. Verify that CONFIG_CMOS_ASSIGN_x is set to the index associated with the right
file system as defined in your FILE_SYSTEM table. The 0 index means no assignment.

4. Verify that you’ve got OPTION_SETUP_RAMDISK and
OPTION_SUPPORT_SETUP enabled, so that you can format the RAM disk from the
SETUP main menu.4. Now you’re ready to boot the target and do a BIOS format of the
RAM disk. Press during the memory count-up (use ^C with redirected consoles)
and you’ll enter the main SETUP menu. Select FORMAT RAM DISK, and it should
complete immediately.

5. Now, without powering-off the system, from the main SETUP menu, enter the debugger
to see that the formatting has taken effect.

6. Using the RFL (read Flash memory) command, display the area of the address space
where the ROM image should be. The RFL command is a bit like the D[ump] command,
but it displays data at media addresses instead of physical addresses. Let’s suppose the
FILE_SYSTEM macro defines the RAM disk starting media address to be 00100000h
(normally, this is actually equivalent to physical address %00100000h, but not in all
systems). The sample RFL command would look like this (note the colon between the
two sets of four hex digits is a peculiarity of RFL, and does not mean we have a
segment:offset notation):

EBDEBUG: RFL 0010:0000

00100000 EB 52 90 4D 53 44 4F 53-33 2E 33 00 02 01 01 00 .R.MSDOS3.3.....

00100010 02 E0 00 40 0B F0 09 00-12 00 02 00 00 00 00 00 ...@............

00100020 00 00 00 00 00 00 00 00-21 00 24 00 00 00 00 FF !.$.....

00100030 FF 00 00 80 00 72 7C 00-11 44 4F 53 20 20 20 20 r|..DOS

00100040 20 53 59 53 4E 6F 20 73-79 73 00 44 69 73 6B 20 SYSNo sys.Disk

00100050 62 61 64 00 B8 00 11 8E-D0 BC 00 7A 8E C0 2B C0 bad........z..+.

00100060 8E D8 BF 00 7C 8B F7 FC-B9 00 02 F3 A4 2E FF 2E |...........

00100070 35 7C 0E 1F A1 18 7C 8B-16 1A 7C F6 E2 A3 2A 7C 5|....|...|...*|

EBDEBUG: RFL

00100080 2A E4 A0 10 7C F7 26 16-7C 03 06 0E 7C 8B 0E 11 *...|.&.|...|...

00100090 7C 83 C1 0F D1 E9 D1 E9-D1 E9 D1 E9 03 C8 89 0E |...............

001000A0 28 7C BB 00 7A E8 04 01-BA 10 00 26 38 37 74 16 (|..z......&87t.

001000B0 BE 39 7C 8B FB B9 0B 00-FC F3 A6 74 36 83 C3 20 .9|........t6..

001000C0 4A 75 E8 40 EB DC BE 44-7C B4 0E AC 0A C0 74 08 Ju.@...D|.....t.

001000D0 B3 07 56 CD 10 5E EB F1-2B C0 CD 16 CD 19 C4 1E ..V..^..+.......

001000E0 31 7C 26 8B 57 05 03 16-2D 7C 52 8A 16 2C 7C FF 1|&.W...-|R..,|.

001000F0 2E 31 7C 8B 36 24 7C 26-8B 47 1C A3 2D 7C 26 8B .1|.6$|&.G..-|&.

EBDEBUG: RFL

00100100 47 1A A3 26 7C B8 20 11-8E C0 A1 0E 7C 8B 0E 16 G..&|.|...

00100110 7C 2B DB E8 96 00 40 03-1E 0B 7C E2 F6 B8 80 00 |+....@...|.....

00100120 8E C0 2B DB A1 26 7C 0B-C0 74 9B B9 F8 FF 0B F6 ..+..&|..t......

00100130 75 02 B5 0F 23 C1 3B C1-74 A4 A1 26 7C 83 E8 02 u...#.;.t..&|...

00100140 53 8A 1E 0D 7C 2A FF F7-E3 5B 03 06 28 7C 83 D2 S...|*...[..(|..

00100150 00 2A ED 8A 0E 0D 7C E8-52 00 40 83 D2 00 03 1E .*....|.R.@.....

00100160 0B 7C E2 F3 06 B8 20 11-8E C0 8B 3E 26 7C 03 FF .|....>&|..

00100170 0B F6 74 0A 26 8B 15 89-16 26 7C 07 EB A6 03 3E ..t.&....&|....>

Chapter 12 EMBEDDED BIOS Adaptation Guide 443

General Software EMBEDDED BIOS Adaptation Guide

EBDEBUG: RFL

00100180 26 7C D1 EF 26 8B 15 73-04 B1 04 D3 EA 81 E2 FF &|..&..s........

00100190 0F 89 16 26 7C 07 EB 8C-51 50 2B C0 8A 16 2C 7C ...&|...QP+...,|

001001A0 CD 13 58 59 E2 0A BE 4B-7C E9 1D FF 51 B9 05 00 ..XY...K|...Q...

001001B0 E8 04 00 72 E3 59 C3 50-53 51 52 56 57 1E 06 8B ...r.Y.PSQRVW...

001001C0 16 1E 7C 03 06 1C 7C 83-D2 00 F7 36 2A 7C 8A E8 ..|...|....6*|..

001001D0 8A CC 80 E1 03 D0 C9 D0-C9 8B C2 8B 16 18 7C F6 |.

001001E0 F2 8A F0 FE C4 0A CC 8A-16 2C 7C B8 01 02 CD 13 ,|.....

001001F0 07 1F 5F 5E 5A 59 5B 58-C3 00 00 00 00 00 55 AA .._^ZY[X......U.

7. From this display, you can recognize the key RAM disk image components in the floppy-
compatible boot record, because it is the first sector in the RAM disk image itself. First,
at the end of this 512-byte display, note that the last two bytes in the sector are 55h and
aah. These must be present in order for the RAM disk to recognize the image properly.
If the signature isn’t there, then the RAM disk didn’t initialize the same area of RAM
you’re displaying.

8. If the whole display, in fact, seems to contain repeating values, such as ffh or 00h, then
you’ve found the problem, but there are several possibilities:

a) The memory is just uninitialized and the displayed memory is not where the RAM disk
begins in memory. Try using the WFL command to enter values at the specified address,
and then dump it again:

EBDEBUG: WFL 0010:0000 1 2 3 4

EBDEBUG: RFL 0010:0000

b) The chipset or high-integration CPU has not been properly programmed to cause the
RAM to be accessable at the address you’ve specified as the RAM disk address. Use the
CSR and CSW debugger commands to verify that the chip select registers and DRAM
configuration registers are set-up properly, and then repeat the procedure.

c) The address you’ve specified may be incorrect. Take a look at the syntax of the RFL
command in Chapter 9. RFL takes a single 32-bit media address with a colon in the
middle of it. It does not accept physical addresses, nor does it accept segment:offset
notation. You can try to view the BIOS ROM image by using "RFL 000F:0000". If this
displays the Embedded BIOS image, you're on the right track, but that doesn't mean that
you have the right media technology driver selected for the region containing your RAM
disk data. If you don't see it, try using "D F000:0000". If this shows the beginning of the
Embedded BIOS image, then there is probably a problem with MMU mapping. Check
your CONFIG_PAGED_MEM_SEG parameter to see if it matches what your board or
chipset MMU hardware can support.

d) If the BIOS image can be displayed, then try the location where this same ROM is
mapped in the extended memory address space. On 386-EX and SC300/SC400-class
designs, you can try this: "DB %03FF0000". If you see the BIOS image, then you know
that protect mode memory accesses are working, and that the A20 gate is working. If this
shows the vector table or some low memory area instead, then you most likely need to
focus on A20 gating problems.

e) If the BIOS image can be found at %03FF0000 or the corresponding address for your
target, then double-check the ROM disk address. If your ROM disk is actually mapped to

444 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

the physical address space, use a DB command to display it at the physical address space.
If it appears there, but not through the MMU, then there is an MMU programming
problem which may be related to the window starting address specified by
CONFIG_PAGED_MEM_SEG.

9. Assuming that you’ve been able to display what seems to be actual data at the RAM disk
address, you should verify that the contents of the first 512 bytes (an example is shown
earlier in this section) have the format that the RAM disk needs to operate correctly. The
first byte should be an EBh. If it isn’t, then the RAM disk initialization code won’t
recognize the RAM disk image on the next boot.

10. Check the media descriptor byte on the second line; it is the sixth hexadecimal byte
displayed on the line after the address at the beginning. In the example above, it is F0h.
If your media descriptor doesn’t start with an F, then it isn’t a valid media descriptor. If
everything looks good here, and keeping in mind that your signature as checked in step 7
looks correct, then you’re ready to try to read the sector using the RD debugger
command:

EBDEBUG: RD 0 1 0 0 4000:0

Sector 1, head 0, track 0, read from unit 0 into 4000:0000.

EBDEBUG: DB 4000:0

4000:0000 EB 52 90 4D 53 44 4F 53-33 2E 33 00 02 01 01 00 .R.MSDOS3.3.....

4000:0010 02 E0 00 40 0B F0 09 00-12 00 02 00 00 00 00 00 ...@............

4000:0020 00 00 00 00 00 00 00 00-21 00 24 00 00 00 00 FF !.$.....

4000:0030 FF 00 00 80 00 72 7C 00-11 44 4F 53 20 20 20 20 r|..DOS

4000:0040 20 53 59 53 4E 6F 20 73-79 73 00 44 69 73 6B 20 SYSNo sys.Disk

4000:0050 62 61 64 00 B8 00 11 8E-D0 BC 00 7A 8E C0 2B C0 bad........z..+.

4000:0060 8E D8 BF 00 7C 8B F7 FC-B9 00 02 F3 A4 2E FF 2E |...........

4000:0070 35 7C 0E 1F A1 18 7C 8B-16 1A 7C F6 E2 A3 2A 7C 5|....|...|...*|

If this display looks reasonable; i.e., the same as the display we obtained with the RFL
statement that was used to examine the contents of the RAM itself, then the INT 13h
RAM disk is working. You now have a confirmation that INT 13h services are being
provided correctly to DOS, so if there are RAM disk problems at the command-prompt
level, then it is not the BIOS that is at issue, but the DOS configuration.

If this command doesn’t display the same data, then make sure you specified the correct
drive number in the RD command above (use 0 for A: or 1 for B:, or 80 for C: or 81 for
D:), and that it reported successful data transfer. If there are still problems, consult
General Software.

12.8 Emulating Disks With Flash

The EMBEDDED BIOS Resident Flash Disk (RFD) provides emulation of a floppy disk or hard
disk partition by reading and writing an array of Flash memory as though it were a real drive
containing 512-byte sectors. Unlike physical floppy disks, the RFD can present a floppy up to
32 megabytes in size and have it recognized by virtually all modern operating systems.

The RFD supports both NOR and NAND Flash technologies. Only one technology is supported
within a given BIOS build. The actual Flash technology is specified with the
MEDIA_REGION statement in the project file.

Chapter 12 EMBEDDED BIOS Adaptation Guide 445

General Software EMBEDDED BIOS Adaptation Guide

The special properties of NOR Flash memory make reading quick, writing fairly slow, and
erasing slow. NOR Flash is directly-accessible in the memory address space of the CPU,
although it may be windowed into a small region below the 1MB address space or accessed as a
linear array in the physical address space. NOR Flash devices are subject to wear, which can
lead to slower operation and even device failure. NOR Flash blocks are usually 32KB-256KB in
size, making an erase operation quite expensive in terms of the erasure time itself, and the
amount of data copying when using a copy/erase/rewrite sequence to free-up an obsolete-but-
previously-written area of the Flash.

The special properties of NAND Flash make reading, writing, and erasing all moderately fast.

The RFD solves these problems by providing a logical-to-physical mapping that efficiently uses
the Flash in large blocks, in a rotating fashion called wear-leveling. This translation eliminates
the need for the application to be aware of the WORM/Erase/Wear properties of the underlying
Flash media.

The RFD requires "sectored" Flash devices to work properly. It relies on at least two blocks of
Flash (usually, blocks are somewhere between 16KB and 128KB in size) that can be erased and
programmed independently of one another. This array of blocks is called a "Flash array". There
is no real maximum limit to the number of blocks that can comprise a Flash array. When more
memory is required than one Flash device provides, multiple Flash devices in the same family
can be used to form one large contiguous Flash array.

Bulk-type Flash parts don’t work with RFD, and RFD is not intended for PCMCIA PC Cards
based on Flash technology.

Only certain Flash parts can be supported by the RFD; a Media Technology Driver (MTD) must
be present in the EMBEDDED BIOS adaptation that supports the Flash parts. See Chapter 13
for details about these MTDs.

RFD is an ideal solution for long-term storage of system and application software and data that
must be updatable in the field and/or in the manufacturing facility.

In some systems, it may make sense to use both the RFD and the ROM disk. The RFD can be
used for application program and data storage that may require updating in the field, and the
ROM disk can contain a backup set of software in case the Flash contents become destroyed
during field reprogramming. With a hybrid system like this, it is possible to make a field-
programmable device fail-safe.

Both the ROM disk and the RFD offer superb read performance, because reads consist almost
entirely of data copies from ROM into RAM. Write performance of the RFD is comparable to a
floppy disk, whereas the ROM disk does not offer the ability to write to the media. Both disks
are also extremely reliable, because they have no moving parts, and the wear-leveling algorithm
in the RFD reduces the wear associated with writing and erasing Flash parts.

Some MTDs may support advanced features, including background erase and page-mode writes.
These features are handled transparently by the MTD, optimizing RFD performance when the
better Flash parts are used.

12.8.1 Enabling the RFD Support Options

Before using the RFD disk feature, you’ll need to have configured EMBEDDED BIOS properly.
This is done by enabling the RFD disk’s file system driver for each Flash disk you wish to
configure in the system with the FILE_SYSTEM macro in the project file.

446 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

The FILE_SYSTEM macro specifies whether the Flash disk will emulate a floppy or hard disk,
and the media address of the Flash array itself (see Chapter 13 for more about media addresses).

FILE_SYSTEM Soft, Flash, 80000000h, 200000h, "First Flash Disk"
FILE_SYSTEM Hard, Flash, 40000000h, 180000h, "Second Flash Disk"

In the above examples, the first declares a soft-formatted (Floppy) Flash disk named "First Flash
Disk" that is mapped to the Flash array at media address 80000000h and is 200000h bytes long
(2MB). The second example shows a hard-formatted (Partitioned) Flash disk named "Second
Flash Disk" that is mapped to the Flash array at media address 40000000h and is 180000h bytes
long (1.5MB).

Note: The names specified in quotes must have more than four characters in
them, or the assembler will not interpret the strings correctly (instead, it will
wrongly assume that you’re specifying a 16-bit or 32-bit binary value). Use
longer, more descriptive names, as shown above.

The range of 32-bit addresses in the Flash array must correspond to a range of addresses as
specified with the MEDIA_REGION macro in the project file. The MEDIA_REGION macro
generates table entries that tell the core BIOS which MTD is associated with each 32-bit address
region. For details about how to set-up that table, consult the MEDIA_REGION macro
description in Chapter 6. The name of the MTD associated with Flash addresses is dependent on
the technology. For example, Amd8_1, Amd8_2, Amd16_1, Int8_1, Int8_2, Int16_1, etc. The
MTD must match the media type, or the file system will not operate properly. If you don’t have
any MEDIA_REGION macro entries in your project file, then one will automatically be
assigned to the entire address range (00000000h-ffffffffh) for you. This default MTD coverage is
provided by the Ram MTD, which is suitable for use with the RFD using RAM instead of Flash
for purposes of testing.

The CONFIG_RFDDISK_KBBLKSIZE parameter must be set to the physical size of a Flash
block in the type of parts you are using. For example, 28F016 Flash devices have 64KB blocks,
so this parameter would be set to 64. If Flash parts are being interleaved (as even/odd byte
pairs), then you must double the normal device block size (thus, an array of two-way interleaved
Flash parts with 16KB block size becomes an array with 32KB blocks).

The OPTION_SUPPORT_SETUP and OPTION_SETUP_RFDDISK parameters should be
enabled. This allows the OEM to enter the SETUP screen’s main menu and perform a low-level
format of the RFD before high-level formatting it. POST will do this automatically the first time
to initialize the Flash, but it is good to have a way to initialize the Flash later if need be.

It is a good idea to enable the Flash debugging commands in the debugger. Do this by enabling
the OPTION_SUPPORT_SETUP, OPTION_SETUP_DEBUGGER, and
OPTION_DEBUG_FLASH options. This will be useful in the test of the Flash array, before
the Flash disk is actually used.

Also for testing purposes, we’ll want to enable OPTION_QUERY_VERIFYRFD and
OPTION_QUERY_FORMATRFD. Later these will be removed, but in the beginning they
will be useful, as these options instruct the core BIOS to ask the user before automatically
formatting or verifying/fixing the RFD contents. During the Flash array checkout, it is a good
idea to not allow these automatic procedures to happen during POST, but go straight into the
debugger and test the Flash with the RFL, WFL, and EFL commands.

12.8.2 Protected Mode .vs. Windowing Access to Flash

Chapter 12 EMBEDDED BIOS Adaptation Guide 447

General Software EMBEDDED BIOS Adaptation Guide

The physical accesses to the Flash array are handled by the MTD for the corresponding Flash
technology. MTDs are designed to handle accesses to the media in either protected mode (with
true 32-bit physical addresses) or in real mode (with access to the Flash handled through a fixed
memory window located below 1MB). The MTDs call the Media Control Layer (MCL) to
determine how to handle the 32-bit addresses such as those specified in the MEDIA_REGION
table and the FILE_SYSTEM macro’s starting address parameter.

In order to determine this, the MCL calls the Board Personality Module’s (BPM)
BoardMapAddress routine, which by default calls the Chipset Personality Module’s (CSPM)
CsMapAddress routine. For targets employing CSPMs or BPMs that support the chipset’s
memory management units, the default action uses the windowing approach, so as to maximize
performance and provide compatibility with protected mode software such as Windows.
Examples of CSPMs that provide hardware windowing are those from General Software for the
AMD SC300, SC310, SC400, and SC410.

Should the OEM wish to force protected mode operation in certain situations where the MMU of
the chipset must be reserved for use by the application program, a BoardMapAddress routine
can be provided in the BPM which indicates protected mode access (see Chapter 20 for the
specification of this routine).

The OEM can also instruct the BIOS to use a windowed approach in situations where no chipset
support is available from General Software by providing a BoardMapAddress routine which
performs the hardware mapping and indicates that the real-mode access is to be used (again, see
Chapter 20).

AMD SC3x0 and SC4x0 users may need to set the CONFIG_PAGED_MEM_SEG
configuration parameter to specify the memory window used by the MMU of the CPU. Consult
the AMD documentation for details about which segment addresses are used by each MMU.

For more details about Flash drivers and address mapping, consult Chapter 13.

12.8.3 Enabling the RFD in SETUP

From the user's standpoint, Flash disks are mapped to drive letters by entering the Basic Setup
screen and cycling through the options on each drive letter. Hard-formatted (partitioned) Flash
disk drives are not available for drives A: and B:, but are available for all other drives. Soft-
formatted (floppy) Flash disk drives are available for drives A:, B:, C:, and D: only.

To hard-code the factory default for a drive (say, drive A:) to map to the Flash disk, set
CONFIG_CMOS_ASSIGN_A (or B for drive B:) to the index corresponding to the file system
defined in the file system table. In our above example, the "First Flash Disk" has an index of 1
(the zero index means no drive assignment), and the "Second Flash Disk" has an index of 2.
Thus, we might set CONFIG_CMOS_ASSIGN_A to 1, and CONFIG_CMOS_ASSIGN_C to
2, so that the "First Flash Disk" was assigned to drive A: and the "Second Flash Disk was
assigned to drive C:.

12.8.4 Testing the Flash Array

Before beginning to use the RFD, it is a good idea to check-out the operation of the Flash array
and the MTD assigned to that array. This will ensure that the MEDIA_REGION table is correct
and that the correct MTD has been chosen for the system.

448 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

1. Boot the target, pressing during the memory count-up so that POST will enter the
SETUP system’s main menu.

2. You may receive a query about whether to format or verify the RFD. Respond negatively
to these questions. We want to bypass RFD operations right now that could hang the
machine if the Flash driver isn’t set-up properly.

3. From the main menu of the SETUP screen system, enter the debugger.

4. From the debugger’s prompt, use the RFL command to display the start of the Flash
array’s contents in the address space. For our example, let’s suppose that the
FILE_SYSTEM starting address value is set to 00800000h.

EBDEBUG: RFL 80:0

0080:0000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

This looks like erased Flash memory, because when Flash is erased, its contents are set to
1’s (the FFFFh pattern). Note that the Flash is displayed in 16-bit words, because the
MTDs operate on words, not individual bytes, even if you have an 8-bit Flash part. If
you see the erased pattern, skip step 5 and go to step 6.

5. If you see other values, then either the Flash contains valid data that just hasn’t been
erased, or it is not yet accessible in the system. If this is the case, try erasing the Flash
with the EFL command as follows:

EBDEBUG: EFL 80:0

Flash block erased.

If an error occurs at this stage, or if the EFL command hangs, then you don’t have a
correct MTD assigned to the region with the MEDIA_REGION macro, or the Flash is
not being presented correctly in the address space, or Vpp or write-enable may not be
signaled to the Flash device. Note: It may be necessary to power-off the target to reset
the state of the Flash devices in the array if they get into an invalid state.

If the EFL command completes its erasure successfully, then use the RFL command
again to see that the contents are all FFFFh values. If not, check the MEDIA_REGION
macro, the device addressing, or Vpp/write-enable.

a) The most common problem is that the MEDIA_REGION macro is not set-up
properly. Each entry in the MEDIA_REGION table brings together the starting and
ending physical addresses of the Flash array with the MTD responsible for handling that
kind of Flash memory. Because there are different MTDs for 8-bit and 16-bit devices,
and those MTDs are further subdivided into those with 1-way and 2-way interleave
support, it is important to get the right MTD.

b) Another possibility is that the Flash requires a special signal, such as a programmable
package pin (PGP on Elan CPUs) or Vpp voltage to become active before writing can

Chapter 12 EMBEDDED BIOS Adaptation Guide 449

General Software EMBEDDED BIOS Adaptation Guide

take place. If your target has such special requirements, then these hardware signals can
be manipulated in the BPM routines, BoardEnableWrites and BoardDisableWrites. It
is up to the OEM to define these routines for hardware not specifically supported by
General Software.

c) Some chipsets or high-integration CPUs require chipset registers to be programmed so
as to enable Flash parts to respond to certain physical addresses. This initialization is
typically done in the BPM’s BoardInit1 routine, because address maps are largely board-
dependent. It is up to the OEM to define this routine for hardware not specifically
supported by General Software.

6. Let’s assume you have an erased Flash part with FFFFh in each word of the array. Now
use WFL to write two words to the Flash part in succession:

EBDEBUG: WFL 80:0 1234 2345

1234 written to 0080:0000.

2345 written to 0080:0002.

If this shows success, display the Flash memory again with RFL to see that the media was
actually modified. If this WFL command hangs or reports failure, then any of the
problems cited in step 5 above may be the cause. Note: It may be necessary to power-off
the target to reset the state of the Flash devices in the array if they get into an invalid
state.

EBDEBUG: RFL 80:0

0080:0000 1234 2345 FFFF FFFF FFFF FFFF FFFF FFFF

0080:0010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0080:0070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

If the media was actually modified as shown in the above display, then the MTD is
working with your Flash array, and you’re ready to verify the block size of the Flash
array. If you don’t see something similar to the above display, then there are problems.
See some possible solutions in step 5.

7. With the MTD basically working, verify the block size as follows. Let’s assume in our
example that we have a 64KB block. That means that if the first block’s starting address
is 00800000h, then the second block’s address is 00810000h. Just for clarity as an
additional example, for 16KB blocks, the first block would be 00800000h and the second,
00804000h. However, we’ll continue on here with the idea of 64KB blocks.

a) Use EFL to erase the first block and the second block:

EBDEBUG: EFL 80:0
Flash block erased.
EBDEBUG: EFL 81:0
Flash block erased.

b) Use WFL to write a different word at the beginning of each block:

450 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

EBDEBUG: WFL 80:0 1234
1234 written to 0080:0000.
EBDEBUG: WFL 81:0 2345
2345 written to 0081:0000.

c) Use RFL to verify that these values stick in the right places in the Flash array.

d) Use EFL to erase the first block. If you’ve got the block size right (64KB in our
example), this won’t erase the second block, so you should see FFFFh everywhere in the
first block, but 2345h in the second block.

e) If the second block gets erased when you erase the first block, then the array has
blocks of different sizes than you thought it did, or is somehow interleaved differently
than you thought it was, or you are using the wrong MTD. Continue to make experiments
such as this, until you determine the minimum eraseable block size on the target.

f) Once you’ve determined the real logical block size on the target, build a new BIOS
with CONFIG_RFDDISK_KBBLKSIZE set to the size of a block in kilobytes. It is
critical to the RFD’s operation that this parameter be correct, or the RFD may appear to
work for a while but will lose file data.

12.8.5 Initializing the RFD (Low-Level Formatting)

Once the Flash array has been tested, you'll need to low-level format the RFD so that it can begin
emulating a floppy disk. Keep in mind that this type of formatting is not the same as the
formatting that the DOS FORMAT command provides; here, this low-level formatting erases the
Flash blocks and establishes the logical-to-physical sector mapping system in the media.

If you have completed the Flash testing in the above section, you will be used to responding
negatively to the queries to verify or format the RFD. In this section and from now on however,
you’ll want to respond positively to them, so that the RFD will initialize properly.

The low-level formatting process can be done in any of the following ways:

During POST. POST will automatically prepare the RFD by initializing any blocks that
do not contain a valid RFD header. Additionally, each block is scanned to ensure
that sector slots marked “erased” truly have no data stored in them.

From the SETUP system (see Chapter 16), you can select the FORMAT FLASH DISK
option. This will automatically begin sectoring the Flash devices.

From the Manufacturing Mode (see Chapter 18), you can program the Flash devices
remotely over a high-speed RS232 serial link. By simply issuing requests to erase
the blocks used by the Flash array, you will prepare them for the RFD's use.

From an application program, you can use the EMBEDDED BIOS Flash programming
extensions to the INT 15h System BIOS functions. This program can then run on
the target. After it formats the RFD, it needs to reboot the target (soft reset is
fine) in order for the RFD software to notice that the RFD Flash array has been
updated by foreign software.

We suggest you use the special SETUP screen already designed to format your Flash array.
Once formatted, the Flash array is still not capable of being used to store files. While the low-
level formatting of the device has been performed, the high-level DOS FORMAT command

Chapter 12 EMBEDDED BIOS Adaptation Guide 451

General Software EMBEDDED BIOS Adaptation Guide

needs to be used to actually store the boot record, FATs, and root directory in the blank sectors
so that DOS or another operating system can recognize it as a valid drive.

Formatting should take about 0.5 seconds to 2 seconds per block, depending on the type of
devices you are using in the Flash array, the Vpp voltage being used, and numerous other factors.

After the RFD has been low-level formatted, it is ready to be high-level formatted if it is a floppy
emulator, and FDISKed and high-level formatted if it is a hard drive emulator. This can be
accomplished in either of two ways: Manufacturing Mode, or the DOS FORMAT command.

12.8.6 Using DOS to FDISK a Hard-Formatted RFD

When the RFD is used to emulate a hard disk (FILE_SYSTEM type Hard), then you must create
a partition table on the disk after it is low-level formatted, but before it is high-level formatted.
This is accomplished in exactly the same way that FDISKing a real hard drive is done.

From DOS, run FDISK and select the right hard drive to partition. Make sure you don’t
accidently partition another hard drive unintentionally; there is an option in FDISK to switch
hard drives for targets with multiple hard drives. Once you partition the drive and create a DOS
partition, you’ll need to make it the active partition, and then save the partition table. DOS will
want you to reboot the machine so that when it does, the new drive partition can be recognized as
ready to format at the high level.

Caution: When using DOS to FDISK any drive, including the RFD or even an IDE drive, make
certain that it is FDISKed while it is the first drive in the system at the time FDISK is run, if you
wish to boot an operating system from the drive. Otherwise, the FDISK utility will install the
wrong BIOS unit number in the Master Boot Record on the drive, and the drive will not be
bootable. This is a limitation/defect of some DOS operating systems, not the BIOS.

12.8.7 Using DOS to FORMAT the RFD

If another drive is available on your target to hold the FORMAT program, then you can use the
DOS FORMAT program to create a file system on the RFD. The drive letter to format will be
either A: or B:, or another drive letter for a hard drive, depending on which drive was mapped to
the RFD with CONFIG_CMOS_ASSIGN_A and CONFIG_CMOS_ASSIGN_B or their
counterparts in the BASIC SETUP screen, Drive A: and Drive B: device assignments.

Let’s assume that you’ve assigned drive A: to a Flash drive in the SETUP system. Then, from
another drive (say, a hard disk), type:

C> FORMAT A:

Press any key to begin formatting...

Formatting 100% complete.

C>

Once the FORMAT has completed, you can start copying files to the RFD just as though it were
a big floppy disk. To make the RFD bootable, be sure to specify the /S option on the FORMAT
command, or use the SYS command after formatting the RFD.

Do not attempt to specify tracks, sectors per track, or single sided options on the DOS FORMAT
command. Either use no parameters (other than the drive letter), or supply the “/C” option, if
you are using Embedded DOS-ROM’s FORMAT command. The /C option allows you to create a
compact file system that has only one FAT and a small, 64-entry root directory.

452 EMBEDDED BIOS Adaptation Guide Chapter 12

General Software EMBEDDED BIOS Adaptation Guide

12.8.8 Using Manufacturing Mode to Format the RFD

If another drive is not available on your target to hold the FORMAT program, and you have an
RS-232 serial connection to the target, you can use Manufacturing Mode to high-level format the
RFD and also copy files to it, all from a host PC or laptop. To do this, you’ll need to enable
Manufacturing Mode in your BIOS build (see Chapter 14), and then follow this procedure:

1. To start, boot the target and enter the SETUP main menu. If you have a remote console
over an RS-232 serial connection, press ^C during the memory count-up to enter SETUP.
From the SETUP screen’s main menu, select ENTER MANUFACTURING MODE.
This will cause a couple garbled characters to be displayed on the terminal screen, and the
target will stop displaying text.

2. On the host, exit the terminal emulation software and reboot, installing
DEVICE=MFGDRV.SYS /PORT=n /BAUD=m /UNIT=0 in its CONFIG.SYS file. This device
driver creates a drive letter on the host the next time it is booted, that maps to the target’s
RFD.

3. On the host, switch to the first drive letter beyond the last normal drive in the system.
For example, if you have drives A:, B:, and C: on your host machine, then D: will be the
drive assigned to the Manufacturing Mode drive associated with the RFD on the target.

4. Use the FORMAT program that comes with your DOS on your HOST, not the target, and
ask to format the remote drive:

C> FORMAT D:

FORMAT will destroy all data on nonremovable drive D:

Proceed with Format? (Y/N): Y

Formatting 100% complete.

C>

The formatting process may take a few seconds, or more depending on how big the RFD
is. If you encounter a General Failure or Sector not Found error, then the Flash is not
responding to the protocol fast enough. In that case, select a slower baud rate on both the
target and host. The default baud rate is 19K, but it can go as low as 9600, and up to
115K.

5. Now the remote drive can be treated as any DOS drive. You may copy files to the drive
using utilities and DOS commands, edit files on the remote drive, and use DIR, COPY,
RENAME, and other techniques you would ordinarily use on the host to manipulate these
files.

Chapter 13 EMBEDDED BIOS Adaptation Guide 453

General Software EMBEDDED BIOS Adaptation Guide

Chapter 13

DRIVERS FOR FLASH AND OTHER MEDIA

EMBEDDED BIOS provides support for Flash and other storage media through the Media
Control Layer (MCL) and Media Technology Drivers (MTDs). This chapter presents the overall
architecture of this software, and documents how it interacts with the rest of the system through
architected programming interfaces.

13.1 Media Control Layer

The Media Control Layer (MCL) provides abstracted I/O services for client software in
EMBEDDED BIOS, including Flash disk software, Flash programming interfaces, the ROM
disk, the debugger’s Flash programming commands, and Manufacturing Mode.

All MCL clients request MCL services through the MCL Application Programming Interface
(MCL API). MCL uses this interface to hide details about the underlying media so that clients
can remain small.

At the same time, the logical division of work marked by the API boundary makes it possible to
implement support for new media types without requiring extensive knowledge of how all the
client file systems operate; instead, when a new driver is implemented, all MCL clients can
automatically access the new media.

MCL also abstracts addressing of media, and can support media I/O in both real and protected
modes of the CPU. Further, MCL allows the Board Personality Module (BPM) to enter into the
address translation loop, so that the OEM can establish an addressing architecture that is used
system-wide and conforms with chipset programming.

Efficient and flexible Vpp control is essential for high-performance embedded applications.
Flash components may require a programming voltage to be applied during writing, locking, or
erasing procedures. MCL provides scheduling of Vpp controls so that Vpp is only enabled when
necessary. Further, MCL routes Vpp requests through the BPM so that the OEM can define any
proprietary scheme for controlling Vpp without affecting core BIOS files.

Interrupt latency is a problem wherever interrupts are disabled during extensive movement of
data. The MTDs may receive requests to transfer extensive amounts of data, while in 0:32
protected mode without an IDT available. This necessitates disabling interrupts at the time the
transfer is made. MCL provides MTDHLP functions to reduce interrupt latency by allowing the

454 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

MTD to periodically switch back to real mode to allow interrupts to be serviced by application
software. All MTDs using these features limit exposure to high interrupt latency when
performing Flash I/O.

13.1.1 MCL Architecture

MCL is responsible for receiving I/O requests from the file systems implemented in the BIOS
(RFD), the debugger Flash programming commands, and Manufacturing Mode. MCL interprets
these requests and by inspection of the address mapping table’s entries created with the
MEDIA_REGION macro, routes them to the appropriate Media Technology Driver (MTD).

In order to perform its work, an MTD may require some specialized MTD Helper services
(MTDHLP API) provided by MCL. These services provide a unified way to access memory
mapping hardware, switch between real and protected modes of the CPU, enable or disable Vpp,
provide micro-delays, and perform optimized data copies, among other things. The MTDHLP
API is documented later in this chapter and is available only to writers of MTDs.

As part of MCL’s processing of an MTDHLP API function, it may be necessary for MCL to
request services of the Board Personality Module (BPM). These services include memory
mapping requests (which commonly are routed by the BPM to the Chipset Personality Module or
CSPM), and enable or disable Vpp to Flash arrays.

MCL provides a high-level API (the MCL API) for its clients, to hide the complexity of the
MTD operations from its clients (the RFD, ROM disk, or debugger, for example). This reduces
the complexity of the client software and makes it possible to run the client software on many
different media types, and new media types as MTDs become available. The MCL API provides
clients with the ability to read and write data to media, and then lock and erase logical blocks of
media.

13.1.1.1 Media Types

MCL hides the details of how media are programmed for its clients, providing only a few basic
operations that can be performed at the highest level. The small number of request types, and the
simplicity of the request types, mean that it is possible to implement support for virtually any
kind of storage media with an MTD, and have it plug into an adaptation of EMBEDDED BIOS
so as to provide useful work.

General Software provides MTDs in the core BIOS for NOR Flash parts available from Intel and
AMD, since they represent the majority of the types used in embedded x86 designs. Bulk erase,
boot block, and sectored parts are all supported.

General Software also provides MTDs in the core BIOS for NAND parts available from Toshiba
and AMD. The same Toshiba NAND driver also supports AMD UltraNand. These MTDs do
not window or physically-map their media; rather, they use an I/O port pair to manage the Flash
array. The standard MCL API abstracts this addressing issue, allowing the RFD and other
software to work without modification on these types of media.

Additional Flash types are easily supported with additional MTDs. Contact General Software for
information about other supported devices.

Chapter 13 EMBEDDED BIOS Adaptation Guide 455

General Software EMBEDDED BIOS Adaptation Guide

Other memory types, such as ROM and RAM, are also supported by MTDs in the core BIOS.
For example, the ROM disk uses the ROM MTD, and the RAM MTD can be used to try-out the
RFD on a target where Flash support is not yet available.

The MTD architecture can extend far beyond simply random-access memories. Consider that
storage need not take place on the target itself. Using a data connection to a host PC, it might
make sense for an MTD to simulate ROM, RAM, or Flash media with an RS232 asynchronous
serial communication line, or with an Ethernet packet driver. Once an MTD is written for a
given data communications layer, then the MTD can provide virtual I/O capabilities.

MTDs can also be written that logically transform one media type into another. For example, an
MTD might be written that presents boot block devices as sectored Flash devices, by combining
the smaller parameter blocks into another equal-sized larger block. During block erasure
operations, the MTD could hide the details of erasing the brother parameter blocks for the special
block.

MTDs can also be employed to change the performance of accesses to the media, by local
caching of commonly-used data in RAM. Consider that an MTD might be implemented that
responds to a certain logical address space known only to certain clients (say, the RFD). The
caching MTD would cache requests and reorder them as necessary to gain performance. When
this MTD needed to actually perform media accesses, it would issue MCL API function requests
by proxy to the MTD handling the actual media, in a different range of physical addresses.

Additional intermediate functions for MTDs include security wrappers, disk mirrors, and
diagnostic tools.

13.1.1.2 Media Addressing

All media addresses in the MCL system are 32 bits wide, and specify byte locations in the logical
address space. In many systems, the logical address space corresponds to the 4.2 gigabyte
physical memory address space addressible by the CPU itself. In other systems, media addresses
may not correspond to directly-addressible memory locations. For this reason, we must
distinguish logical (media) addresses which are specified by MCL clients, from physical (CPU)
addresses which are available to the CPU in protected mode.

The simplest method for addressing media such as RAM or ROM in a system is to directly map
it into the 32-bit physical memory address space of the CPU. The ROM and RAM MTDs handle
these cases by switching to protected mode and accessing the memory locations with a 4K
granular selector mapped to physical address 00000000h, and using 32-bit offsets with respect to
this selector that correspond to logical addresses. In this case, physical addresses are associated
with logical addresses because the media responds to those physical addresses on the bus.

Another method for addressing RAM and ROM in a system is to construct a window, or small
region of memory address space below the 1MB address marker, and then page selected portions
of the larger RAM or ROM array into the window. The windowed approach is also supported by
the ROM and RAM MTDs, because some targets cannot directly map entire RAM or ROM
arrays into extended memory, or may not support protected mode. In the windowed case, logical
addresses are mapped to physical addresses within the window through hardware assistance.
Because the hardware is usually configurable, the logical address range for the ROM or RAM is
selected based on convenience; for example, it is just as easy to think of logical addresses
80000000h-8fffffffh to map the device as it is for 90000000h-9fffffffh to be used. In other
words, the logical address assignments are somewhat arbitrary.

456 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

Some storage devices are not direct-addressible; that is, they require more work to read or write a
byte of storage than to simply strobe an address to the address pins, and together with
manipulation of control signals, read or write data to the data I/O pins. Instead, they may require
that a protocol be used to feed addresses and data through I/O ports mapped to the device. In this
case, the address space in the device must be mapped to a range of logical addresses as with the
windowed example. Instead of performing direct-memory I/O however, the MTD must translate
these logical addresses into corresponding device-specific parameters which can be passed-
through to the device itself. As with the windowed approach, the assignment of the specific
logical address space for such devices is somewhat arbitrary.

Some embedded CPUs and chipsets such as the AMD SC300 or AMD SC400 require
initialization in order to map chip selects to a range of physical addresses. This initialization,
normally done in routines CsInit1 or BoardInit1, must be coordinated with the logical addresses
specified by client software. For example, if the RFD is directed to use a Flash array at logical
address 00800000h on an AMD SC300-based target, then the DOSCS chip selects must be
programmed to respond to the addresses starting at physical address 00800000h and ending at the
end of the Flash array.

These initialization values must also be coordinated with the CsMapAddress and
BoardMapAddress routines, when using more advanced processors such as the AMD SC400,
since the SC400 does not necessarily map the Flash array into the physical address space, but
instead makes it available only through a programmable window. In such cases, an architected
32-bit logical address space is a necessity, and General Software has provided a straightforward
segmentation of the 32-bit logical address space to accommodate ROMCS0 and ROMCS1
devices.

MCL uses a logical address table built with the MEDIA_REGION macros, to describe the
logical address space in the system. Logical address ranges are associated with MTDs
responsible for handling the devices in those ranges. Once they receive control, MTDs request
that MCL translate logical addresses to windowed or physical addresses. MCL performs this
work by calling BoardMapAddress, which by default calls CsMapAddress. The default
implementation of CsMapAddress performs an identity mapping of the 32-bit logical address to
the same address in the physical address space. This simple mapping allows most designs to use
this architecture to access devices mapped into extended memory without the aid of special board
or chipset module routines.

By implementing the CsMapAddress function in the CSPM, the MCL’s request to translate a
logical address is handled at the chipset level, typically mapping the specified memory into a
memory window. This mapping usually takes place by programming the chipset registers in this
routine with values derived from the logical address. In some circumstances, it is necessary for
the chipset to respond to a certain range of logical addresses (as noted earlier with the SC400
example) and associate them with one chip select, and another range of logical addresses with
another chip select. In this case, these conventions are implemented in the CsMapAddress
routine.

The OEM can override the conventions and policy decisions of the underlying CsMapAddress
function by supplying a BoardMapAddress function which either performs proprietary mapping
without calling CsMapAddress at all, or translates the logical address passed to it before passing
on the modified logical address to CsMapAddress.

In order to allow restoration of the registers associated with the memory addressing function of
BoardMapAddress and CsMapAddress, two additional functions, BoardUnMapAddress and
CsUnMapAddress, are called by MCL on exit from any media function. Normally these
routines do nothing, but they can be supplied by the OEM to restore the state of the mapping

Chapter 13 EMBEDDED BIOS Adaptation Guide 457

General Software EMBEDDED BIOS Adaptation Guide

hardware to what it was before the original mapping. Note that an MTD function may call the
MapAddress functions zero, one, or many times in order to handle a request, but the
UnMapAddress function is always called exactly once for each request. Therefore, if a
save/restore state mechanism is to be implemented in the OEM’s adaptation, a board-level or
chipset-level flag must be implemented that indicates that the associated UnMapAddress
function must or must not perform work.

13.1.1.3 Vpp Control

MCL implements Vpp control by providing two routines, MtdHlpEnableVpp and
MtdHlpDisableVpp, for MTDs to call to indicate that Vpp needs to be turned on before writes
occur, and off after they are completed. This abstraction of the mechanics of enabling and
disabling Vpp in the system offers several important advantages.

The most obvious advantage is that the proprietary details of how Vpp is controlled are hidden
from all MTDs, so that MTDs do not need to be modified when being used in a system with a
new Vpp control mechanism. It also means that newly-implemented MTDs can be used in
systems that already have Vpp controls defined, without considering the Vpp control
implementation in the new MTDs.

Another advantage to the separation of the mechanics of Vpp control from the control requests is
that MCL can act as a central clearinghouse for Vpp requests, and possibly optimize them in
order to improve overall system performance. MCL can do this by realizing that the actual
enabling of Vpp is usually expensive, since a short (but significant, say 100us) delay is required
after enabling Vpp before it has stabilized. This delay, if incurred for each write operation,
would have serious performance impacts on the system.

To address this performance challenge, MCL attempts to defer disabling Vpp once it is enabled
by a call to BoardEnableWrites, so that subsequent writes that issue Vpp enable requests do not
incur the stabilization delay. After a configurable period of real time in which no Vpp enable
requests are received, MCL automatically initiates a call to the BPM’s BoardDisableWrites
routine to physically turn-off Vpp.

As has been alluded to above, MCL calls the BPM routines to enable and disable Vpp for the
system. The BPM’s BoardEnableWrites routine performs the actual enabling of Vpp in the
circuit, and also performs whatever delay is necessary so that when it returns to MCL, the Vpp
has stabilized. The BPM’s BoardDisableWrites routine is called by MCL only when Vpp is
truly no longer used; therefore, it simply disables Vpp, and lets MCL handle the deferred Vpp
disable.

13.1.1.4 Interrupt Latency

MCL provides MTDs with simple functions to switch to protected mode from real mode, and to
switch back again into real mode. These tools can be used by MTDs to break-up large data
transfers in protected mode into a series of smaller transfers that have lower interrupt latency.

When an MTD operates in protected mode, it calls the MtdHlpToProt function, which disables
interrupts necessarily. It cannot establish an IDT because it may not be prepared to handle user
application interrupts in protected mode. Because disabling interrupts can adversely affect
overall system performance, the amount of time that interrupts are disabled must be minimized.

458 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

The actual amount of time that interrupts may be left disabled is dependent on the application.
The amount of work that can be done in that amount of time is, of course, a function of how fast
the target is. The application’s interrupt latency requirement is usually a function of how it needs
to interface with the outside world. Consider that an application using interrupt-driven
asynchronous serial I/O may need to perform transfers at baud rates of 19K baud or higher; at
this rate, an interrupt arrives approximately every 500us for each character. This would mean
that we would need to transfer any-sized chunk of data in an MTD in under 500us.

Of course, without segmenting the I/O, it would be possible to exceed this time limit by the sheer
performance limits of the memory system and CPU. For example, a request to move 64KB in
this amount of time would need to transfer data faster than (65536 kb / .000500 sec) =
128MB/sec, not counting the time it takes to switch to protected mode and switch back again.
Clearly, 128MB/sec is a high data rate that is unsustainable on many targets.

Direct-access storage MTDs, such as Flash, ROM, and RAM MTDs, can be coded switch back
into real mode at regular work intervals when transferring large data blocks, so that the
maximum interrupt latency hit is no more than that necessary to transfer 512 bytes. This reduces
the above example’s data rate requirements from 128MB/sec to 1MB/sec, which is sustainable
for most embedded targets.

13.1.2 MCL Entrypoints

MCL receives control in two ways. The first request type is submitted from within the core
BIOS power manager to indicate that a change in power management state is taking place. This
is handled with the MediaPwrLevel entrypoint.

The second request type is submitted by an MTD client, which may be the debugger,
Manufacturing Mode, the ROM disk, the RFD, or possibly other file systems or specialized
subsystems. These clients all request the basic services of MCL in order to interact with certain
media so as to provide higher-level functionality to their clients. The second request type is
formed by all the other requests. There are several entrypoints, including MediaLockBlock,
MediaReadBlock, MediaWriteBlock, MediaStartErase, and MediaEraseComplete.

These entrypoints are not directly callable from application programs; they are always called
from within the core BIOS. Applications can cause these entrypoints to be invoked by calling
APM functions to control the system’s power level, or by calling the Flash programming API of
the INT 15h software interrupt (see Chapter 21 for details).

MCL is always called from a real-mode context with interrupts enabled. MCL may switch
modes or cause interrupts-disabled windows to occur, since it must pass control to the underlying
MTDs which may switch modes as necessary to perform their functions.

Registers are generally preserved unless they are used to return values in specific cases. The
carry flag (CY) is used to indicate either a successful or failing outcome from a function call. In
one case (MediaEraseComplete), the CY flag is used to indicate the status of an ongoing
operation.

Stack depth is kept to a minimum in MCL, in anticipation of passing on this stack availability to
the underlying MTD. MTDs should keep stack depth to a minimum as well. A suggested
maximum amount of stack usage by the MTD is 64 bytes.

13.1.2.1 MediaPwrLevel Entrypoint

Chapter 13 EMBEDDED BIOS Adaptation Guide 459

General Software EMBEDDED BIOS Adaptation Guide

The MediaPwrLevel function is called with procedure linkage by the EMBEDDED BIOS
Power Management System to coordinate the MCL’s power with the rest of the system’s state.

MCL’s power management function’s purpose is largely a placeholder. It needs to be present so
that it can be specified as a node in the power management tree, with its subordinate
MtdPwrLevel power management functions specified as children. This allows MTDs to be
notified when the system’s power is about to change states, so that they can perform cleanup
when power goes down, and resume activities when power returns.

MTDs need not support their power management function, unless they are to be included in the
power management device tree.

Input Parameters:

DS - Points to the extended BIOS data area (EBDA).
BX - Device index.
CL - New power level.
CH - Old power level.

Output Parameters:

None.

Unpreserved Registers:

Flags.

13.1.2.2 MediaLockBlock Procedure

The MediaLockBlock function is called with procedure linkage to lock a block of storage in a
sectored or boot block Flash device. Once a block has been locked, it remains write-protected
until unlocked by a subsequent erase operation.

Some MTDs may or may not support the lock function, and some may not even support the erase
functions. For example, the Rom MTD does not support this function because it cannot change
the underlying media. The Ram MTD supports erase by emulating it, assuming the same block
size as specified for the RFD, but has no way to “lock” a block of RAM.

Input Parameters:

DX:AX - 32-bit address of 1st byte within block to be locked.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

460 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

13.1.2.3 MediaStartErase Procedure

The MediaStartErase function is called with procedure linkage to start a block erase operation
on a block of storage in a sectored, boot block, or bulk erase Flash device. Once the block is
erased, its contents are reset by the device such that each byte contains the hexadecimal value,
ffh (all ones).

This function’s purpose is to begin erase processing, and optimally return before the erasure has
completed, so that the erase processing can occur in the background while the system continues
with other operations. This can be effective in increasing RFD performance. Some MTDs may
not implement an asynchronous erasure operation, and instead implement the entire erase
functionality in the MediaStartErase, so that the MediaEraseComplete routine always returns
to the caller with a “completed” status. For devices without background erase capabilities, this
routine should complete synchronously as described.

Certain MTDs provided with the core EMBEDDED BIOS software illustrate how to break-up
the processing of starting the erase process and determining if the erase process has completed.
One example of such an MTD is MTDINTA.ASM. Note that this MTD (necessarily) handles
situations where, once an erase process has started and control has returned to the client, another
request is received to perform a read or write before the erase operation has completed. In these
cases, the erase operation must either be suspended during the secondary operation’s
performance, or alternatively, the erase operation may be concluded before processing the
secondary operation. All MTD operations must be coordinated to handle such background
processing gracefully without loss of data.

Some MTDs may or may not support the erase functions (either MediaStartErase or
MediaEraseComplete). For example, the Rom MTD does not support this function because it
cannot change the underlying media. The Ram MTD does support the function by emulating it,
assuming the same block size as specified for the RFD.

Input Parameters:

DX:AX - 32-bit address of 1st byte within block to be erased.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

13.1.2.4 MediaEraseComplete Procedure

The MediaEraseComplete function is called with procedure linkage to determine if the erasure
operation started by a previous call to the MediaStartErase function has completed or is still in
progress.

Some MTDs may not implement an asynchronous erasure operation, and instead implement the
entire erase functionality in the MediaStartErase, so that the MediaEraseComplete routine
always returns to the caller with a “completed” status.

Chapter 13 EMBEDDED BIOS Adaptation Guide 461

General Software EMBEDDED BIOS Adaptation Guide

Some MTDs may or may not support the erase functions (either MediaStartErase or
MediaEraseComplete). For example, the Rom MTD does not support this function because it
cannot change the underlying media. The Ram MTD does support the function by emulating it,
assuming the same block size as specified for the RFD.

Input Parameters:

DX:AX - 32-bit address of the block as specified in the call to MediaStartErase.

Output Parameters:

CY - clear if no erase operation in progress, else set.

Unpreserved Registers:

Flags.

13.1.2.5 MediaReadBlock Procedure

The MediaReadBlock function is called with procedure linkage to read data from the media.

Commonly, MTDs call the MtdHlpRead function to perform the transfer, when the media is
accessible as direct-access storage within the memory address space. Making use of this function
in new MTDs saves space by reusing existing code, and also takes advantage of its method of
breaking the read into pieces when in protected mode to reduce interrupt latency.

Sometimes, MTDs cannot use this helper function, because device programming is required. For
example, some Flash devices may be controlled through a range of I/O ports, and may not
actually present any directly-addressible memory regions to the CPU.

Input Parameters:

DX:AX - 32-bit address of 1st byte of media to be read.

ES:BX - 16:16 segment offset pointer to 1st byte of user buffer where data will be written
in RAM.

CX - Number of bytes to be transferred. A zero value indicates 65,536 bytes. The value
does not have to be even.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

13.1.2.6 MediaWriteBlock Procedure

462 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

The MediaWriteBlock function is called with procedure linkage to write data from a user-
specified buffer to the media.

The caller must take care that the writing is possible; i.e., that the area of the media to be written
does not contain other data that has not been erased, unless the underlying media supports
writing without erasing. NOR Flash devices require erasure of large blocks, whereas NAND
Flash devices can be supported by MTDs that build-in an automatic pre-erase operation.
Similarly, the RAM MTD can write to an area that has not previously been erased.

Some MTDs may or may not support the write function (or erase functions). For example, the
Rom MTD does not support this function because it cannot change the underlying media.

Input Parameters:

DX:AX - 32-bit address of 1st byte of media to be written.

ES:BX - 16:16 segment offset pointer to 1st byte of user buffer containing data to be
written.

CX - Number of bytes to be transferred. A zero value indicates 65,536 bytes. The value
must be even.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

13.1.2.7 MediaQuery Procedure

The MediaQuery function is called with procedure linkage to request information about the
MTD itself, or to probe the actual media to verify that it is operational, or to determine the block
size or data path width. Additional information classes may be made available in future releases.

Some MTDs may or may not support the Query function; its implementation is optional.

Input Parameters:

DX:AX - 32-bit address of media associated with entity to be queried.

CL - Information class, as follows:

MEDIA_QUERY_DRIVER - Return information about MTD.
MEDIA_QUERY_PROBE - Probe media to verify correct identity.
MEDIA_QUERY_BLOCKSIZE - Return erasable unit size as log2(bytes).
MEDIA_QUERY_DATAPATH - Return data path width in bytes.

Output Parameters:

Chapter 13 EMBEDDED BIOS Adaptation Guide 463

General Software EMBEDDED BIOS Adaptation Guide

CY - set if failure, else clear if success.

For MEDIA_QUERY_DRIVER requests:

AX - Bitmask of capabilities, as follows:

MEDIA_CAPABILITY_PROBE - MTD supports probe media subfunction.
MEDIA_CAPABILITY_BLOCKSIZE - MTD can return the media’s blocksize.
MEDIA_CAPABILITY_DATAPATH - MTD can return the data path width.
MEDIA_CAPABILITY_MODIFY - Writes can modify sectors (NOR Flash).
MEDIA_CAPABILITY_AUTOERASE - Writes automatically erase blocks.

For MEDIA_QUERY_PROBE requests:

CY - Set if media not present or incompatible, else clear.

For MEDIA_QUERY_DATAPATH requests:

AH - Bits per part (8, 16, 32, etc.)
AL - Interleave factor (1, 2, 4, etc.)

For MEDIA_QUERY_BLOCKSIZE requests:

AX - erasable unit size in log2(bytes). (6 means 64, 7 is 128, 8 is 256, etc.)

Unpreserved Registers:

Flags.

13.1.3 MTDHLP API

The MTDHLP API provides a set of standard tools for MTD writers to simplify MTD design.
Use of the MTDHLP API functions over ad hoc methods allows MTDs to leverage existing
working code to perform mode switches, translate addresses, execute microdelays, enable and
disable Vpp, and perform other necessary tasks.

While it is possible to write an MTD without calling the MTDHLP API functions, it would be
foolish to do so. Consider that MTDHLP functions that perform address translation leverage
existing code that manages windowing in the chipset or high-integration CPU. The mode
switching routines eliminate the need to write such mechanical code and allow the OEM instead
to focus on the media programming task at hand. Finally, Vpp controlling functions provide the
delayed Vpp disable mechanism, boosting your MTD’s performance without having to
complicate the MTD’s code paths.

The MTDHLP API functions are not directly callable from application programs; they are
always called from within the MCL itself, in response to its clients’ requests.

The MTDHLP API has functions that operate in real mode, protected mode, or both modes. Not
all functions are designed to operate in both modes. Consult the individual functional description
for details.

464 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

Registers must be preserved unless they are used to return values in specific cases. The carry
flag (CY) is used to indicate either a successful or failing outcome from a function call. In one
case (EraseComplete), the CY flag is used to indicate the status of an ongoing operation.

MTDs should keep stack depth to a minimum. A suggested maximum amount of stack usage by
the MTD is 64 bytes. Do not assume that it is acceptable to allocate data buffers or other such
data structures on the stack in an MTD.

13.1.3.1 MtdHlpToProt API Function

The MtdHlpToProt function is called with procedure linkage to switch the mode of the
processor from real mode to protected mode. At the time the mode switch occurs, the DS and ES
registers are loaded with a value that can be used to address the entire 4.2GB memory address
space in the CPU.

This function must be called from real mode only; it may not be called from V86 mode.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.
DS - 4K-granular (32-bit) selector that maps to physical address 00000000h.
ES - 4K-granular (32-bit) selector that maps to physical address 00000000h.

Unpreserved Registers:

Flags.

13.1.3.2 MtdHlpToReal API Function

The MtdHlpToReal function is called with procedure linkage to switch the mode of the
processor from protected mode to real mode. At the time the mode switch occurs, the DS and ES
registers are destroyed, since in protected mode they contained a selector that is unusable in real
mode.

This function must be called from protected mode only. It may not be called from V86 mode.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Chapter 13 EMBEDDED BIOS Adaptation Guide 465

General Software EMBEDDED BIOS Adaptation Guide

Flags, DS, and ES.

13.1.3.3 MtdHlpMapAddress API Function

The MtdHlpMapAddress function is called with procedure linkage to translate a 32-bit media
address into either a 16:16 real-mode address of a windowed area managed by board-specific
hardware, or a 32-bit physical address that can be used as a 32-bit offset with respect to a 4K
granular selector mapping physical address 000000h of the target.

This function may be called from protected mode or real mode.

Input Parameters:

DX:AX - 32-bit media address.

Output Parameters:

CY - set if real mode mapping, else clear if physical mapping.

If real mode mapping:

ES:DI - 16:16 real-mode translated address, and
CX - number of mapped bytes visible at that address

If protected mode mapping:

EDI - 32-bit offset relative to start of physical memory.

Unpreserved Registers:

Flags.

13.1.3.4 MtdHlpMapReal API Function

The MtdHlpMapReal function is called with procedure linkage to translate a real-mode 16:16
address to a 32-bit physical address so that the real mode address can be accessed from protected
mode.

This function may be called from protected mode or real mode.

Input Parameters:

BP:BX - 16:16 real-mode address.

Output Parameters:

ESI - 32-bit offset relative to start of physical memory.

Unpreserved Registers:

466 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

Flags.

13.1.3.5 MtdHlpQueryRegion API Function

The MtdHlpQueryRegion function is called with procedure linkage to determine where a region
as defined with the MEDIA_REGION macro starts and how big it is. This is needed by some
MTDs such as the bulk Flash MTD, which must perform programming on an entire part, not just
a portion thereof.

This function may be called from protected mode or real mode.

Input Parameters:

DX:AX - 32-bit address within region to query.

Output Parameters:

DX:AX - 32-bit address of first byte within region queried.
DI:SI - count of bytes within region.

Unpreserved Registers:

Flags.

13.1.3.6 MtdHlpDelay API Function

The MtdHlpDelay function is called with procedure linkage to perform a delay approximating a
specified number of microseconds. This routine exists so that MTDs do not invent their own
versions of this routine, so that only one piece of code in the system is used to perform fine
timing.

This function may be called from protected mode or real mode.

Input Parameters:

CX - number of microseconds to delay.

Output Parameters:

None.

Unpreserved Registers:

Flags.

13.1.3.7 MtdHlpEnableVpp API Function

The MtdHlpEnableVpp function is called with procedure linkage to enable Vpp and/or write
enable lines to make sure that the media is writable. In some cases this may involve waiting a

Chapter 13 EMBEDDED BIOS Adaptation Guide 467

General Software EMBEDDED BIOS Adaptation Guide

significant amount of time (100s of microseconds); therefore, it is recommended that this routine
be called from real mode, not protected mode, to avoid high interrupt latency.

Enabling of external voltages is totally board-specific, and therefore this routine calls the board
module’s routine to perform the work. However, the board module’s routine always performs
the necessary delay to wait for voltage to ramp-up before returning. Since this delay on every
I/O could severely impact back-to-back writes in most systems, MCL uses a timeout to keep Vp
high even after the MTD commands it to be disabled with a call to MtdHlpDisableVpp. This
allows background erases to continue, and then after some time (a few seconds), Vpp is lowered
automatically by MCL.

This function may be called from protected mode or real mode, but protected mode calls should
be avoided to reduce interrupt latency.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

13.1.3.8 MtdHlpDisableVpp API Function

The MtdHlpDisableVpp function is called with procedure linkage to start a timer which, once
expired, disables Vpp and/or write enable lines to make sure that the life of the battery supplying
Vpp is conserved.

Enabling of external voltages is totally board-specific, and therefore this routine calls the board
module’s routine to perform the work. However, the board module’s routine always
immediately disables power, and to prevent ongoing erases from being aborted, this function
starts a timer which, once expired, calls the board module’s BoardDisableWrites routine.

This function may be called from protected mode or real mode, but protected mode calls should
be avoided to reduce interrupt latency.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

468 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

13.1.3.9 MtdHlpRead API Function

The MtdHlpRead function is called with procedure linkage to read from most memory-mapped
media that do not require special protocols to read data. RAM, ROM, and NOR Flash are
examples of types of media which fall into this category. Parts like NAND Flash have a different
access method and are not accessible with this function.

This function’s purpose is to establish a pre-written, tested read routine that can be used by the
majority of MTDs to speed MTD development, and allow reuse of the same code at the same
time. Calling this function is a matter of convenience, and is not a requirement of any MTD’s
design.

This function may be called from real mode only, not protected or V86 mode.

Input Parameters:

DX:AX - 32-bit media address of first byte of media to read.
BP:BX - 16:16 real-mode address of first byte of user buffer.
CX - number of bytes to read.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but SS and SP.

13.2 Media Technology Drivers (MTDs)

The EMBEDDED BIOS MTD architecture offers complete flexibility for support of virtually
any media type. An MTD can present a logical media that might appear to be read/write storage,
but in fact might actually be implemented as an RS-232 or Ethernet protocol with a host, or
accesses to a shared memory subsystem. MTDs simply implement their APIs, using available
MTDHLP API functions to ease their jobs wherever possible.

When required to address random-access storage such as ROM, RAM, or Flash, MTDs must be
prepared to perform their work in real mode or in protected mode, although it is up to the MTD
to request mode switching at appropriate times. Consider that an MTD might be optimized for
bulk data transfer at the expense of interrupt latency, by switching to protected mode during its
entire processing of a data transfer. Another MTD might be optimized to minimize interrupt
latency at the expense of bulk data transfer performance, by performing the transfer in a series of
short steps, each of which might involve a switch to protected mode and back again. This
flexibility allows for tradeoffs to be made without compromising the EMBEDDED BIOS
architecture.

13.2.1 MTD Architecture

Chapter 13 EMBEDDED BIOS Adaptation Guide 469

General Software EMBEDDED BIOS Adaptation Guide

The purpose of an MTD is to provide a specific set of services for a class of media, hiding the
programming details of the media from the MCL. MTDs are typically small, minimalistic, and
are procedural, rather than focussed on the minutia of register manipulation.

MTDs must be capable of processing requests in real or protected mode, depending on the results
of calls to MtdHlpMapAddress. This is the case because the BPM may determine that the
media is best mapped in a window, or in the upper physical addresses in memory.

MTDs must minimize their processing in protected mode so that interrupt latency is kept as low
as possible. When a new MTD is written, block copies of data normally performed in protected
mode should be broken up into minimal-sized pieces (say, 1KB), so that the MTD gives the
system a chance to accept and process interrupts between handling of data movement in
protected mode.

MTDs may take part in the system’s overall power management, if they are included in the
power device tree table created with the POWER_DEVID macro. When specified in this table,
MTDs must accept and handle power management requests through their corresponding power
control entrypoint, documented later in this section.

Some MCL functions may not be valid operations for certain media, in which case the MTD
either simulates the function and indicates to MCL that the operation was performed
successfully, or simply returns with failure to the MCL, indicating that the operation cannot be
performed. For example, the RAM MTD simulates block erasure by filling a quantity of RAM
with a special data value (0xffff). However, the ROM MTD cannot simulate writes or erases,
since ROM by definition is not changable. In this case, the ROM MTD must return failure for
WriteBlock, StartErase, and LockBlock requests.

13.2.2 MTD Entrypoints

There are two basic classes of requests that an MTD may process; power management requests
from the power management subsystem, and media I/O requests from MCL. There are five
function types provided for MCL. MTDs should be coded in such a way that additional request
types received from MCL are treated as failing by setting the CY flag and returning without
further processing. This allows the MCL architecture to grow while continuing to support down-
level drivers.

13.2.2.1 MTD Request Entrypoint

The MtdSvcXxx function (where Xxx is the name of the MTD) is called with procedure linkage
by the MCL to submit an I/O request to the MTD.

All registers required by the MTD function are passed in the appropriate registers documented
later in this section. Additionally, a function code is passed in the (SI) register to identify the
request type.

Input Parameters:

SI - Request type, as follows:

0 - MEDIA_CMD_READ (read request).
1 - MEDIA_CMD_WRITE (write request).
2 - MEDIA_CMD_START_ERASE (start erase request).

470 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

3 - MEDIA_CMD_ERASE_COMPLETE (erase complete query).
4 - MEDIA_CMD_LOCK_BLOCK (lock block request).

All other registers - As documented for each function.

Output Parameters:

None.

Unpreserved Registers:

Flags.

13.2.2.2 MTD Power Management Entrypoint

The MtdXxxPwrLevel function (where Xxx is the name of the MTD) is called with procedure
linkage by the EMBEDDED BIOS Power Management System to coordinate the MTD’s power
with the rest of the system’s state.

When implemented for an MTD, this routine is responsible for control over the power
management state of the devices managed by the MTD. For example, some Flash devices can be
placed in a low-power mode where they consume little or no power, but cannot respond to
requests.

MTDs need not support their power management function, unless they are to be included in the
power management device tree.

Input Parameters:

DS - Points to the extended BIOS data area (EBDA).
BX - Device index.
CL - New power level.
CH - Old power level.

Output Parameters:

None.

Unpreserved Registers:

Flags.

13.2.3 Dispatching to Function Handlers

It is recommended that MTDs use a dispatch table indexed by request type to dispatch to
individual function handlers within the MTD. This design facilitates expansion without causing
the per-request path to get longer. Although MCL does not require this design, it may be the best
performer and at the same time keep maintenance costs low. Below is an example dispatch
routine (MtdSvcXxx) that dispatches through a command table. For sample code on-line, see
the SYSTEM\MTDRAM.ASM file.

Chapter 13 EMBEDDED BIOS Adaptation Guide 471

General Software EMBEDDED BIOS Adaptation Guide

BIOS_ SEGMENT

; The following table is used to dispatch to function

; handlers by command ordinal. MEDIA.INC contains the

; ordinal assignments.

FUNC MACRO cmd, rtn

ORG CmdTbl+(2*cmd)

dw OFFSET BIOS_GRP:_p_&rtn

ENDM

CmdTbl dw (MAX_MEDIA_REQUEST+1) dup (OFFSET BIOS_GRP:_p_BadCommand)

FUNC MEDIA_CMD_READ, ReadBlock

FUNC MEDIA_CMD_WRITE, WriteBlock

FUNC MEDIA_CMD_START_ERASE, StartErase

FUNC MEDIA_CMD_ERASE_COMPLETE, EraseComplete

FUNC MEDIA_CMD_LOCK_BLOCK, LockBlock

ORG CmdTbl+(2*(MAX_MEDIA_REQUEST+1))

CMDTBL_LENGTH = ($-CmdTbl)

BIOS_ ENDS

DefProc MtdSvcXxx, PUBLIC

; PRINTF <MtdSvcXxx: entered, SI=$x.\n>, <si>

add si, si ; (SI) = word index into table.

cmp si, CMDTBL_LENGTH ; is the index within range?

jae MtdSvcXxx_Fail ; if not, fail this call.

; Transfer control to individual routine, which when

; it returns, will return to OUR caller, avoiding an

; extra RET in the path.

jmp word ptr CmdTbl [si] ; calls routine.

; Come here if we received an invalid request.

MtdSvcXxx_Fail:

stc

EndProc MtdSvcXxx

13.2.4 Protected-Mode and Real-Mode Control Paths

MTDs must be prepared to perform accesses to mapped addresses in either real mode or
protected mode, at MCL’s discretion. Recall that 32-bit media addresses as provided by MCL
clients are not specifically tied to 32-bit physical addresses, but may be assigned to the extended
memory physical address space accessible in protected mode, or windowed into a low memory
segment below the 1MB address marker. If the MTD will support media that can be windowed
with a hardware MMU such as that found in AMD SC300, SC310, SC400, or SC410 CPUs, then
the MTD must be able to handle either protected mode or real mode addressing.

If the MTD does not support memory-mapped media, then only one control path need be
provided by the MTD. For example, if an MTD were developed to route requests over an RS-

472 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

232 line to a host PC, then the I/O instructions necessary to program the UART could be
performed just as easily in real mode as protected mode. Since all MCL requests start in real
mode, there is no need in such an MTD for a protected mode path.

When both real mode and protected mode paths are required, the MTD must perform the mode
switching at the times it deems necessary. A good simple example of this dual mode processing
is illustrated by the following code fragment, taken from the RAM MTD’s WriteBlock routine:

DefProc WriteBlock

mov si, cx ; (SI) = # bytes to transfer.

; Copy (SI) bytes from 16:16 address (BP:BX) to logical address (DX:AX).

WriteBlock_Loop:

or si, si ; are there any bytes left to copy?

clc ; assume success.

jz WriteBlock_Exit ; return with success if none left.

Pcall MtdHlpMapAddress ; does the media address mapping.

jc WriteBlock_Real ; if real mode, (CX) = # bytes mapped.

; We have a protected mode translation with media=(0:EDI), (SI)=count.

IF OPTION_SUPPORT_PROTECT_MODE

mov cx, si ; (CX) = # bytes to transfer.

Pcall MtdHlpMapReal ; converts (BP:BX) to (ESI).

; Copy (CX) bytes of memory in protected mode from (0:ESI) to (0:EDI).

Pcall MtdHlpToProt ; (DS)=(ES)=phys0.

push cx

movzx ecx, cx ; (ECX) = # bytes to copy.

shr ecx, 1 ; (ECX) = # words to copy.

rep movs word ptr [edi], word ptr [esi] ; copy words 1st.

rcl ecx, 1 ; (ECX) = # bytes to copy.

rep movs byte ptr [edi], byte ptr [esi] ; remaining byte.

pop cx

Pcall MtdHlpToReal ; back to real mode.

clc ; we were successful.

ELSE

stc

ENDIF ; (OPTION_SUPPORT_PROTECT_MODE)

jmp WriteBlock_Exit ; do the next block.

; We have a media window at (ES:DI) that is (CX) bytes in length,

; and the total amount of data left to copy to the user’s buffer

; is (SI) bytes. Compute MIN(SI,CX) and copy from (BP:BX) to (ES:DI).

WriteBlock_Real:

cmp si, cx ; is (SI) > (CX)?

ja @f ; if so.

Chapter 13 EMBEDDED BIOS Adaptation Guide 473

General Software EMBEDDED BIOS Adaptation Guide

mov cx, si ; (CX) = smallest.

@@:

sub si, cx ; (SI) = remaining data to copy.

add ax, cx

adc dx, 0 ; (DX:AX) = next media address.

; Prepare registers for copying.

push si ; save # bytes left to copy.

mov ds, bp

mov si, bx ; (DS:SI) = ptr, user buffer.

add bx, cx ; (BP:BX) = ptr, next user buffer.

; Now do the copy operation itself.

shr cx, 1

rep movsw ; copy by words first.

rcl cx, 1

rep movsb ; copy last byte, if any.

pop si ; (SI) = restored # bytes to copy.

jmp WriteBlock_Loop ; do the next block.

WriteBlock_Exit:

EndProc WriteBlock

In this code fragment, a loop is used to define the state where some data must be copied from the
user buffer to the media. This contemplates a situation where either the protected mode or real
mode paths may not complete the entire I/O operation, but rather may only complete a partial
I/O, leaving the rest of the entire transaction to another cycle around the loop.

The SI CPU register is used to keep track of the number of bytes left to transfer, and the physical
address of the next media address to be affected is kept in the DX:AX register pair, conveniently
so that MtdHlpMapAddress can use the address as input to map the next chunk of media. If the
CY flag is set by MtdHlpMapAddress, then the MTD knows that real-mode processing must
occur. Otherwise, control continues through the protected mode path, which translates the real-
mode 16:16 user buffer address to a physical address, and then switches to protected mode,
performs the data movement, and switches back to real mode again.

The real mode code path is called to process a portion of the I/O, since the requested I/O size
may be bigger than the memory window provided by the mapping hardware. The code performs
an I/O that has a size equal to the minimum of (a) the window size and (b) the remaining size of
the I/O. Control then passes back to the top of the main loop, which continues to process the rest
of the I/O.

Note that MTDs must take care not to second-guess the mapping method that
MtdHlpMapAddress may return on subsequent calls. It may be easy for that function to dictate
that a portion of an I/O occur in protected mode, whereas another portion of the same I/O occur
in real mode.

13.2.5 Adding a Custom MTD to the Board Personality Module

474 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

The MTDs provided with the core BIOS are implemented in assembly modules in the SYSTEM
subdirectory; however, new MTDs need not occupy their own .ASM files in this directory.
When the OEM needs to implement a new MTD for a specific design, it is best to avoid
modifying the core BIOS files, to minimize the effort required to upgrade the core BIOS at any
time.

The preferred approach is to create the MTD a routine at a time directly in the BPM itself. The
fact that the MTD code is interspersed among BPM routines will not affect the operation of the
core BIOS. Some OEMs may choose to split-off the MTD code into a separate file that is
included by the BPM file; this is also acceptable because it doesn’t require changes to the
MAKEFILE, linker response file, and SYSTEM directory.

When adding your MTD to the BPM, proper segmentation should be employed. MTD code
should be assembled in the BIOS segment, as illustrated by the code in the MTDRAM.ASM
file.

13.2.6 Adding Windowing to the Board Personality Module

Although the BoardMapAddress function is specified more formally in Chapter 20, a few
words about how this routine interplays with the MTD, are worthwhile here. This routine, found
in the BPM, is called by MCL on behalf of an MTD when it issues an MtdHlpMapAddress
function call. It is up to BoardMapAddress to decide whether the MTD will use protected
mode or real mode to access the media, and then where the real mode window will be, etc.

Unless overridden with an OEM-specified BoardMapAddress function, the default version of
this routine just calls CsMapAddress in the chipset module, so as to take advantage of any
MMU in the chipset (Note to AMD users: The SC300, SC310, SC400, and SC410 are chipset-
like in this regard and have CsMapAddress routines that program the MMU hardware).

When the OEM contemplates an override routine to perform some action that is different from
the default, there are many issues to consider. Of course, the address space architecture is an
important issue. For example, the SC400 and SC410 CSPMs segment the 32-bit address space
into four parts, each of which is used to logically map different ROM Chip Select lines. The
OEM might decide that a certain range of media addresses should be handled with one MMU,
and another range handled with a different one. Or, under certain conditions (i.e., if the MMU(s)
are busy with application data), then protected mode might be returned. While many possible
issues come up and are dealt with in this routine, ultimately it must return its decision about how
the MTD processes requests in a simple response: protected mode or real mode, and when real
mode is returned, where the window is and how much is visible within the window.

13.2.7 MTD I/O Request Interface

I/O requests are submitted to MTDs through a single interface procedure. The name of this
procedure is significant, and is formed by concatenating the string MtdSvc with the name of the
MTD as specified in the MEDIA_REGION table entries to be associated with this MTD.

This routine is called in real mode with a near call from within MCL. Interrupts are enabled at
the time of the call, and must be enabled upon return to MCL. Upon entry, the SI register
contains the media function code, used to dispatch to the appropriate request handler within the
MTD. This register need not be preserved by the dispatch routine.

13.2.7.1 LockBlock MTD Procedure

Chapter 13 EMBEDDED BIOS Adaptation Guide 475

General Software EMBEDDED BIOS Adaptation Guide

The MTD’s private LockBlock function is called by the MTD’s dispatch function to lock a block
of storage in a sectored or boot block Flash device. Once a block has been locked, it remains
write-protected until unlocked by a subsequent erase operation.

Some MTDs may or may not support the lock function, and some may not even support the erase
functions. For example, the Rom MTD does not support this function because it cannot change
the underlying media. The Ram MTD supports erase by emulating it, assuming the same block
size as specified for the RFD, but has no way to “lock” a block of RAM.

Input Parameters:

DX:AX - 32-bit address of 1st byte within block to be locked.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

13.2.7.2 StartErase MTD Procedure

The MTD’s private StartErase function is called by the MTD’s dispatch function to start a block
erase operation on a block of storage in a sectored, boot block, or bulk erase Flash device. Once
the block is erased, its contents are reset by the device such that each byte contains the
hexadecimal value, ffh (all ones).

This function’s purpose is to begin erase processing, and optimally return before the erasure has
completed, so that the erase processing can occur in the background while the system continues
with other operations. This can be effective in increasing RFD performance. Some MTDs may
not implement an asynchronous erasure operation, and instead implement the entire erase
functionality in the StartErase, so that the EraseComplete routine always returns to the caller
with a “completed” status. For devices without background erase capabilities, this routine should
complete synchronously as described.

Certain MTDs provided with the core EMBEDDED BIOS software illustrate how to break-up
the processing of starting the erase process and determining if the erase process has completed.
One example of such an MTD is MTDINTA.ASM. Note that this MTD (necessarily) handles
situations where, once an erase process has started and control has returned to the client, another
request is received to perform a read or write before the erase operation has completed. In these
cases, the erase operation must either be suspended during the secondary operation’s
performance, or alternatively, the erase operation may be concluded before processing the
secondary operation. All MTD operations must be coordinated to handle such background
processing gracefully without loss of data.

Some MTDs may or may not support the erase functions (either StartErase or EraseComplete).
For example, the Rom MTD does not support this function because it cannot change the
underlying media. The Ram MTD does support the function by emulating it, assuming the same
block size as specified for the RFD.

476 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

DX:AX - 32-bit address of 1st byte within block to be erased.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

13.2.7.3 EraseComplete MTD Procedure

The MTD’s private EraseComplete function is called by the MTD’s dispatch function to
determine if the erasure operation started by a previous call to the StartErase function has
completed or is still in progress.

Some MTDs may not implement an asynchronous erasure operation, and instead implement the
entire erase functionality in the StartErase, so that the EraseComplete routine always returns to
the caller with a “completed” status.

Some MTDs may or may not support the erase functions (either StartErase or EraseComplete).
For example, the Rom MTD does not support this function because it cannot change the
underlying media. The Ram MTD does support the function by emulating it, assuming the same
block size as specified for the RFD.

Input Parameters:

DX:AX - 32-bit address of the block as specified in the call to StartErase.

Output Parameters:

CY - clear if no erase operation in progress, else set.

Unpreserved Registers:

Flags.

13.2.7.4 ReadBlock MTD Procedure

The MTD’s private ReadBlock function is called by the MTD’s dispatch function to read data
from the media.

Commonly, MTDs call the MtdHlpRead function to perform the transfer, when the media is
accessible as direct-access storage within the memory address space. Making use of this function
in new MTDs saves space by reusing existing code, and also takes advantage of its method of
breaking the read into pieces when in protected mode to reduce interrupt latency.

Chapter 13 EMBEDDED BIOS Adaptation Guide 477

General Software EMBEDDED BIOS Adaptation Guide

Sometimes, MTDs cannot use this helper function, because device programming is required. For
example, some Flash devices may be controlled through a range of I/O ports, and may not
actually present any directly-addressible memory regions to the CPU.

Input Parameters:

DX:AX - 32-bit address of 1st byte of media to be read.

BP:BX - 16:16 segment offset pointer to 1st byte of user buffer where data will be written
in RAM.

CX - Number of bytes to be transferred. A zero value indicates 65,536 bytes. The value
does not have to be even.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

13.2.7.5 WriteBlock MTD Procedure

The MTD’s private WriteBlock function is called by the MTD’s dispatch function to write data
from a user-specified buffer to the media.

The caller must take care that the writing is possible; i.e., that the area of the media to be written
does not contain other data that has not been erased, unless the underlying media supports
writing without erasing. NOR Flash devices require erasure of large blocks, whereas NAND
Flash devices can be supported by MTDs that build-in an automatic pre-erase operation.
Similarly, the RAM MTD can write to an area that has not previously been erased.

Some MTDs may or may not support the write function (or erase functions). For example, the
Rom MTD does not support this function because it cannot change the underlying media.

Input Parameters:

DX:AX - 32-bit address of 1st byte of media to be written.

BP:BX - 16:16 segment offset pointer to 1st byte of user buffer containing data to be
written.

CX - Number of bytes to be transferred. A zero value indicates 65,536 bytes. The value
must be even.

Output Parameters:

CY - set if failure, else clear if success.

478 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

Flags.

13.2.7.6 Query MTD Procedure

The MTD’s private Query function is called by the MTD’s dispatch function to return
information to the caller about the media, the driver, or the data path to the media. Additional
information classes may be made available in future releases.

Some MTDs may or may not support the Query function; its implementation is optional.

Input Parameters:

DX:AX - 32-bit address of media associated with entity to be queried.

CL - Information class, as follows:

MEDIA_QUERY_DRIVER - Return information about MTD.
MEDIA_QUERY_PROBE - Probe media to verify correct identity.
MEDIA_QUERY_BLOCKSIZE - Return erasable unit size as log2(bytes).
MEDIA_QUERY_DATAPATH - Return data path width in bytes.

Output Parameters:

CY - set if failure, else clear if success.

For MEDIA_QUERY_DRIVER requests:

AX - Bitmask of capabilities, as follows:

MEDIA_CAPABILITY_PROBE - MTD supports probe media subfunction.
MEDIA_CAPABILITY_BLOCKSIZE - MTD can return the media's blocksize.
MEDIA_CAPABILITY_DATAPATH - MTD can return the data path width.
MEDIA_CAPABILITY_MODIFY - Writes can modify sectors (NOR Flash).
MEDIA_CAPABILITY_AUTOERASE - Writes automatically erase blocks.

For MEDIA_QUERY_PROBE requests:

CY - Set if media not present or incompatible, else clear.

For MEDIA_QUERY_DATAPATH requests:

AH - Bits per part (8, 16, 32, etc.)
AL - Interleave factor (1, 2, 4, etc.)

For MEDIA_QUERY_BLOCKSIZE requests:

AX - erasable unit size in log2(bytes). (6 means 64, 7 is 128, 8 is 256, etc.)

Unpreserved Registers:

Chapter 13 EMBEDDED BIOS Adaptation Guide 479

General Software EMBEDDED BIOS Adaptation Guide

Flags.

13.2.7.7 Init MTD Procedure

The MTD’s private Init function is called by the MTD’s dispatch function during the POST
system initialization to initialize the MTD as necessary to perform its other functions. No other
requests will be made before the MTD receives an Init request.

This call allows MTDs that need to acquire resources such as system memory to obtain the
memory before the operating system loads. At this time, MTDs using hardware that must be
initialized, such as PC Card controllers or network interface units, may perform this work.

Some MTDs may or may not support the Init function; its implementation is optional.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

13.3 MEDIA_REGION Addressing Table

As described in Chapter 7, the MEDIA_REGION macro is used by the OEM in the Project file
to build a table of media address regions that specify to MCL which MTDs handle which media
addresses. Be certain to read the discussion of the MEDIA_REGION macro in that chapter to
learn how to construct the table.

MTDs do not have direct access to the contents of the MEDIA_REGION table. Instead, this
table belongs to MCL. MTDs can call the MtdHlpQueryRegion function for certain situations,
to identify the starting media address of a region. This is useful in at least one common case, the
erasure of bulk Flash memory, since the entire region of Flash must be written with the value 0
before it can be erased.

When routing requests, MCL searches the table linearly, looking for the first region that contains
a specified media address. As a fall-back, the MCL maintains a special entry at the end of the
table that maps the entire 32-bit media address space to the RAM MTD, leaving no request
unsatisfied. This has the added advantage that no MEDIA_REGION table need be specified by
the OEM to just test the RFD or RAM disk with RAM media, and also that no special case code
that provides for a “no such region” error need be executed on every I/O.

480 EMBEDDED BIOS Adaptation Guide Chapter 13

General Software EMBEDDED BIOS Adaptation Guide

13.4 Common Flash Device Layout

64 KByte Block 31

64 KByte Block 30

64 KByte Block 29

64 KByte Block 28

64 KByte Block 27

64 KByte Block 26

64 KByte Block 25

64 KByte Block 24

64 KByte Block 23

64 KByte Block 22

64 KByte Block 21

64 KByte Block 20

64 KByte Block 19

64 KByte Block 18

64 KByte Block 17

64 KByte Block 16

64 KByte Block 15

64 KByte Block 14

64 KByte Block 13

64 KByte Block 12

64 KByte Block 11

64 KByte Block 10

64 KByte Block 9

64 KByte Block 8

64 KByte Block 7

64 KByte Block 6

64 KByte Block 5

64 KByte Block 4

64 KByte Block 3

64 KByte Block 2

64 KByte Block 1

64 KByte Block 0

Intel 28F016SA
Memory Map

64 KByte Block 16

64 KByte Block 15

64 KByte Block 14

64 KByte Block 13

64 KByte Block 12

64 KByte Block 11

64 KByte Block 10

64 KByte Block 9

64 KByte Block 8

64 KByte Block 7

64 KByte Block 6

64 KByte Block 5

64 KByte Block 4

64 KByte Block 3

64 KByte Block 2

64 KByte Block 1

64 KByte Block 0

Intel 28F008SA
Memory Map

16 KByte Block 7

16 KByte Block 6

16 KByte Block 5

16 KByte Block 4

16 KByte Block 3

16 KByte Block 2

16 KByte Block 1

16 KByte Block 0

AMD Am29F010
Memory Map

64 KByte Block 7

64 KByte Block 6

64 KByte Block 5

64 KByte Block 4

64 KByte Block 3

64 KByte Block 2

64 KByte Block 1

64 KByte Block 0

AMD Am29F040
Memory Map

16 KByte Block

8 KByte Block

8 KByte Block

32 KByte Block

64 KByte Block

AMD Am29F100T
Memory Map

No RFD

16 KByte Block

8 KByte Block

8 KByte Block

32 KByte Block

64 KByte Block 2

64 KByte Block 1

64 KByte Block 0

AMD Am29F200T
Memory Map

16 KByte Block

8 KByte Block

8 KByte Block

32 KByte Block

64 KByte Block 6

64 KByte Block 5

64 KByte Block 4

64 KByte Block 3

64 KByte Block 2

64 KByte Block 1

64 KByte Block 0

AMD Am29F400T
Memory Map

128-KByte
MAIN Block 2

128-KByte
MAIN Block 1

128-KByte
MAIN Block 0

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F004BX-T
Memory Map

128-KByte
MAIN Block

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F200BX-T
Memory Map

No RFD

128-KByte
MAIN Block

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F002BX-T
Memory Map

No RFD

112-KByte
MAIN Block

8-KByte
BOOT Block

4-KByte Param. Block

4-KByte Param. Block

Intel 28F001BX-T
Memory Map

No RFD

128-KByte
MAIN Block 2

128-KByte
MAIN Block 1

128-KByte
MAIN Block 0

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F400BX-T
Memory Map

Chapter 13 EMBEDDED BIOS Adaptation Guide 481

General Software EMBEDDED BIOS Adaptation Guide

64 KByte Block 2

64 KByte Block 1

64 KByte Block 0

32 KByte Block

8 KByte Block

8 KByte Block

16 KByte Block

AMD Am29F200B
Memory Map

64 KByte Block 6

64 KByte Block 5

64 KByte Block 4

64 KByte Block 3

64 KByte Block 2

64 KByte Block 1

64 KByte Block 0

32 KByte Block

8 KByte Block

8 KByte Block

16 KByte Block

AMD Am29F400B
Memory Map

64 KByte Block

32 KByte Block

8 KByte Block

8 KByte Block

16 KByte Block

AMD Am29F100B
Memory Map

No RFD

128-KByte
MAIN Block 2

128-KByte
MAIN Block 1

128-KByte
MAIN Block 0

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F400BX-B
Memory Map

128-KByte
MAIN Block

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F200BX-B
Memory Map

No RFD

128-KByte
MAIN Block

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F002BX-B
Memory Map

No RFD

112-KByte
MAIN Block

8-KByte
BOOT Block

4-KByte Param. Block

4-KByte Param. Block

Intel 28F002BX-B
Memory Map

No RFD

128-KByte
MAIN Block 2

128-KByte
MAIN Block 1

128-KByte
MAIN Block 0

96-KByte
MAIN Block

16-KByte
BOOT Block

8-KByte Param. Block

8-KByte Param. Block

Intel 28F004BX-B
Memory Map

Chapter 14 EMBEDDED BIOS Adaptation Guide 483

General Software EMBEDDED BIOS Adaptation Guide

Chapter 14

MANUFACTURING MODE

Most volume consumer electronics products such as phones or PDAs need an electronic interface
to the manufacturing equipment or test equipment that is used to manufacture, test, and repair the
devices in the field. The EMBEDDED BIOS Manufacturing Mode enables a host computer to
establish a high-speed communications link with the target device running EMBEDDED BIOS,
so that the device can be tested and its Flash memory can be updated without running an
operating system on the target.

An additional feature of Manufacturing Mode is the support of INT 13h drive redirection, so that
host software (such as the supplied MFGDRV.SYS DOS device driver) can allow the field
support technician to access files on a target’s disk as though it were a local INT 13h device, for
the purposes of updating software on the unit. This feature works with all drive types on the
target, including ROM, RAM, RFD, Floppy, and IDE types (of course, the ROM disk only
permits read access).

14.1 Entering Manufacturing Mode

In order for a target to support Manufacturing Mode, the OPTION_SUPPORT_MFGMODE
option must be enabled. Then, one of three events must occur on the target to cause
Manufacturing Mode to be activated. Once Manufacturing Mode is entered, the console
keyboard and screen remain unresponsive until the target is rebooted again, or Manufacturing
Mode receives a “boot target” command from the host PC.

The simplest way to enter Manufacturing Mode is to boot the target, enter the Setup main menu,
and select ENTER MANUFACTURING MODE. This can even be selected when the console
I/O is redirected over the same serial port that Manufacturing Mode uses. The BIOS build
option, OPTION_SETUP_MFGMODE, must be enabled for this main menu item to appear.

The user can cause Manufacturing Mode to be entered as a boot action by selecting it in the
BASIC Setup screen. EMBEDDED BIOS provides for four different boot activities, occurring
one after another, so that it can attempt to boot from different drives, then perhaps DOS in ROM,
and as a last resort, Manufacturing Mode or the debugger. This allows an embedded device to
make its best efforts to boot properly, and if no booting of the operating system is possible,
Manufacturing Mode can take over and allow field service personnel to diagnose the device.

484 EMBEDDED BIOS Adaptation Guide Chapter 14

General Software EMBEDDED BIOS Adaptation Guide

Another way for Manufacturing Mode to be invoked is by inspection of a hardware signal in the
target during POST. This method relies on the OEM writing some simple code that is inserted
into the BoardTestMode routine in the BPM. The routine is called during POST right before
the first boot action is performed, to determine if a special condition exists that should cause
Manufacturing Mode to be activated. If the routine returns with the CY flag set, then POST
enters Manufacturing Mode. If CY is clear, then POST continues with the first boot action.
Usually, the OEM’s proprietary code performs a test of a bit in an I/O port to make the decision
about whether to set or clear the carry flag. Often, the bit and I/O port are associated with a
UART’s Line Status Register (LSR) or Modem Status Register (MSR), so that the BIOS can use
the presence of a communications cable as an indication that a link is desired.

Another way for EMBEDDED BIOS to enter Manufacturing Mode is when a critical POST error
occurs, and OPTION_CRITICAL_MFGMODE is enabled. Critical errors are those that
normally cause the speaker to beep on a desktop PC; for example, interrupt controller or DMA
controller test failures, or low memory failures during POST.

Manufacturing Mode can continue indefinitely (until power is removed or a message requesting
the target to reboot is received), or it can time-out whenever the test mode hardware has stopped
responding. If OPTION_MFGMODE_TIMEOUT is enabled, then Manufacturing Mode
continually tests the I/O port used for the determination of whether Manufacturing Mode should
be entered (see above). If the target determines that it has been removed from the “test jig”, then
it times-out the Manufacturing Mode and continues to boot the system.

14.2 Host PC Operation

Once the target has entered Manufacturing Mode, the host PC may cause the target to perform
functions by issuing commands in protocol over the RS-232 connection. There are two ways to
access the target from the host PC.

The first way is to run a program that accesses the host-side Manufacturing Mode functions. An
example of such a program is HOST.EXE, found in the UTIL subdirectory. This program runs under
DOS and, using a full screen windowing interface, illustrates the basic functionality of the
Manufacturing Mode protocol. It should be noted that this program is a working example
program, and is not intended to be a production-quality control tool.

The second way to access the target through Manufacturing Mode is to install the MFGDRV.SYS

device driver, also found in the UTIL subdirectory. This device driver loads under MS-DOS and
Embedded DOS-ROM, and maps a new drive letter on the host to a drive on the target.

14.2.1 Sample Manufacturing Mode HOST Program

The example program source that calls the Manufacturing Mode API functions can be found in
UTIL\HOST.C. This program is a full-screen DOS program that uses COM1 (3f8h) on the host PC
to communicate with the target.

The full-screen interface is provided by the Character Oriented Windowing (COW) interface
libraries in the COW subdirectory.

To watch this program work, prepare an EMBEDDED BIOS adaptation that has
OPTION_SUPPORT_MFGMODE enabled, OPTION_SUPPORT_SETUP enabled, and

Chapter 14 EMBEDDED BIOS Adaptation Guide 485

General Software EMBEDDED BIOS Adaptation Guide

OPTION_SETUP_MFGMODE enabled. Also, disable OPTION_MFGMODE_TIMEOUT,
so that you will have ample time to place the target in test mode before using the host utility to
access Manufacturing Mode functions on the target. Finally, select the serial port and baud rate
to be used on the target by specifying CONFIG_MFG_BAUD for the baud rate,
MFG_COM_BASE for the UART base address, MFG_INT_VECT for the interrupt vector
associated with the UART’s interupt driven receives. Choose 56K baud for the baud rate to start,
as the sample HOST.EXE program uses that baud rate by default.

Then, run the HOST program, so that its main menu is displayed.

Next, boot the target, enter the SETUP screen system, select ENTER MANUFACTURING
MODE. On the host, select GET TARGET ATTENTION, within a couple seconds of
selecting the manufacturing mode on the target. You should see the host program immediately
display a yellow status box that shows that the connection has been established.

If the connection hasn't been established, then try the connection again on the host side, or reboot
the target and try again, this time having the host program get the target's attention within two
seconds or so of the target's entering of manufacturing mode. If this still fails, check the baud
rate for the manufacturing mode on the target to be sure it is using the right baud rate (56K baud
or 115K baud, depending on your version of HOST), and that its serial port is working properly.

14.2.2 Manufacturing Mode Drive Redirection

The INT 13h redirection support in the Manufacturing Mode protocol can be exposed by loading
the MFGDRV.SYS device driver on the host by using the following CONFIG.SYS line:

DEVICE=MFGDRV.SYS /BAUD=rate /PORT=COMn /UNIT=u /AUTO

This device driver runs under any DOS-compatible operating system, and creates a drive letter on
your host PC (usually D: if your last hard drive is C:) that can be used to interact with the
specified INT 13h unit.

The u parameter specifies the BIOS unit number of the floppy disk, RAM disk, RFD drive, or
ROM disk to be redirected, where 0 corresponds to drive A: and 1 for drive B. By default, this
value is 80 (a hex number without a “0x” in front or ‘h’ appended to it), which corresponds with
the unit for the first hard drive or emulator.

The /BAUD=rate parameter can be used to match the baud rate used by the target’s BIOS. Legal
values are 19K, 28K, 38K, 56K, and 115K. If this parameter is not specified, then the baud rate
is autodetected.

The /AUTO parameter, if specified, tells MFGDRV.SYS to automatically format the remote drive if it
determines that it is unformatted. By default, MFGDRV.SYS will not automatically format the
remote drive, and will instead examine the media for a pre-existing format. If not found, then
MFGDRV.SYS asks the host PC operator if the remote drive should be formatted.

This device driver also redirects raw INT 13h requests to the redirected drive, by assigning the
next local host unit to that target drive. Thus, if you have one floppy drive on your host (local
host unit 0), then the next unit (1) will be assigned to the redirected drive. This is the value that
is placed in the (DL) register when making INT 13h requests to the remote drive.

486 EMBEDDED BIOS Adaptation Guide Chapter 14

General Software EMBEDDED BIOS Adaptation Guide

Because of the above mentioned INT 13h request routing, if Embedded DOS users need to install
a boot record on the remote device without formatting the entire drive, INSTBOOT.EXE can be used,
but the program requires that B: be used as the drive name, since A: refers to the host’s drive A:.

IMPORTANT: MFGDRV.SYS assumes that other software does not reprogram the COM port being
used on the host for its purposes, and that it has exclusive access to it. If you run other software,
such as terminal emulation programs, they may disable the COM port UART, causing
MFGDRV.SYS to appear to stop working. It is best to avoid running such software on the host when
MFGDRV.SYS is loaded. Note: HOST.EXE is an example of such a program, since it takes over the
UART for its own purposes. If you run HOST.EXE when MFGDRV.SYS is loaded, you must reboot
the host PC for the MFGDRV.SYS driver to reestablish its control over the UART.

14.3 Host-Side Manufacturing Mode Functions

The following functions are supported by linking to the MESSAGE.OBJ module in the UTIL\OBJ
directory. This .OBJ file is created by running GSMAKE in the UTIL directory. By compiling
MESSAGE.C and linking to its object file, your application program can access the Manufacturing
Mode host-side functions under program control.

All of the functions return a BOOLEAN value, which is actually just an unsigned short. If the value
returned is 0 (FALSE), then the function failed. If the value returned is nonzero (TRUE), then the
function succeeded.

14.3.1 MsgInitialize Function

The MsgInitialize function is called by the application to initialize the Manufacturing Mode
message system to a known state.

The application uses this function to establish the I/O address of the 8250-compatible serial port
to be used for communications, and the baud rate to be used. Upon successful return to the
caller, the host is programmed for interrupt-driven receives of data from the target.

Request Format:

BOOLEAN MsgInitialize(
IN USHORT PortId,
IN USHORT BaudRate
);

Parameters:

PortId - A 16-bit unsigned value specifying the base I/O address of the UART to be used
on the host. Examples are 0x3f8 for COM1, or 0x2f8 for COM2.

BaudRate - A 16-bit unsigned value specifying the baud rate to be used by the system.
This baud rate is encoded as positive numbers as follows:

0 - Use 115K baud (not available on all UARTs).
1 - Use 56K baud.
2 - Use 38K baud.
3 - Use 28K baud.

Chapter 14 EMBEDDED BIOS Adaptation Guide 487

General Software EMBEDDED BIOS Adaptation Guide

4 - Use 19.2K baud.
5 - Use 9600 baud.

14.3.2 MsgDeinitialize Function

The MsgDeinitialize function is called by the application to undo the initialization established
with MsgInitialize. Most importantly, it disables interrupt processing that was previously
established for the communications port.

Request Format:

BOOLEAN MsgDeinitialize(
IN USHORT PortId
);

Parameters:

PortId - A 16-bit unsigned value specifying the base I/O address of the UART to be used
on the host. Examples are 0x3f8 for COM1, or 0x2f8 for COM2.

14.3.3 MsgPingTarget Function

The MsgPingTarget function is called by the application to initiate a quick message exchange
that verifies the communications link with the target. If this function returns successfully, then
the link can be deemed established.

When the target’s POST process is initiated and its TEST MODE hardware is enabled, it enters
the Manufacturing Mode query loop, where it waits for this ping request before determining that
there is no host to connect to. Thus, a ping must be issued shortly (within a few seconds) of the
target’s being reset.

Request Format:

BOOLEAN MsgPingTarget(
);

Parameters:

none.

14.3.4 MsgReceive Function

The MsgReceive function is called by the application to wait for a packet of information from the
target. This function is a lower-level function used by the higher-level API functions to transport
commands and responses. If the OEM needs to extend this message protocol (as defined in
INC\SERMSG.H and INC\SERMSG.INC), this function will be needed.

Request Format:

488 EMBEDDED BIOS Adaptation Guide Chapter 14

General Software EMBEDDED BIOS Adaptation Guide

BOOLEAN MsgReceive(
IN VOID *Buffer,
IN USHORT BufferLength,
OUT USHORT *BytesRead
);

Parameters:

Buffer - A 16:16 (far) pointer to a storage location where the incoming message will be
stored by the message system when it arrives.

BufferLength - A 16-bit unsigned value specifying the size of the buffer in bytes.

BytesRead - A 16:16 (far) pointer to an unsigned short variable where the message system
will return the actual size of the message received in bytes. If the message is
smaller than the declared size of the buffer, then this value will be less than
BufferLength.

14.3.5 MsgSend Function

The MsgSend function is called by the application to send a message to the target. This function
is a lower-level function used by the higher-level API functions to transport commands and
responses. If the OEM needs to extend this message protocol (as defined in INC\SERMSG.H and
INC\SERMSG.INC), this function will be needed.

Request Format:

BOOLEAN MsgSend(
IN VOID *Buffer,
IN USHORT BufferLength
);

Parameters:

Buffer - A 16:16 (far) pointer to a storage location containing the message to be sent.

BufferLength - A 16-bit unsigned value specifying the size of the buffer in bytes.

14.3.6 MsgBootTarget Function

The MsgBootTarget function is called by the application to exit the Manufacturing Mode and
continue on with POST to boot he operating system.

Request Format:

BOOLEAN MsgBootTarget(
);

Parameters:

Chapter 14 EMBEDDED BIOS Adaptation Guide 489

General Software EMBEDDED BIOS Adaptation Guide

none.

14.3.7 MsgGetLastPostCode Function

The MsgGetLastPostCode function is called by the application to return the last value written to
the POST code I/O port, if that port is readable. In an ISA architecture, I/O port 80h is write-
only and cannot be written. By changing this value to 2ffh or 3ffh (scratch registers on 16550
UARTs), this value can be inspected by this API function.

Request Format:

BOOLEAN MsgGetLastPostCode(
IN UCHAR *Buffer
);

Parameters:

Buffer - A 16:16 (far) pointer to an 8-bit storage location where the 8-bit POST code will
be returned.

14.3.8 MsgChecksum Function

The MsgChecksum function is called by the application to execute a checksum function on the
target. This function computes a 32-bit value associated with target memory starting at a
specified physical address, for a specified number of bytes from 0 to 65,535.

Request Format:

BOOLEAN MsgChecksum(
IN ULONG RegionStartAddress,
IN USHORT RegionLength,
OUT ULONG *Checksum
);

Parameters:

RegionStartAddress - A 32-bit physical address on the target (not the machine making the
MsgChecksum function call) of the first byte in the region to be checksummed.

RegionLength - A 16-bit unsigned value specifying the size of the contiguous region in
bytes.

Checksum - A 16:16 (far) pointer to an unsigned long variable in the host program’s
address space where the system will return the checksum value.

14.3.9 MsgTestMemory Function

490 EMBEDDED BIOS Adaptation Guide Chapter 14

General Software EMBEDDED BIOS Adaptation Guide

The MsgTestMemory function is called by the application to perform an exhaustive memory test
on a specified block of target memory. This function causes the target to perform the test and
return whether the memory was operational or not.

Request Format:

BOOLEAN MsgTestMemory(
IN USHORT TestType,
IN ULONG StartingPhysicalAddress,
IN ULONG BlockSize
);

Parameters:

TestType - A 16-bit word containing bits that, when set, indicate that a specific type of
test must be performed in order for the test not to fail. If multiple bits are
specified, then the test will only pass if all of the specific types of tests associated
with each of those bits pass.

0x0001 - A bit is rotated through all successive bit positions within each word in
the block to verify that each bit can toggle on and off.

StartingPhysicalAddress - A 32-bit physical address on the target (not the machine
making the MsgTestMemory function call) of the first byte in the region to be
tested.

BlockSize - A 32-bit unsigned long value specifying the number of contiguous bytes to be
tested.

14.3.10 MsgReadFlash Function

The MsgReadFlash function is called by the application to read Flash memory starting at a
specified physical address on the target. The data at the address are transferred to a staging
buffer, which is then available for reading via the MsgReadBuffer function.

Request Format:

BOOLEAN MsgReadFlash(
IN ULONG DevicePhysicalAddress,
IN ULONG RelativePhysicalAddress,
IN USHORT Length
);

Parameters:

DevicePhysicalAddress - A 32-bit physical address in the target’s address space that
specifies the address of the physical Flash device. The relative address is then
used as an offset with respect to this device address.

Chapter 14 EMBEDDED BIOS Adaptation Guide 491

General Software EMBEDDED BIOS Adaptation Guide

RelativePhysicalAddress - A 32-bit offset relative to the DevicePhysicalAddress of the
first byte in the contiguous region to be transferred to the target’s RAM staging
buffer.

Length - A 16-bit value specifying the number of bytes to be transferred. The value 0
indicates 65,536 bytes should be transferred.

14.3.11 MsgWriteFlash Function

The MsgWriteFlash function is called by the application to write Flash memory starting at a
specified physical address on the target. The data from the target’s staging buffer are transferred
to the Flash.

Request Format:

BOOLEAN MsgWriteFlash(
IN ULONG DevicePhysicalAddress,
IN ULONG RelativePhysicalAddress,
IN USHORT Length
);

Parameters:

DevicePhysicalAddress - A 32-bit physical address in the target’s address space that
specifies the address of the physical Flash device. The relative address is then
used as an offset with respect to this device address.

RelativePhysicalAddress - A 32-bit offset relative to the DevicePhysicalAddress of the
first byte in the contiguous region to be written from the target’s RAM staging
buffer.

Length - A 16-bit value specifying the number of bytes to be transferred. The value 0
indicates 65,536 bytes should be transferred.

14.3.12 MsgReadBuffer Function

The MsgReadBuffer function is called by the application to read data from the target’s RAM
staging buffer over the Manufacturing Link to a local host buffer.

This function is typically used in combination with other functions. For example, the contents of
the Flash array on the target could be copied to the staging buffer with the MsgReadFlash
function, and then MsgReadBuffer could be used to transfer that data to the host.

Updating sections of Flash is possible by using MsgReadFlash to read-in an entire block,
transferring the data to the host with MsgReadBuffer, then transferring the changed portion back
to the target with MsgWriteBuffer, followed with a Flash update using MsgEraseFlash followed
by MsgWriteFlash.

Request Format:

492 EMBEDDED BIOS Adaptation Guide Chapter 14

General Software EMBEDDED BIOS Adaptation Guide

BOOLEAN MsgReadBuffer(
IN USHORT BufferOffset,
IN USHORT BytesToRead,
OUT VOID *LocalBuffer
);

Parameters:

BufferOffset - A 16-bit unsigned value specifying the offset, relative to the start of the
target’s RAM staging buffer, of the block of data to be transferred to the host. The
actual physical or segment address of the staging buffer is not exposed to the
target.

BytesToRead - A 16-bit unsigned value specifying the number of bytes to transfer. If 0 is
specified, then 65,536 bytes will be transferred.

LocalBuffer - A 16:16 (far) pointer to a host application buffer where the data will be
copied to. This buffer must be large enough to accommodate BytesToRead bytes
of incoming data.

14.3.13 MsgWriteBuffer Function

The MsgWriteBuffer function is called by the application to write data from a local host buffer to
the target’s RAM staging buffer over the Manufacturing Link.

This function is typically used in combination with other functions. For example, the contents of
the Flash array on the target could be written from the host by using the MsgWriteBuffer to
transfer the data from the host to the target, and then the MsgWriteFlash function could be used
to write the contents of the staging buffer to the Flash.

Updating sections of Flash is possible by using MsgReadFlash to read-in an entire block,
transferring the data to the host with MsgReadBuffer, then transferring the changed portion back
to the target with MsgWriteBuffer, followed with a Flash update using MsgEraseFlash followed
by MsgWriteFlash.

Request Format:

BOOLEAN MsgWriteBuffer(
IN USHORT BufferOffset,
IN USHORT BytesToWrite,
OUT VOID *LocalBuffer
);

Parameters:

BufferOffset - A 16-bit unsigned value specifying the offset, relative to the start of the
target’s RAM staging buffer, where the host data will be transfered to. The actual
physical or segment address of the staging buffer is not exposed to the target.

Chapter 14 EMBEDDED BIOS Adaptation Guide 493

General Software EMBEDDED BIOS Adaptation Guide

BytesToWrite - A 16-bit unsigned value specifying the number of bytes to transfer. If 0 is
specified, then 65,536 bytes will be transferred.

LocalBuffer - A 16:16 (far) pointer to a host application buffer containing the data to
transfer to the target.

14.3.14 MsgLockFlash Function

The MsgLockFlash function is called by the application to write-protect a block in a Flash
memory device. The physical address of the device itself is specified, as well as the relative
offset of the block within the device. Once the block is locked, it cannot be written to.

Request Format:

BOOLEAN MsgLockFlash(
IN ULONG DevicePhysicalAddress,
IN ULONG RelativePhysicalAddress
);

Parameters:

DevicePhysicalAddress - A 32-bit physical address in the target’s address space that
specifies the address of the physical Flash device. The relative address is then
used as an offset with respect to this device address.

RelativePhysicalAddress - A 32-bit offset relative to the DevicePhysicalAddress of the
first byte in the block to be locked.

14.3.15 MsgEraseFlash Function

The MsgEraseFlash function is called by the application to unlock and erase a block in a Flash
memory device. The physical address of the device itself is specified, as well as the relative
offset of the block within the device. Once the block is erased, it becomes unlocked, and every
byte within the block contains the value ffh (all bits set to 1).

Request Format:

BOOLEAN MsgEraseFlash(
IN ULONG DevicePhysicalAddress,
IN ULONG RelativePhysicalAddress
);

Parameters:

DevicePhysicalAddress - A 32-bit physical address in the target’s address space that
specifies the address of the physical Flash device. The relative address is then
used as an offset with respect to this device address.

RelativePhysicalAddress - A 32-bit offset relative to the DevicePhysicalAddress of the
first byte in the block to be erased.

494 EMBEDDED BIOS Adaptation Guide Chapter 14

General Software EMBEDDED BIOS Adaptation Guide

14.3.16 MsgInt13 Function

The MsgInt13 function is called by the application to issue an INT 13h disk BIOS function on
the target. This allows the implementation of a variety of remote-access disk utilities, such as
formatters, file system checkers, and remote disks, that can all operate in the context of
Manufacturing Mode.

This function passes the AX, CX, and DX registers to the target for execution in its environment;
however, the ES and BX registers, which are normally used to specify a buffer address for read,
write, format, and verify functions, are not passed in the request. Instead, the RAM staging
buffer is assumed to be the buffer to be used in all operations. The target automatically sets ES
and BX to the segment and offset components of the address of the RAM staging buffer for each
I/O.

The automatic use of the RAM staging buffer makes it possible to use the MsgReadBuffer and
MsgWriteBuffer to read and write this buffer before or after using the MsgInt13 function. Thus, a
typical disk read involves a call to MsgInt13, followed by a call to MsgReadBuffer. Similarly, a
write to disk involves writing the data to the target’s staging buffer with a call to
MsgWriteBuffer, followed by a call to MsgInt13 to perform the disk write itself.

This use of the RAM stagin buffer has advantages when it is desired to initialize many sectors
with the same contents; for example, when formatting a disk or creating a file system, because it
may eliminate the need to continuously transfer the same data repeatedly over the RS232 link.

This routine returns FALSE if the CY flag was set (indicating an error) on the target. It can also
return FALSE if the function is not able to be executed because of other errors, such as protocol
problems. The routine returns TRUE if no protocol problems were encountered, and the INT
13h request was executed successfully on the target, and the resulting CY flag status was clear,
indicating no error resulted from the INT 13h operation.

Request Format:

BOOLEAN MsgInt13(
IN USHORT InAx,
IN USHORT InCx,
IN USHORT InDx,
OUT USHORT *OutAx,
OUT USHORT *OutCx,
OUT USHORT *OutDx,
);

Parameters:

InAx - A 16-bit value that will be placed in the AX CPU register before executing the
INT 13h instruction on the target. Consult Chapter 23 section 4 for details on the
INT 13h BIOS interface.

InCx - A 16-bit value that will be placed in the CX CPU register before executing the
INT 13h instruction on the target. Consult Chapter 23 section 4 for details on the
INT 13h BIOS interface.

Chapter 14 EMBEDDED BIOS Adaptation Guide 495

General Software EMBEDDED BIOS Adaptation Guide

InDx - A 16-bit value that will be placed in the DX CPU register before executing the
INT 13h instruction on the target. Consult Chapter 23 section 4 for details on the
INT 13h BIOS interface.

OutAx - A pointer to a 16-bit storage location where the contents of the AX CPU register
will be stored after executing the INT 13h instruction on the target.

OutCx - A pointer to a 16-bit storage location where the contents of the CX CPU register
will be stored after executing the INT 13h instruction on the target.

OutDx - A pointer to a 16-bit storage location where the contents of the DX CPU register
will be stored after executing the INT 13h instruction on the target.

Chapter 15 EMBEDDED BIOS Adaptation Guide 497

General Software EMBEDDED BIOS Adaptation Guide

Chapter 15

ADVANCED POWER MANAGEMENT

EMBEDDED BIOS supports the salient features of the Advanced Power Management (APM)
API jointly defined by Intel and Microsoft. APM is a specification that defines a layered
cooperative environment which allows applications, operating systems, and the system BIOS to
work together to reduce power consumption in Personal Computers. EMBEDDED BIOS
extends this goal to embedded systems. The primary purpose of an APM implementation is to
provide portable computer users increased productivity and greater system availability by
extending the useful life of system batteries without degrading system performance.

The EMBEDDED BIOS Power Management Subsystem (PMS) controls power to BIOS-
controlled devices specified by the OEM in the power management device tree. This tree of
devices is described by the OEM using the POWER_DEVID macro in the project file (see
Chapter 7 for details). Each participating device in the power management device tree receives
notifications from PMS when the system’s power is changing state, in an orderly manner.

15.1 APM System Model

APM defines four power states of a system: Ready, Standby, Suspended, and Off. Three of these
states apply both to individual system components and to the system as a whole. The suspended
state is a special low power condition that applies to the system as a whole, and not the
individual components.

In the Ready state, the system or device is fully powered up and ready for use. The APM
definition of Ready only indicates that the system or device is fully powered on; it does not
differentiate between active and idle conditions of the operating system or application software.

Standby is an intermediate system dependent state which attempts to conserve power. Standby
is entered when the CPU is idle an d no device activity is known to have occurred within a
machine-defined period of time. The machine will not return to ready until one of the following
events occur: (1) A device causes a hardware interrupt to be generated, or (2) Any controlled
device is accessed. All data and operational parameters are preserved when the machine is in the
Standby state.

498 EMBEDDED BIOS Adaptation Guide Chapter 15

General Software EMBEDDED BIOS Adaptation Guide

The Suspended state is a system state that is defined to be the lowest level of power
consumption available that preserves operational data and parameters. The Suspended state can
be initiated by either the system BIOS or the software above the BIOS. The system BIOS may
place the system into the suspended state without notification if it detects a situation which
requires an immediate response such as the battery entering a critically low power state. When
the system is in the Suspended state, computation will not be performed until normal activity is
resumed. Resumption of activity will not occur until signalled by an external event such as a
button press, timer alarm, etc.

When in the Off state, the system or device is powered down and is inactive. Data and
operational parameters may or may not be preserved in the Off state.

The system and devices can change from one power state to another either by explicit command
or automatically, based on APM parameters and system activity. The power capabilities of
devices differ, and some devices may not be capable of achieving all states. Additionally, some
devices may have built-in automatic power management functions that are invisible to the
system, and therefore lie outside of the scope of the APM model.

15.2 APM Software Layers

The system BIOS is the lowest level of power management software in the system.
EMBEDDED BIOS provides APM services that ultimately call hardware support functions in
the CHIPSET and CPU Personality Modules.

The system BIOS is capable of providing power management functionality without any support
from the operating system or applications. This support is analogous to the ad hoc power
management methods implemented on some laptop systems. This functionality can be enhanced
once an APM-aware operating system or environment establishes a cooperative connection with
the BIOS. Once made, this connection establishes a protocol that allows the firmware to
communicate power management events to the oeprating system and to wait for operating system
concurrence if necessary. Details of the system BIOS operational changes are documented in
Chapter 20, in the section on power management.

The operating system layer has three primary power management functions:

1. Pass calls and information between application and system BIOS layers; and

2. Arbitrate application power management calls in a multitasking environment; and

3. Identify power-saving opportunities not apparent at the application level.

Different operating systems will require different power management application-to-OS
interfaces. On some systems this interface may best be implemented through software interrupts,
while on other systems, a CALL and RET interface may be more appropriate.

Operating systems that can be enhanced by optional extensions may require specialized
interfaces to allow the extensions to assist in the power management function.

The application layer assists the power management function by providing information that only
the application is in a position to know or easily ascertain. Applications are not required to

Chapter 15 EMBEDDED BIOS Adaptation Guide 499

General Software EMBEDDED BIOS Adaptation Guide

support the power management function, but they can greatly increase its effectiveness,
particularly on less-sophisticated operating systems. Under MS-DOS in particular, the
application is often in the best position to know when it is idle and awaiting user input.

15.3 APM BIOS Interface

The system BIOS interface as defined in the APM specification can support up to three CPU
modes (real mode, 16-bit protected mode, and 32-bit protected mode), although only real-mode
support is required of the BIOS by APM.

The real-mode interface is required on all APM implementations and is the primary APM
interface. This interface is implemented with an extension to the existing PC/AT INT 15h BIOS
service. The system BIOS INT 15h interface must operate in either real mode, or virtual-86
mode on 80386 and above procesors. Since the INT 15h processor instruction normally disables
interrupts, the system BIOS can typically expect to be entered with interrupts disabled.
However, the BIOS routines should not depend on any particular setting, and shoud explicitly
enable and disable interrupts as necessary. To avoid re-entering INT 15h, and ISR should not try
to use any of the APM functions.

To better support the protected modes of 80286 and later processors, the system BIOS may
optionally support a 16-bit and a 32-bit protected mode interface, directly callable from protected
mode. The protected mode interfaces must first be initialized using the real mode INT 15h
function 53h. Systems not supporting APM will return from this call with CY set and the AH
CPU register set to 86h. EMBEDDED BIOS supports the APM INT 15h function 53h when
OPTION_SUPPORT_APM is enabled.

The 16-bit and 32-bit protected mode interfaces must be initialized using the Protected Mode 16-
bit Interface Connect and Protected Mode 32-bit Interface Connect functions before these
interfaces can be used.

If an error condition is detected during the processing of a system BIOS APM function, upon
return to the caller the CY flag will be set and the AH CPU register will contain an APM error
code. The carry flag will be clear upon return from any successful APM call, and the contents of
the AH CPU register will be dependent on the particular call.

To allow for direct control of devices, this interface adopts a convention for identifying a device
class and specific subclasses within that class. For example, a class would be all Disk devices
and the subclasses would be the physical unit numbers. APM calls take this parameter, in a word
length register where the most significant byte is the device class and the least significant byte is
the device subclass. The following classes and subclasses are defined by the APM interface:

0000h - System class, BIOS subclass.
0001h - System class, BIOS-supported devices.
01xxh - Video display devices.
02xxh - Secondary storage devices.
03xxh - Parallel ports devices.
04xxh - Serial ports devices.

For a complete list of the APM functions provided by EMBEDDED BIOS under this model,
consult Chapter 21 under the INT 15h "General Services" section.

500 EMBEDDED BIOS Adaptation Guide Chapter 15

General Software EMBEDDED BIOS Adaptation Guide

15.4 Power Management Subsystem (PMS)

The EMBEDDED BIOS Power Management system provides an hierarchical approach to the
system’s power control. Rather than only handle a system-wide power state, it implements an
APM state machine for each device, and then responds to APM requests by transitioning each
device participating in the system’s power management in the proper order.

This ordering mechanism is critical for proper power management in embedded systems.
Consider that a typical rotating magnetic IDE hard drive has a motor that can spin down, drive
electronics that can go low-power, a Super I/O chip on the motherboard that can be powered
down, and finally a CPU that can go to sleep. All of these components must be powered up in
the proper order, and powered down in the proper order, in order to maintain data integrity and
correct operation of the system.

15.4.1 POWER_DEVID Device Tree

As described in Chapter 7, the POWER_DEVID macro is used to define a tree of device
dependencies for the power manager. Always at the top of the tree is the CPU itself. The CPU is
the parent of all 1st-tier devices underneath it, such as Super I/O controllers, Flash arrays,
PCMCIA controllers, and the like. Similarly, 1st-tier devices become parents of the devices they
control, such as IDE drives and UARTs in the case of Super I/O controllers, PCMCIA cards in
the case of PCMCIA controllers, and so on. EMBEDDED BIOS has a limit of eight (8) levels in
its power management tree, which is more than adequate for anticipated designs.

The power management device tree is specified in a tabular format with POWER_DEVID
entries. Each line in the table specifies a new device that will be participating in the system’s
power management, and begins with the identifying macro command, POWER_DEVID. Each
line contains exactly four (4) operands, as in the following hypothetical example:

; Power management device tree definition:

; The POWER_DEVID entry for the CPU MUST be FIRST!

;

; Device Module: Parent: Setup text:

;

 POWER_DEVID CPU, Board, CPU, "Cpu"

 POWER_DEVID IDE_0, Ide, CPU, "IDE drive 0"

 POWER_DEVID IDE_1, Ide, CPU, "IDE drive 1"

 POWER_DEVID SUPERIO,Board, CPU, "Super I/O"

 POWER_DEVID PCMCIA, Board, CPU, "PCMCIA"

The first operand specifies the symbolic name of the participating device. These device names
must have legal MASM or TASM symbol syntax, and should really be short names to keep the
table simple. These symbols are case-sensitive, and are referred-to by the parent field in other
entries of the table.

The second operand specifies the software component, usually a module name, that is
responsible for management of the device. This operand is prepended to the string PwrLvl to
produce a final name of a procedure in the BIOS that is responsible for managing the device’s
power level. This routine is called by the core BIOS’s power management system at the
appropriate time to instruct the module to change the device’s power state. Because this operand
specifies a name, and not an ordinal, it is possible to add OEM-defined device types to the
system. General Software has provided the following types in the core BIOS:

Chapter 15 EMBEDDED BIOS Adaptation Guide 501

General Software EMBEDDED BIOS Adaptation Guide

Board OEM Board Personality Module
Ide IDE Hard Drives
Media Media Control Layer (All RFD Devices)
MtdRam RAM MTD
MtdRom ROM MTD
MtdAmd8_1 AMD Flash 8-Bit 1-Way MTD
MtdAmd8_2 AMD Flash 8-Bit 2-Way MTD
MtdAmd8_4 AMD Flash 8-Bit 4-Way MTD
MtdAmd16_1 AMD Flash 16-Bit 1-Way MTD
MtdAtm8_1 Atmel Flash 8-Bit 1-Way MTD
MtdBulk_1 Bulk Erase Flash 8-Bit 1-Way MTD
MtdInt16_1 Intel Flash 16-Bit 1-Way MTD
MtdInt16_2 Intel Flash 16-Bit 2-Way MTD
MtdInt8_1 Intel Flash 8-Bit 1-Way MTD
MtdInt8_2 Intel Flash 8-Bit 2-Way MTD
MtdInt8_A Intel Flash 28F016 in 8-Bit mode (1-Way) MTD
MtdInt8_B Intel Boot Block Flash MTD
MtdInt16A_1 Intel 28F016/28F032 MTD
MtdToshNand Toshiba/AMD NAND MTD

Note that the above list includes some “real” devices, and some “pseudo” devices. For example,
the Flash parts managed by the MtdInt16_1 Media Technology Driver are very real. The IDE
drives managed by the Ide module are also real. The Board module corresponds to real hardware
if the OEM chooses to write the BoardPwrLvl routine to handle power management requests,
and that routine must do whatever makes sense to manage the board’s “power”. Pseudo devices
such as the one called Media are actually place-holders. It is necessary to allow these
intermediate devices (this one routes Flash requests to the underlying MTDs), to play a role in
managing power, so that they receive notification that they should suspend or resume the
processing of their client’s requests if the power is suspended or resumed, respectively.

In later versions of EMBEDDED BIOS, additional power management devices may be provided.
For information about the current list of supported power management devices, contact General
Software.

The third operand specifies the device name of the device’s parent. For IDE drives, this is
typically a Super I/O controller (the OEM would need to define the appropriate SuperIoPwrLvl
routine in the Board Personality Module that is responsible for managing the Super I/O controller
in the system). For UARTs, this might also be a Super I/O controller.

The fourth operand specifies an ASCII string in quotes that will appear in the power management
SETUP screens so that the user can configure timeouts and enable and disable power
management on a device basis. These strings should be kept simple and short, so as to fit within
the space constraints of the SETUP screen system and also to be clear to the user.

15.4.2 Device Power Control Entrypoints

The XxxPwrLevel function (where Xxx is the name of the device to participate in the power
management device tree) is called with near procedure linkage by the EMBEDDED BIOS Power
Management System to coordinate the device’s power with the rest of the system’s state.

This routine handles three situations; the power level may go up, down, or stay the same. If the
power level stays the same, no action is required.

502 EMBEDDED BIOS Adaptation Guide Chapter 15

General Software EMBEDDED BIOS Adaptation Guide

When the power level goes down, the routine must prepare the device by waiting for outstanding
activities to complete, and then drop the power level to the device to the appropriate level. The
routine may need to save the device’s registers or other state as necessary in RAM or on the
device itself. This state should be capable of being fully restored by the routine when power is
brought back to the former level.

When the power level goes up, the routine must enable the device’s power and reinitialize it as
necessary to accept further requests that are appropriate for that level of operation.

One of the functions of this routine is to enable or disable the handling of the device’s request
handler. For example, for IDE drives that require the spindle to be rotating, the device’s INT 13h
request handler should test the saved status of the device to determine if the drive has been
powered-down before allowing the request to flow through the driver, generating needless
timeout conditions.

Once this routine returns to its caller (PMS), the state transition must have been completed. This
routine is never reentered by PMS; that is, the calls to this routine are synchronized within PMS.

Input Parameters:

DS - Points to the extended BIOS data area (EBDA).
BX - Device index.
CL - New power level.
CH - Old power level.

Output Parameters:

None.

Unpreserved Registers:

Flags.

Chapter 16 EMBEDDED BIOS Adaptation Guide 503

General Software EMBEDDED BIOS Adaptation Guide

Chapter 16

SETUP AND DIAGNOSTICS SYSTEM

EMBEDDED BIOS provides a comprehensive SETUP screen system that includes built-in
system diagnostics for system burn-in. This chapter describes this integrated subsystem, which
is highly-configurable by the OEM.

16.1 SETUP Build Options

To enable the basic SETUP screen in the core BIOS, make sure OPTION_SUPPORT_SETUP
is enabled in the project file. Then, enable main menu options as desired from the list below (for
details about the options, see Chapter 7).

In addition to these options, the OEM can further configure the SETUP system by enabling or
disabling OPTION_SOFTERR_SETUP, which specifies whether soft errors occuring during
POST cause the SETUP screen system to be activated; and
OPTION_QUERY_ENTERSETUP, which causes POST to unconditionally ask the user if
SETUP should be entered before booting the operating system.

Finally, the default values used for the fields in the BASIC CMOS SETUP and SHADOWING
SETUP screens are specified with the many parameters that take the form, OPTION_CMOS_x,
where x is the name of the field. For example, OPTION_CMOS_MOUSE is the option which
when set, enables PS/2 mouse initialization during POST, and
OPTION_CMOS_SHADOW_DC00 is the option which when set, enables shadowing for the
16KB region at segment DC00h.

Because targets have widely varying hardware and SETUP requirements, not all SETUP screens
are configured for every system. For example, if no Resident Flash Disk is used in a design, the
FORMAT FLASH DISK menu is not supported. Similarly, if the integrated BIOS debugger is
omitted from an adaptation, then the START SYSTEM BIOS DEBUGGER option is not
supported. Consult Chapter 7 for details about these configuration options.

SETUP console I/O, including both keyboard and screen, can be redirected over an RS-232 link
at the OEM’s option. This is configured first by enabling
OPTION_SUPPORT_CON_REDIRECTOR, and then setting CONFIG_CONIO_SETUP to
the COM port number (1, 2, 3, 4) over which SETUP I/O will be routed. The special value 0

504 EMBEDDED BIOS Adaptation Guide Chapter 16

General Software EMBEDDED BIOS Adaptation Guide

means that redirection occurs over the standard keyboard and screen, while still permitting the
console redirector code to be enabled in the system for on-the-fly console switching. . When run
over a serial port, SETUP generates ANSI escape sequences that can drive a terminal program to
emulate a PC’s screen.

16.2 Entering SETUP

The SETUP screen system is invoked after POST has completed, in response to one of the
following:

• During POST’s memory countup display, the console user can press the
key when the console is the PC keyboard and video monitor, or the ^C key when
POST I/O has been redirected over an RS-232 link. This causes the remainder of
the memory test to be quickly performed, and then the SETUP screen takes over.

• If a soft error occurs during POST, then if OPTION_SOFTERR_SETUP is
enabled, POST will enter SETUP automatically. Most soft errors occur as a result
of losing CMOS information (when a CMOS part is present). This is usually the
result of a dead battery. Examples of soft errors are memory size mismatch,
keyboard failure, or disk drive failure.

• If POST attempts all six boot actions and all six fail to find a bootable system,
then if no INT 18h handler is installed, POST will display a small menu that
offers the user a way to enter SETUP, or other functions such as the debugger or
Manufacturing Mode.

SETUP cannot be entered during normal system operation with a special key combination,
because SETUP requires low memory to use for scratch space.

16.3 SETUP Screens

A fully-configured SETUP main menu looks like the following:

Fig 1. The Embedded BIOS SETUP Menu Gives Access to the Embedded BIOS Pre-Boot Features.

Chapter 16 EMBEDDED BIOS Adaptation Guide 505

General Software EMBEDDED BIOS Adaptation Guide

Getting around in the SETUP screens is normally accomplished by using the arrow keys,
pressing Enter, or even using the TAB or Shift-TAB keys. However, when the SETUP system is
redirected over a serial port, control keys are used. Use ^E to go up or backwards, ^X to go
down or forwards. TAB also goes forwards. On serial links, ^C is used to enter SETUP.

16.3.1 Basic CMOS Configuration Screen

The system’s drive types, boot activities, and POST optimizations are configured from the Basic
Setup Screen (Fig 2). In order to use disk drives with your system, you must select appropriate
assignments of drive types in the left-hand column. Then, if you are using true floppy and IDE
drives (not memory disks that emulate these drives), you need to configure the drive types
themselves in the Floppy Drive Types and IDE Drive Geometry sections. Finally, you’ll need to
configure the boot sequence in the middle of the screen. Once these selections have been made,
your system is ready to use.

Fig 2. The Embedded BIOS Basic Setup Screen is used to configure drives, boot actions, and POST.

16.3.1.1 Configuring Drive Assignments

Embedded BIOS allows the user to map a different file system to each drive letter. The BIOS
allows file systems for each floppy (Floppy0 and Floppy1), each IDE drive (Ide0, Ide1, Ide2, and
Ide3), and memory disks when configured (Flash0, ROM0, RAM0, etc.) Fig. 2 shows how the
first floppy drive (Floppy0) is assigned to drive A: in the system, and then how the first IDE
drive (Ide0) is assigned to drive C: in the system.

To switch two floppy disks around or two hard disks around, just map Floppy0 to B: and
Floppy1 to A:, and for hard disks map Ide0 to D: and Ide1 to C:.

Caution: Take care to not skip drive A: when making floppy disk assignments, as
well as drive C: when making hard disk assignments. The first floppy should be
A:, and the first hard drive should be C:. Also, do not assign the same file system
to more than one drive letter. Thus, Floppy0 should not be used for both A: and

506 EMBEDDED BIOS Adaptation Guide Chapter 16

General Software EMBEDDED BIOS Adaptation Guide

B:. The BIOS permits this to allow embedded devices to alias drives, but desktop
operating systems may not be able to maintain cache coherency with such a
mapping in place.

A special field in this section entitled “Boot Method: (Windows CE/Boot Sector)” is used to
configure the CE ReadyTM feature of the BIOS. For normal booting (DOS, Windows NT, etc.),
select “Boot Sector” or “Unused”.

16.3.1.2 Configuring Floppy Drive Types

If true floppy drive file systems (and not their emulators, such as ROM, RAM, or Flash disks)
are mapped to drive letters, then the floppy drives themselves must be configured in this section.
Floppy0 refers to the first floppy disk drive on the drive ribbon cable (normally drive A:), and
Floppy1 refers to the second drive (drive B:).

16.3.1.3 Configuring IDE Drive Types

If true IDE disk file systems (and not their emulators, such as ROM, RAM, or Flash disks) are
mapped to drive letters, then the IDE drives themselves must be configured in this section. The
following table shows the drive assignments for Ide0-Ide3:

File System Name Controller Master/Slave
Ide0 Primary (1f0h) Master
Ide1 Primary (1f0h) Slave
Ide2 Secondary (170h) Master
Ide3 Secondary (170h) Slave

To use the primary master IDE drive in your system (the typical case), just configure Ide0 in this
section, and map Ide0 to drive C: in the Configuring Drive Assignments section.

The IDE Drive Types section lets you select the type for each of the four IDE drives: None,
User, Physical, LBA, or CHS.

The User type allows the user to select the maximum cylinders, heads, and sectors per track
associated with the IDE drive. This method is rarely used since LBA is now in common use.

The Physical type instructs the BIOS to query the drive’s geometry from the controller on each
POST. No translation on the drive’s geometry is performed, so this type is limited to drives of
512MB or less. Commonly, this is used with embedded ATA PC Cards.

The LBA type instructs the BIOS to query the drive’s geometry from the controller on each
POST, but then translate the geometry according to the industry-standard LBA convention. This
supports up to 16GB drives. Use this method for all new drives.

The CHS type instructs the BIOS to query the drive’s geometry from the controller on each
POST, but then translate the geometry according to the Phoenix CHS convention. Using this
type on a drive previously formatted with LBA or Physical geometry might show data as being
missing or corrupted.

16.3.1.4 Configuring Boot Actions

Chapter 16 EMBEDDED BIOS Adaptation Guide 507

General Software EMBEDDED BIOS Adaptation Guide

Embedded BIOS supports up to six different user-defined steps in the boot sequence. When the
entire system has been initialized, POST executes these steps in order until an operating system
successfully loads. In addition, other pre-boot features can be run before, after, or between
operating system load attempts. The following actions can be used:

Drive A: - K: Boot operating system from specified drive. If “Loader” is set to
“BootRecord” or “Unused”, then the standard boot record will be invoked,
causing DOS, Windows95/98, Windows NT, or other industry-standard
operating systems to load. If “Boot Method” is set to “Windows CE”, then
the boot drive’s boot record will not be used, and instead the BIOS will
attempt to load and execute the Windows CE Kernel file, NK.BIN, from
the root directory of each boot device.

Debugger Launch the Integrated BIOS Debugger. To return exit the debugger
environment, type “G” at the debugger prompt and press ENTER.

MFGMODE Initiate Manufacturing Mode, allowing the system to be configured
remotely via an RS232 connect to a host computer.

WindowsCE Execute a ROM-resident copy of Windows CE, if available. This feature
is not applicable unless configured by the OEM in the BIOS adaptation.

DOS in ROM Execute a ROM-resident copy of DOS, if available. This feature is not
applicable unless an XIP copy of DOS, such as Embedded DOS-ROM,
has been stored in the BIOS boot ROM. Copies of Embedded DOS-ROM
may be obtained from General Software.

None No action; POST proceeds to the next activity in the sequence.

16.3.2 Custom Configuration Setup Screen

The system’s hardware-specific features are configured with the Custom Setup Screen (Fig 4).
All features are straightforward except for the Redirect Debugger I/O option, which is an extra
embedded feature that allows the user to select whether the Integrated BIOS Debugger should
use standard keyboard and video or RS232 console redirection for interaction with the user. If
no video is available, the debugger is always redirected.

508 EMBEDDED BIOS Adaptation Guide Chapter 16

General Software EMBEDDED BIOS Adaptation Guide

Fig 3. The Embedded BIOS Custom Setup Screen is used to configure configure low-level hardware.

16.3.3 Shadow Configuration Setup Screen

The system’s Shadow Configuration Setup Screen (Fig 4) allows enabling and disabling of
shadowing in 16KB sections, except for the top 64KB of the BIOS ROM, which is shadowed as
a unit. Normally, shadowing should be enabled at C000/C400 to enhance VGA ROM BIOS
performance, and E000-F000 should be shadowed to maximize system ROM BIOS performance.

Fig 4. The Embedded BIOS Shadow Setup Screen is used to configure ROM Shadowing.

16.3.4 Standard Diagnostic Routines Setup Screen

Embedded systems may require automated burn-in testing in the development cycle. This
facility is provided directly in the system BIOS through the Standard Diagnostics Routines Setup
Screen (Fig 5). To use the system, selectively enable or disable features to be tested, and then
enable the “Tests Begin on ESC?” option to cause the system test suite to be invoked. To repeat
the system test battery continuously, you should also enable the “Continuous Testing” option.
When continuous testing is started, the system will continue until an error is encountered.

Chapter 16 EMBEDDED BIOS Adaptation Guide 509

General Software EMBEDDED BIOS Adaptation Guide

Fig 5. The Standard Diagnostic Routines Setup Screen Provides Burn-In Tests for Manufacturing.

Caution: The disk I/O diagnostics perform write operations on those drives;
therefore, only spare drives should be used which do not contain data that could
be harmed by the test.

Advisory: The keyboard test may fail when in fact the hardware is operating
within reasonable limits. This is because although the device may produce
occasional errors, the BIOS retries operations when failures occur during normal
operation of the system.

Diagnostics can be very helpful when first bringing-up new hardware, and they can also be quite
useful in the field when targets appear to have intermittant operation.

In the lab, you’ll want to enable the standard diagnostics suite in the SETUP system once you
have a keyboard and a screen working in your BIOS adaptation. This lets you test out all of the
basic mechanisms that the rest of the BIOS will use during steady state operation of the system.
For example, if you’re unsure whether the A20 gate circuitry is working or if you’ve used the
correct BIOS option to support your A20 gate hardware, run the A20 gate test continuously for a
few hours, and let it find problems by itself.

Diagnostics can also be used while the system is in a controlled (excessive) environment to
determine MTBF or maximum rating values. For example, to determine how the floppy disk and
IDE disk respond in a high-temperature environment, place the unit in a temperature-controlled
chamber and run the floppy disk and IDE disk diagnostics continuously until they fail. Then,
you’ll have the exact maximum ratings documented.

In the field, it is easy to spot failing memory and mechanical devices such as rotating disks by
running diagnostics. This need not occur on the actual user’s display of the target; it can operate
over a serial link that is normally not used by the embedded application.

There are many uses for the standard diagnostics suite tests, and you’ll benefit from extending it
with your own OEM diagnostics suite to test your custom hardware, such as A/D controllers,
muxes, process controllers, touch screens, and other equipment.

16.3.5 Start System BIOS Debugger Setup Screen

The Embedded BIOS Integrated Debugger may be invoked from the Setup Screen main menu, as
well as a boot activity. Once invoked, the debugger will display the debugger prompt:

EB43DBG:

and await debugger commands. To resume back to the Setup Screen main menu, type the
following command, which instructs the debugger to “go”:

EB43DBG: G (ENTER)

16.3.6 Start RS232 Manufacturing Link Setup Screen

The Embedded BIOS Manufacturing Mode may be invoked from the Setup Screen main menu,
as well as a boot activity. Once invoked, Manufacturing Mode takes over the system and freezes

510 EMBEDDED BIOS Adaptation Guide Chapter 16

General Software EMBEDDED BIOS Adaptation Guide

the console of the system (Fig 6). The host can resume operation of the system and give control
back to the NEWBOARD Setup Screen system with special control software.

Fig 6. The Start RS232 Manufacturing Link Setup Screen Provides Access to Manufacturing Mode.

16.3.7 Other Pre-Boot Setup Screens

Embedded BIOS provides other Setup screens to the OEM as well. The following are available:

• DEMONSTRATION SCREEN

This screen is enabled for sample BIOSes built for evaluation boards by General
Software. It displays information about the company, its products, and how to contact
General Software for further licensing information.

• POWER FEATURES CONFIGURATION

The power management feature configuration screen (optional) contains fields
which enable power management modes for the target. This allows the user to disable
certain modes if they might interfere with the application.

• POWER TIMEOUTS CONFIGURATION

The power management timeout configuration screen (optional) contains fields
which define device inactivity timers which, when expired, cause the device to be
powered down by the Power Management System.

• PASSWORD CONFIGURATION

The password screen (optional) allows the user to set a password into the system’s
CMOS memory so that a password is required when the system boots.

• HARD DISK UTILITIES

Chapter 16 EMBEDDED BIOS Adaptation Guide 511

General Software EMBEDDED BIOS Adaptation Guide

This (optional) screen is available for OEM extensions when supporting special
hard disks that require OEM drivers.

• FORMAT INTEGRATED RAM DISK

The RAM disk formatting screen (optional) reformats the RAM disk, if enabled.
This is available for maintenance of the RAM disk in the field.

• FORMAT INTEGRATED FLASH DISK

The Flash disk formatting screen (optional) reformats the Resident Flash Disk
(RFD), if enabled. This is available for maintenance of the RFD in the field.

• RESET CMOS TO LAST KNOWN VALUES

This option causes SETUP to restore the values it had prior to any edits performed
during the current SETUP session.

• RESET CMOS TO FACTORY DEFAULTS

This option causes SETUP to reset CMOS with the values that are defined in
INC\CONFIG.INC as factory defaults.

• WRITE TO CMOS AND EXIT

This option causes SETUP to save the current edits to CMOS and reboot the
target, causing the new edits to take effect.

• EXIT WITHOUT CHANGING CMOS

This option causes SETUP to reboot the target without saving any changes made
during the SETUP session.

Chapter 17 EMBEDDED BIOS Adaptation Guide 513

General Software EMBEDDED BIOS Adaptation Guide

Chapter 17

POWER ON SELF TEST (POST)

One of the most important functions of the BIOS is the Power-On Self-Test, or POST; a complex
procedure that runs when a machine is first powered-on, or is warm-booted with any of a variety
of mechanisms.

POST is responsible for every facet of initializing the hardware to a steady-state, so that the
operating system or application can rely on BIOS services and various interrupts to perform their
functions. Without POST, the BIOS services and hardware have no connection with one
another. Indeed, without POST, the hardware cannot even begin working.

17.1 Initialization Without a Stack or RAM

The actual POST code begins executing at physical address 000FFFF0h, or in real-mode 16:16
terms, F000:FFF0. Because POST must assume that all of the peripherals are inoperative, it
must also assume that the DRAM is inoperative, because its refresh controller is not yet
initialized. This means that POST must begin its process without using any RAM, including
using PUSH, POP, CALL, RET, INT, or IRET instructions.

In practice, this is quite a difficult task. While it is tempting to turn on the DRAM refresh right
away, in fact quite a few peripherals must be initialized to begin the refresh process. In PC-
compatible systems, the 8253 programmable interval timer’s T1 timer must be tested and
initialized to count at a rate of approximately 15us per step. Then, the primary 8237 DMA
controller must be initialized and programmed so that a DMA channel begins performing verify
operations in collaboration with the 8253 counter. Finally, the page register file on a PC/AT-
compatible platform must be initialized to allow the refreshing to occur.

After DRAM refresh has started, the RAM still isn’t ready to use. Because modern ISA-
compatible motherboards are built around any of the hundreds of chipsets available on the
market today, the chipset must be initialized (in its own proprietary fashion) before memory can
be used. The reason for this is that chipsets need to be programmed to determine how many
SIMMs (memory modules) are present, what size they are, and ultimately, how they are to be
interleaved. Once the DRAM geometry is detected and the chipset is initialized, a stack can be
used.

514 EMBEDDED BIOS Adaptation Guide Chapter 17

General Software EMBEDDED BIOS Adaptation Guide

Even though a large portion of the POST procedure runs without any RAM support (meaning
without a stack), EMBEDDED BIOS remains procedurized in a compact way. This is
accomplished by using the BP CPU register as a return address when calling coroutines.

There are two sets of macros defined in the MACROS.INC file, that are used in the BIOS source
code to define and call procedures that hide the details between stack-based procedures and
register-return-based coroutines. These are illustrated below in sample code fragments.

17.1.1 Stack-Based Procedures

The first code fragment shows how a stack-based procedure is declared and called with the
DefProc, EndProc, and Pcall macros. The DefProc macro creates the PROC assembly statement,
and also adds a PUBLIC statement because the PUBLIC operand is specified. The EndProc macro
automatically provides a RET instruction, and an ENDP statement to terminate the procedure. The
Pcall macro translates into a CALL instruction that may be augmented by an EXTRN or EXTRNDEF
assembly statement in the event that it determines that Foo is not in the current module.

DefProc Foo, PUBLIC ; declare a stack-based procedure.
... ; the procedure body.

EndProc Foo ; end of the procedure.

...
Pcall Foo ; invoke the procedure via CALL.

17.1.2 Register-Based Coroutines

The next code fragment shows how a register-based coroutine is declared and called with the
DefRtn, EndRtn, and Rcall macros. The DefRtn macro creates a PROC assembly statement, and
adds a PUBLIC statement as its DefProc counterpart does. The EndRtn macro adds a special JMP
BP instruction to return to the coroutine’s caller, and then an ENDP statement to terminate the
procedure. The Rcall macro, distinguished from the Pcall macro, translates into a MOV
instruction that sets the return address into the BP CPU register, and then a JMP instruction that
jumps directly to the label. As with Rcall, the EXTRN or EXTRNDEF assembly statements may be
assembled if the target label is not within the current module.

DefRtn Foo, PUBLIC ; declare a register-based coroutine.
... ; the routine body.

EndRtn Foo ; end of the routine.

...
Rcall Foo ; invoke the routine via a JMP.

The macros used to manage procedures and coroutines are strongly-typed; that is, they actually
generate labels that are a modified form of the labels in the source code. For example, the
DefProc macro translates the label "Foo" into an internal form "_p_Foo" that indicates Foo is a
procedure. Similarly, the DefRtn macro translates the label "Foo" into "_r_Foo", indicating that
Foo is a coroutine. This ensures that a coroutine is not called with stack-based linkage, for
example.

17.1.3 Hybrid Procedures With Dual Linkage

A third type of procedure, called a hybrid procedure, is declared with the DefHyb and EndHyb
macros. These procedures are callable from either the Pcall or Rcall macros. Hybrid procedures

Chapter 17 EMBEDDED BIOS Adaptation Guide 515

General Software EMBEDDED BIOS Adaptation Guide

work by generating a coroutine with the standard coroutine linkage, and then an additional
procedural-based routine that calls the coroutine with the Rcall macro. Hybrid procedures
enable Embedded BIOS to make use of code at POST time when no stack is available, and later
during run-time with stack-based linkage.

The following code fragment illustrates how a hybrid procedure can be declared with the
DefHyb and EndHyb macros, and then called with either the Rcall or Pcall macros.

DefHyb Foo, PUBLIC ; declare a hybrid routine.
... ; the routine body.

EndHyb Foo ; end of the routine.

...
Rcall Foo ; invoke the routine via a JMP.
Pcall Foo ; invoke the routine as a procedure.

17.2 Early Initialization Process

EMBEDDED BIOS has a flexible POST architecture that allows the OEM to affect the standard
initialization process in the CPU, Chipset, and Board Personality Modules. This section
describes how POST proceeds, so that the OEM can determine where proprietary initialization
code may be placed.

Mainline POST can be found in routine POST, in module SYSTEM\POST.ASM. Following along
with the source code in that module can be helpful to understand how POST operates.

For detailed specifications about the BPM procedures described below, see Chapter 20.

17.2.1 BoardInit0 Processing

After disabling interrupts, POST calls BoardInit0 in the BPM to perform extremely early
initialization of the CPU, chipset, and board, and to determine whether a warm or cold boot is
being processed. This routine, and the subsequent code that follows the call to the routine in
POST, use the SP register to communicate about whether a bootstrap is cold or warm.

By default, BoardInit0 calls CpuInit0 and CsInit0 (in that order) to initialize the CPU and
chipset, respectively. For 186-class machines, CpuInit0 must establish chip selects so that the
remainder of the BIOS can run properly.

This level of initialization focusses on determination of whether the target was booted warm or
cold, and should limit activities to that issue. In some systems, the CPU or chipset registers may
need to be initialized to a known state (i.e., shadowing disabled, cache disabled, etc.) so that
further processing in POST does not produce erroneous results.

17.2.2 PostTestResetValue Processing

This routine is called by POST to determine if, on 286 platforms, POST was entered in the
process of switching from protected mode to real mode. This method is obsolete on 386 and
above platforms, and does not apply to 186 and below systems. Some systems,

17.2.3 PostCodeComInit Processing

516 EMBEDDED BIOS Adaptation Guide Chapter 17

General Software EMBEDDED BIOS Adaptation Guide

This routine is called by POST to initialize the UART associated with the POSTCODECOM
macro, if enabled in the BIOS build. This routine requires that the UART’s I/O ports be visible
in the I/O address space; that is, the UART must be enabled in the hardware. If the UART is
implemented in a Super I/O part or on a chipset or CPU with a chipset such as the AMD SC300,
SC310, SC400, or SC410 processors, then the UART must be enabled in a proprietary way in
BoardInit0 so that routine PostCodeComInit can access the UART’s registers.

Because POSTCODECOM requires a prior call to PostCodeComInit to initialize the UART,
and since this call is made after POST’s call to BoardInit0, POSTCODECOM cannot be used
in BoardInit0, unless an additional call is made to this routine in BoardInit0 after enabling the
UART.

17.2.4 BoardInit1 Processing

This routine is called by POST to perform the bulk of the initialization work, including chipset
programming, high-integration CPU programming, and peripheral programming (Super I/O,
FDC, and other components).

By default, routine BoardInit1 calls CpuInit1 and CsInit1, in that order, to allow the CPM and
CSPM modules to perform the bulk of their initialization.

It is suggested that this routine load all of the chipset registers with appropriate values at this
point during initialization. Some CPUs, such as the AMD SC300, may not initialize their
internal configuration registers to the values specified in the manuals. These registers, when left
uninitialized, can cause aberrant system operation in areas even unrelated to the registers’
functions.

The most common way to load these values is to establish a table with entries consisting of three
components each: the register index, the register contents, and a bitmask to mask the old
contents of the register before OR’ing in the new value.

17.2.5 Main POST Processing

Once the early initialization calls to BoardInit0 and BoardInit1 are performed, POST calls
many subroutines to initialize components necessary for the operation of DRAM. In order for
DRAM to work, power must have stabilized, a default addressing mode must have been
established in the chipset programming inside BoardInit1, and refresh must be active in some
form (either handled by the chipset programming in BoardInit1, or with an 8237 and an 8254).

Many other components are actually prepared in order to make this happen. For example, PORT
B on PC/AT class machines is initialized, as is the keyboard controller, I/O port 92h, and CMOS.
Once these components are ready, and DRAM is ready to be analyzed, control passes to
BoardMemConfig, which actually determines the geometry of DRAM.

17.2.6 BoardMemConfig Processing

This routine is called to determine the size, shape, configuration, and number of banks of DRAM
in the system, and to program the chipset to support the DRAM in that configuration. This is not
an easy job. Four elements conspire to make this task difficult: (1) there is no stack available for
PUSH, POP, CALL, or RET instructions, making it difficult to use only the CPU registers; (2)
the complexity of interpreting the chipset documentation, which may be in error and possibly

Chapter 17 EMBEDDED BIOS Adaptation Guide 517

General Software EMBEDDED BIOS Adaptation Guide

have published errata; (3) there are usually many possible configurations, a subset of which is
generally used in any given adaptation; and (4) the task usually involves switching to protected
mode and back to real mode again to inspect areas of memory, without any stack, using only
POSTCODECOM or I/O writes to a 7-segment display.

Some chipset vendors publish recommended algorithms for identifying banks of memory, and
for determining if a bank is EDO (Early Data Out) or not. These published algorithms are
frequently wrong and out-of-date. Fortunately, General Software works with the major
embedded chipset manufacturers to identify and test algorithms that work for specific board
designs. These algorithms are then provided in BPMs to General Software customers.

Note that this code is in the BPM, and not in the CSPM. One might think at first glance that the
chipset would be responsible for all memory initialization, but in actuality it is the way the
chipset is used and the way memory is wired to the chipset that determines how memory works,
and so the board is actually the best candidate for this code.

If you are writing a BoardMemConfig routine for a new board, it is best to survey available
BoardMemConfig code to determine if code similar to your needs has already been written, so
that it can be used as a base.

It should be noted that some implementors have chosen to place all of the chipset initialization
code, including the code that would normally be placed in this routine, in BoardInit1. This is
fine for many designs, and we must emphasize that these routines represent opportunities to fill-
in the blanks, rather than requirements that certain processing happen at a certain point during
POST.

17.2.7 Further POST Processing

Once DRAM is operational, POST initializes the remainder of the system components with the
luxury of a stack. This initialization includes enabling the cache, shadow memory, DMA
controllers, and interrupt controllers, until BoardInit4 is called.

17.2.8 BoardInit4 Processing

Routine BoardInit4 is called to allow the OEM to gain control shortly before the interrupt
vectors are established and the keyboard and video are initialized. This makes it possible for the
OEM to add proprietary code to the system that downloads firmware into the keyboard controller
or video controller. This routine is rarely used.

17.2.9 BoardInit6 Processing

Routine BoardInit6 is called after the keyboard and video controllers are initialized, including
VGA BIOS extensions, so that the OEM can gain control at the right time to determine if console
I/O should be diverted to a serial port.

Typically, this involves the testing of a bit in some I/O port to test for the presence of an RS-232
cable connection with a modem, or perhaps the existence of a jumper or shunt. Then, based on
the hardware finding, the code can issue an INT 15h function to switch console I/O to the
standard keyboard and screen, or a COM port. See Chapter 21 for details about this function.

518 EMBEDDED BIOS Adaptation Guide Chapter 17

General Software EMBEDDED BIOS Adaptation Guide

This routine may be used effectively for other purposes as well, but it is ideally positioned for
this particular purpose.

Because the code immediately after the call to BoardInit6 in POST calls the PRINTF formatting
package for output of the sign-on banner, code in BoardInit6 can use PRINTF macro calls, and
use the integrated debugger for debugging initialization of this routine or the rest of POST. To
break into the debugger in BoardInit6 or elsewhere following the call to BoardInit6, place an
“INT 3” instruction at the point where the debugger should break.

17.2.10 Device Initialization Processing

The remainder of POST focusses mostly on device initialization. After the banner is printed with
a call to PostPowerOnMsg, POST initializes the cache, tests low memory, tests extended
memory, tests the floppy disks, tests IDE drives, calls the ROM BIOS extensions, initializes the
printer ports, enables power management, and initializes the PS/2 mouse.

17.2.11 Final POST, BoardInit8 Processing

After all the hardware components have been initialized, POST transfers control to three major
components: SETUP, Manufacturing Mode, and the Operating System Loader. These
components only activate if system conditions dictate that they should be activated. For
example, to enter SETUP, a soft error should have been encountered, or the user must have
pressed or ^C during the memory count-up.

After SETUP and Manufacturing Mode have their chance to run, a call to BoardInit8 is made.
This routine’s purpose is to load the chipset and any Super I/O components with OEM-defined
CMOS settings. BoardInit8 does this by reading the unarchitected CMOS cells above the ones
normally reserved for the core BIOS, interpreting their contents, and setting chipset registers and
Super I/O registers to values that reflect the intent of the CMOS cell contents.

17.3 POST Codes

During the POST procedure, errors can be encountered. Errors can occur because peripherals are
incorrectly configured, or even because hardware is not working properly. During early phases
of POST, no video services are available. If available, the speaker is programmed to beep a
number of times to indicate problems during early POST.

After video services are available, POST uses INT 10h services to display error messages. For
example, when CMOS is corrupted or incorrectly configured for the hardware detected by the
BIOS, POST displays a message that explains the nature of the CMOS problem, and leads the
user to enter the Setup screen system.

POST uses writes to port 80h (or its equivalent, if this port is redefined by the OEM) to indicate
its progress. If a logic analyzer is available, the progress can be monitored. Use file
INC\POST.INC for the current POST codes.

17.3.1 Speaker POST Codes

Before video services are available, the following beep codes are used to indicate specific
problems during early POST. These codes are defined in the POSTERR.INC include file.

Chapter 17 EMBEDDED BIOS Adaptation Guide 519

General Software EMBEDDED BIOS Adaptation Guide

POST_BEEP_REFRESH = 1 ; memory refresh is not working.
POST_BEEP_PARITY = 2 ; parity error in 1st 64KB.
POST_BEEP_BASE64KB = 3 ; memory failure in 1st 64KB.
POST_BEEP_TIMER = 4 ; timer T1 not operational.
POST_BEEP_CPU = 5 ; CPU test failed.
POST_BEEP_GATEA20 = 6 ; gate A20 failure.
POST_BEEP_DMA = 7 ; DMA page/base registers.
POST_BEEP_VIDEO = 8 ; video error (nonfatal).
POST_BEEP_KEYBOARD = 9 ; keyboard failure.
POST_BEEP_SHUTDOWN = 10 ; CMOS shutdown register failed.
POST_BEEP_CACHE = 11 ; external cache is not working.
POST_BEEP_BOARD = 12 ; board initialization failure.
POST_BEEP_PASSWORD = 1 ; incorrect password.
POST_BEEP_LOWMEM = 13 ; exhaustive low memory test.
POST_BEEP_EXTMEM = 14 ; exhaustive extended memory test.
POST_BEEP_CMOS = 15 ; CMOS restart byte failed.
POST_BEEP_ADDRESS_LINE= 16 ; address line test failed.
POST_BEEP_DATA_LINE = 17 ; data line test failed.
POST_BEEP_INTERRUPT = 18 ; interrupt controller failure.

17.3.2 Video POST Messages

After video services are available, the following messages can be displayed during POST. Note
that some messages are status only, and others indicate errors. These messages are defined in the
POSTERR.INC include file.

; Good POST messages.

POST_MSG_PRESSDEL EQU ’Press to enter SETUP . . .’,0

POST_MSG_PLEASEWAIT EQU ’Please Wait . . .’,0

POST_MSG_BANNER1 EQU ’\r\r\r\r\rGeneral Software ’,0

POST_MSG_BANNER2 EQU ’ Embedded BIOS (tm) Version $u.$03u\n’,0

POST_MSG_BANNER3 EQU ’Copyr (C) 2000 General Software, Inc.\n’,0

POST_MSG_BANNER4 EQU ’For BIOS Licensing, call (800) 850-5755 ...\n’,0

; Bad POST messages.

POST_MSG_CMOS EQU ’CMOS failure’,0

POST_MSG_GATEA20 EQU ’Gate A20 failure’,0

POST_MSG_DMA EQU ’DMA failure’,0

POST_MSG_FDD EQU ’Floppy controller failure’,0

POST_MSG_HDD EQU ’Hard disk controller failure’,0

POST_MSG_INT EQU ’Interrupt controller failure’,0

POST_MSG_PARITY EQU ’Memory parity error’,0

POST_MSG_ADDRLINE EQU ’Address line short’,0

POST_MSG_CACHE EQU ’Cache memory failure’,0

POST_MSG_TIMER EQU ’Timer failure’,0

POST_MSG_CMOSBATTERY EQU ’CMOS battery low’,0

POST_MSG_CMOSCKSUM EQU ’CMOS checksum lost’,0

POST_MSG_CMOSNOTSET EQU ’CMOS options not set’,0

POST_MSG_CMOSDISPLAY EQU ’CMOS display type mismatch’,0

POST_MSG_CMOSMEMORY EQU ’CMOS memory size mismatch’,0

POST_MSG_CMOSTIME EQU ’CMOS time/date not set’,0

POST_MSG_DISKBOOT EQU ’Diskette boot failure’,0

POST_MSG_DISPSWITCH EQU ’Display switch not set properly’,0

520 EMBEDDED BIOS Adaptation Guide Chapter 17

General Software EMBEDDED BIOS Adaptation Guide

POST_MSG_INVBOOTDISK EQU ’Invalid boot diskette’,0

POST_MSG_KBDLOCKED EQU ’Keyboard is locked’,0

POST_MSG_KEYBOARD EQU ’Keyboard failure’,0

POST_MSG_NOBOOT EQU ’No bootable media’,0

POST_MSG_LPT1 EQU ’LPT1 initialization failure’,0

POST_MSG_LPT2 EQU ’LPT2 initialization failure’,0
POST_MSG_LPT3 EQU ’LPT3 initialization failure’,0

POST_MSG_BOARD EQU ’Board configuration problem’,0
POST_MSG_CHIPSET EQU ’Chipset configuration problem’,0
POST_MSG_CPU EQU ’CPU configuration problem’,0

Chapter 18 EMBEDDED BIOS Adaptation Guide 521

General Software EMBEDDED BIOS Adaptation Guide

Chapter 18

CPU PERSONALITY MODULES

EMBEDDED BIOS has a flexible, scalable architecture that enables it to support a wide
spectrum of CPUs, from low-end 186-class microcontrollers to high-end Pentium and P6 CPUs,
especially those CPUs with integrated peripheral controllers.

While the mainstream CPUs don’t contain peripherals such as UARTs, DMA controllers,
interrupt controllers, and DRAM refresh controllers, CPUs aimed at the embedded and consumer
electronics markets do have extra logic. This logic must be initialized and configured, and the
code required to do this is different for each CPU type.

The EMBEDDED BIOS core does not contain any CPU-specific code that deals with these
peripheral controllers, but instead contains call-outs to a special module, called a CPU
Personality Module (CPM), that contains the CPU-specific code.

The CPU class for a given BIOS build is selected with the CPUCLASS parameter in the project
file. For systems with CPUs that have no integrated nonstandard controllers, the NOCPU CPU
class is used. This includes generic 8086, 80286, 386, 486 CPUs; Intel Pentium, Pentium II,
Pentium III, and Celeron processors; AMD K6, K6-2, K6-3, K6-E, and Athlon processors; and
other compatible processors.

Intel’s 80186-EC and 80386-EX CPUs, and AMD’s Am186xx CPUs are examples of high-
integration CPUs that are best supported with the CPM model.

Some CPUs with high integration are actually more chipset-like than they are CPU-like.
Examples include AMD’s SC300, SC400, and SC520 family of processors; Ali’s M6117, and
STMicroelectronics’ STPC. These chips are best supported with the NOCPU CPU class, and
then with Chipset Personality Modules (CSPMs), a topic of Chapter 19, and Board Personality
Modules (BPMs), a topic of Chapter 20.

This chapter describes how CPMs fit into the EMBEDDED BIOS build, and the details of the
CPM interface called by the core EMBEDDED BIOS code that supports different classes of
CPUs.

18.1 How CPM Override Routines Work

522 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

The EMBEDDED BIOS build links together many modules that implement BIOS services,
hardware managers, and function redirectors. Additionally, the module CPU.ASM in the SYSTEM
directory is assembled and linked into the system build.

Actually, the CPU.ASM module is a shell that uses assembly INCLUDE statements to include the
CPM selected with the CPUCLASS parameter in the Project file. The CPU.ASM module also
contains default versions of the CPM routines, should the CPM only have a few routines defined.
Thus, a CPM may be comprised of zero, any, or all, of the routines documented later in this
chapter. The routines defined in a CPM are called override routines, and have the special
“OVERRIDE” parameter in their DefProc or DefRtn procedure definition MACROs.

The NOCPU CPM is an excellent example of this default system in action. The NOCPU CPM
contains no routines at all, so that when NOCPU is selected as the CPUCLASS parameter value,
all of the default routines are used.

On the other hand, the TEMPLATE CPM is an excellent example of the reverse. This module
is an example of a CPM that has all of the routines defined, although they happen to contain
exactly the same code that the default routines do. The intent of providing this CPM with
EMBEDDED BIOS is to enable the OEM to simply clone the TEMPLATE CPM, change
routines that are necessary, and then delete the ones that go unchanged. This facilitates rapid
development of new CPMs in the OEM environment.

18.2 How CPMs are Packaged in Files

From a project-management point of view, a CPM consists of at least two files; one is an .ASM
file that contains the routines provided by the OEM that override the default CPM functions, and
the other is an .INC file that contains manifest constants, macro definitions, and other definitions
needed by the CPM, and possibly by the BPM under certain circumstances.

All CPMs have a name (from 1 to 8 filename characters), and the .ASM and .INC files must
carry this name. For example, the NOCPU CPM consists of a NOCPU.ASM file and a NOCPU.INC
file.

Each CPM’s files are contained within a subdirectory of the CPUS directory. The subdirectory
must have the same name as the CPM. For example, if the BIOS main directory is C:\BIOS43,
then the NOCPU CPM’s files would be contained in the C:\BIOS43\CPUS\NOCPU directory.

Additional source files may be located in the CPM’s subdirectory, but it is up to the OEM to
define their contents and ensure that they are assembled as a part of the BIOS build. It is
recommended that no core BIOS files be modified to include these sources; instead, it is a good
idea to include them with INCLUDE statements in the CPM’s .ASM file.

18.3 Other CPU Personality Modules

If you don't want to write your own personality module for a new CPU, it may actually already
be available through General Software. For example, the Intel 80186-EC and 80C386-EX CPUs
and AMD Am186 CPUs are supported with separate CPMs available from General Software
(contact General Software for more information).

18.4 The CPM Interface

Chapter 18 EMBEDDED BIOS Adaptation Guide 523

General Software EMBEDDED BIOS Adaptation Guide

All CPM implementations export the same set of functions callable from the core system BIOS.
This section documents the functions that must be implemented in a CPM.

Be careful to define the proper function type when creating new CPMs. Some CPM functions
are written as coroutines, using the DefRtn/EndRtn macros. Others are written as procedures,
using the DefProc/EndProc macros. If these are confused, there will be errors during the link of
the system BIOS.

Unless otherwise specified, routines always return to their caller, and do not modify any register
contents. The CPU flags may be destroyed by CPM functions, except that the carry flag is
normally used to indicate success if clear, or failure if false. Other flags, such as the zero flag,
are destroyed at random by the functions. The direction flag, however, must be preserved.

Functions declared as coroutines cannot modify the BP CPU register, as it is used for return
linkage. If they must use BP because they need to call another coroutine as a subroutine, then BP
can be placed into another register to save the original return address.

Some functions are entered with the interrupt flag cleared (disallowing interrupts). These
functions cannot enable interrupts for any reason, as they are used at times when interrupt
management has not been established. Other functions are entered with a random interrupt flag
as the context dictates. In this case, the routine can manipulate the interrupt flag if it wishes.
Unless otherwise specified, a routine may modify the IF flag, but must restore it to its original
state.

18.4.1 CpuBeep Routine

The CpuBeep function is called with routine linkage to cause the speaker to start or stop
beeping.

If no hardware is available in the CPU, then this function should return with the carry flag clear.

This routine will be called OPTION_SUPPORT_SOUND is enabled; and then if
OPTION_SOUND_CPU enabled, or if OPTION_SOUND_BOARD is enabled and
BoardBeep calls this routine.

If the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation.

Input Parameters:

AL - 1 to enable tone, 0 to disable tone.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

AX, CX, DX, Flags.

524 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

18.4.2 CpuDisableA20 Hybrid

The CpuDisableA20 function is called with hybrid (dual) linkage to disable the A20 line gate
hardware on-board the CPU, if it exists. Normally, the A20 gate on 80286 and above CPUs is
provided by external components, such as the 8042 keyboard controller, port 92h, or the chipset.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
disabled.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify
BP or use any RAM while inside this function, as it may be called during a period of time where
DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_A20_CPU enabled, or if OPTION_A20_BOARD is
enabled and BoardDisableA20 calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

18.4.3 CpuDisableCache Procedure

The CpuDisableCache function is called with procedure linkage to disable the L1 cache
hardware on-board the CPU, if it exists. Intel i486 and Pentium CPUs have on-board caches that
significantly improve performance when this feature is implemented.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
disabled.

This routine will be called if OPTION_SUPPORT_CACHE is enabled; and then if
OPTION_CACHE_CPU enabled, or if OPTION_CACHE_BOARD is enabled and
BoardDisableCache calls this routine.

Input Parameters:

None.

Chapter 18 EMBEDDED BIOS Adaptation Guide 525

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All.

18.4.4 CpuDisableDmaCtrl Routine

The CpuDisableDmaCtrl function is called with routine linkage to disable the integrated DMA
controller hardware on-board the CPU, if it exists. Disabling means to reset the controller so that
no DMA processes are running after the routine returns to its caller.

If no DMA controller hardware is available in the CPU, then this function should return with the
carry flag clear. If the hardware exists, then this routine returns with the carry flag set if the
hardware cannot be disabled.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_DMA_CPU enabled, or if OPTION_DMA_BOARD is
enabled and BoardDisableDmaCtrl calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.5 CpuDisableIntCtrl Hybrid

The CpuDisableIntCtrl function is called with hybrid (dual) linkage to disable the integrated
interrupt controller hardware on-board the CPU, if it exists. Disabling in this context means to
cause the interrupt control to reset to the condition where there are no pending interrupts to be
serviced, and no interrupt levels enabled (or unmasked) upon return from this routine.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
disabled.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify
BP or use any RAM while inside this function, as it may be called during a period of time where

526 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_INT_CPU enabled, or if OPTION_INT_BOARD is
enabled and BoardDisableIntCtrl calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

18.4.6 CpuDisableWatchdog Procedure

The CpuDisableWatchdog function is called with procedure linkage to disable the integrated
watchdog timer controller hardware on-board the CPU, if it exists. Disabling in this context
means to cause the watchdog timer to stop running, so that it will not possibly expire without
restarting it.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
disabled.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG is enabled; and then if
OPTION_WATCHDOG_CPU enabled, or if OPTION_WATCHDOG_BOARD is enabled
and BoardDisableWatchdog calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

18.4.7 CpuEnableA20 Hybrid

Chapter 18 EMBEDDED BIOS Adaptation Guide 527

General Software EMBEDDED BIOS Adaptation Guide

The CpuEnableA20 function is called with hybrid (dual) linkage to enable the A20 line gate
hardware on-board the CPU, if it exists. Normally, the A20 gate on 80286 and above CPUs is
provided by external components, such as the 8042 keyboard controller, port 92h, or the chipset.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
enabled.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify
BP or use any RAM while inside this function, as it may be called during a period of time where
DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_A20_CPU enabled, or if OPTION_A20_BOARD is
enabled and BoardEnableA20 calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

18.4.8 CpuEnableCache Procedure

The CpuEnableCache function is called with procedure linkage to enable the L1 cache
hardware on-board the CPU, if it exists. Intel i486 and Pentium CPUs have on-board caches that
significantly improve performance when this feature is implemented.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
enabled.

This routine will be called if OPTION_SUPPORT_CACHE is enabled; and then if
OPTION_CACHE_CPU enabled, or if OPTION_CACHE_BOARD is enabled and
BoardEnableCache calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

528 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

All.

18.4.9 CpuEnableApm Procedure

The CpuEnableApm function is called during POST with procedure linkage to enable whatever
APM functionality is available in the CPU.

This routine will be called if OPTION_SUPPORT_APM is enabled; and then if
OPTION_POWERMAN_CPU enabled.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

All.

18.4.10 CpuEnableDmaCtrl Routine

The CpuEnableDmaCtrl function is called with routine linkage to enable the integrated DMA
controller hardware on-board the CPU, if it exists. Enabling means to cause the DMA controller
to be ready to accept a programming sequence for a DMA operation. This routine is provided for
symmetry with CpuDisableDmaCtrl, and is rarely used.

If no DMA controller hardware is available in the CPU, then this function should return with the
carry flag clear. If the hardware exists, then this routine returns with the carry flag set if the
hardware cannot be enabled.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_DMA_CPU enabled, or if OPTION_DMA_BOARD is
enabled and BoardEnableDmaCtrl calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Chapter 18 EMBEDDED BIOS Adaptation Guide 529

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

All but BP, including SS.

18.4.11 CpuEnableIntCtrl Hybrid

The CpuEnableIntCtrl function is called with hybrid (dual) linkage to enable the integrated
interrupt controller hardware on-board the CPU, if it exists. Enabling in this context means to
cause the interrupt controller to be ready to receive unmask or EOI commands and handle
interrupts from that point forward. This routine is rarely used, but is provided for symmetry with
CpuDisableIntCtrl.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
enabled.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify
BP or use any RAM while inside this function, as it may be called during a period of time where
DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_INT_CPU enabled, or if OPTION_INT_BOARD is
enabled and BoardEnableIntCtrl calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

18.4.12 CpuEnableWatchdog Procedure

The CpuEnableWatchdog function is called with procedure linkage to enable the integrated
watchdog timer controller hardware on-board the CPU, if it exists. Enabling in this context
means to start the watchdog timer running, so that if the timer is not reset within one expiration
period, the timer will expire.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
enabled.

530 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG is enabled; and then if
OPTION_WATCHDOG_CPU enabled, or if OPTION_WATCHDOG_BOARD is enabled
and BoardEnableWatchdog calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

18.4.13 CpuEoi Procedure

The CpuEoi function is called with procedure linkage to issue an "end-of-interrupt" command to
the on-board CPU interrupt controller. CPUs such as 80186 and 80386-EX have on-board
programmable interrupt controllers that must be reset after an interrupt is processed.

This routine will be called if OPTION_INT_CPU enabled, or if OPTION_INT_BOARD is
enabled and BoardEoi calls this routine.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

None, NOT EVEN FLAGS.

18.4.14 CpuExtRwCtrl Procedure

The CpuExtRwCtrl function is called with procedure linkage to read from or write to the
modem control register associated with an on-board serial port, if CPU-integrated serial port
hardware exists.

If no hardware is available in the CPU, then this function should return with the carry flag set. If
the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation.

Chapter 18 EMBEDDED BIOS Adaptation Guide 531

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

DX - serial port to read/write, as follows:

01h - first CPU port.
02h - second CPU port.
03h - third CPU port.
04h - fourth CPU port.

AL - subfunction code, as follows:

00h - read control register.
01h - write control register.

BL - if writing, this is the value to write.

DI - timeout in 18.2 Hz ticks to use for the operation.

Output Parameters:

CY - set if failure, else clear if success.
BL - control register data, as follows:

bits 7,6,5 - reserved.
bit 4 - loop for testing if set.
bit 3 - OUT2.
bit 2 - OUT1.
bit 1 - request to send.
bit 0 - data terminal ready.

Unpreserved Registers:

Flags.

18.4.15 CpuFloppyDma Procedure

The CpuFloppyDma function is called with procedure linkage to program the CPU DMA
controller to perform a DMA operation for floppy disk I/O. Typically, this routine sets the AL
register to the proper DMA channel for floppy disk DMA, and calls CpuSetupDma, although
other actions, such as enabling package pins on high-integration CPUs, may be necessary.

If on-board DMA hardware is not available, this routine should return with carry set. Otherwise,
it should perform the operation and return with carry clear if the operation was successful, or set
if the DMA operation failed.

This routine will be called if OPTION_SUPPORT_FLOPPY and OPTION_FLOPPY_DMA
are enabled; and then if OPTION_DMA_CPU enabled, or if OPTION_DMA_BOARD is
enabled and BoardFloppyDma calls this routine.

Input Parameters:

532 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

DX:BX - 32-bit linear address of buffer.
CX - 16-bit byte count for transfer.
AH - DMA operation code, as follows:

00h - DMA to memory from I/O (read).
01h - DMA from memory to I/O (write/format).
02h - DMA from I/O, no memory (verify).

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

AX, BX, CX, DX, Flags.

18.4.16 CpuGetProcessorName Procedure

The CpuGetProcessorName function is called with procedure linkage to return a pointer to an
ASCIIZ string that corresponds to the type of CPU running in the target.

The default NOCPU module uses Intel-based names, such as 80386, 80486, Pentium, Pentium
II, and so on, for its processor name table. For other processor names, separate CPU modules
should be used with different strings in the processor table.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.
CS:AX - if successful, 16:16 pointer to ASCIIZ CPU name.

Unpreserved Registers:

All but SS, SP.

18.4.17 CpuGetProcessorType Procedure

The CpuGetProcessorType function is called with procedure linkage to return an ordinal
number that specifies what type of CPU is running in the target, as well as the model number if
applicable.

As an implementation caution, the adaptation engineer is advised that the techniques used in the
NOCPU CPM to implement this function will not port to the NEC V-Series CPU line, since the
NOCPU tests rely on side-effects of instructions that may be implemented differently by NEC.

Chapter 18 EMBEDDED BIOS Adaptation Guide 533

General Software EMBEDDED BIOS Adaptation Guide

The techniques used in the default NOCPU CPM use instructions that are supported at the level
indicated by the CPU_TYPE configuration parameter.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.
AX - if successful, processor ordinal as follows:

0000h - Intel 8086 or compatible.
0001h - Intel 80186 or compatible.
0002h - Intel 80286 or compatible.
0003h - Intel 80386 or compatible.
0004h - Intel i486, 4x86, MediaGX or compatible.
0005h - Intel Pentium, MediaGX MMX, 5x86, 6x86, or compatible.
0006h - Intel Pentium II, Pentium III, Celeron, 6x86MX, K6, etc.

BX - if successful, processor model, or FFFFh if no step available.

Unpreserved Registers:

All but SS, SP.

18.4.18 CpuHookVectors Procedure

The CpuHookVectors function is called with procedure linkage to re-vector any interrupt
vectors that need to e changed to support this CPU. For example, the 80C186-EC module gets
timer ticks through INT 76h, and calls the Int08Isr routine manually from there with an INT 08h
instruction.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

All.

18.4.19 CpuInit0 Routine

534 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

The CpuInit0 function is normally called with routine linkage to perform very early
initialization of the CPU, including participating in the decision about whether a warm boot or a
cold boot has occurred.

Called from BoardInit0, this function accepts as a parameter in the SP register a value of 0 if a
cold boot has occurred, or -1 if the BPM has determined that a warm boot may have occurred. If
this routine determines that a cold boot has occurred, then it sets SP to 0. Similarly, if it
determines that a warm boot may have occurred, then it sets SP to -1. If it has no additional
information to provide POST during the boot detection process, then it does not change SP.

Commonly, this routine is also used by 186-class CPMs to initialize the chip selects so that the
entire BIOS ROM image is visible in the address space.

This routine is entered with interrupts disabled and cannot enable them.

The implementor of routine BoardInit0 may choose to handle initialization of the CPU in the
BPM; consequently, this routine may not be called in some adaptations.

Input Parameters:

DS - BIOS data segment (40h).
SP - 0 if BPM detects cold boot, else -1 if possible warm boot.

Output Parameters:

DS - BIOS data segment (40h).
SP - 0 if CPM detects cold boot, else -1 if possible warm boot.

Unpreserved Registers:

All but DS, BP, including SS.

18.4.20 CpuInit1 Routine

The CpuInit1 function is called with routine linkage to perform the bulk of initialization of the
CPU, particularly related to the initialization of high-integration CPU’s DRAM controller, bus
clocking, internal peripherals, and other functions.

Called from BoardInit1, this function typically loads the CPU with default operating values that
can then be changed by the BPM’s BoardInit1 routine after the call to CpuInit1 has returned.

This routine is entered with interrupts disabled and cannot enable them.

The implementor of routine BoardInit1 may choose to handle initialization of the CPU in the
BPM; consequently, this routine may not be called in some adaptations.

Input Parameters:

DS - BIOS data segment (40h).

Output Parameters:

Chapter 18 EMBEDDED BIOS Adaptation Guide 535

General Software EMBEDDED BIOS Adaptation Guide

CY - set if failure, else clear if success.
DS - BIOS data segment (40h).

Unpreserved Registers:

All but DS, BP, including SS.

18.4.21 CpuInitDma Routine

The CpuInitDma function is called with routine linkage to test and initialize the integrated
DMA controller hardware on-board the CPU, and to return a status that indicates whether there
are any failures in the hardware.

If no DMA controller hardware is available in the CPU, or if the adaptation engineer does not
wish to test the hardware, then this function should return with the carry flag clear. If the
hardware tested and initialized properly, then this routine returns with the carry flag clear if the
hardware is found to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_DMA_CPU enabled, or if OPTION_DMA_BOARD is
enabled and BoardInitDmaCtrl calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.22 CpuInitIntCtrl Routine

The CpuInitIntCtrl function is called with routine linkage to test and initialize the integrated
interrupt controller hardware on-board the CPU, and to return a status that indicates whether
there are any failures in the hardware.

If no interrupt controller hardware is available in the CPU, or if the adaptation engineer does not
wish to test the hardware, then this function should return with the carry flag clear. If the
hardware tested and initialized properly, then this routine returns with the carry flag clear if the
hardware is found to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

536 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

This routine will be called if OPTION_INT_CPU enabled, or if OPTION_INT_BOARD is
enabled and BoardInitIntCtrl calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.23 CpuInitParallel Routine

The CpuInitParallel function is called with routine linkage to test and initialize parallel I/O
hardware on-board the CPU, and to return a status that indicates whether there are any failures in
the hardware.

If no parallel port hardware is available in the CPU, or if the adaptation engineer does not wish to
test the hardware, then this function should return with the carry flag clear. If the hardware
tested and initialized properly, then this routine returns with the carry flag clear if the hardware is
found to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_PARALLEL_CPU enabled.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.24 CpuInitRefresh Routine

The CpuInitRefresh function is called with routine linkage to test and initialize the integrated
DRAM refresh controller hardware on-board the CPU, and to return a status that indicates
whether there are any failures in the hardware.

Chapter 18 EMBEDDED BIOS Adaptation Guide 537

General Software EMBEDDED BIOS Adaptation Guide

If no refresh controller hardware is available in the CPU, or if the adaptation engineer does not
wish to test the hardware, then this function should return with the carry flag clear. If the
hardware tested and initialized properly, then this routine returns with the carry flag clear if the
hardware is found to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_REFRESH_CPU is enabled; or
OPTION_REFRESH_BOARD is enabled and routine BoardInitRefresh calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.25 CpuInitSerBios Procedure

The CpuInitSerBios function is called with procedure linkage during POST to initialize the on-
board serial port hardware, if available. CPUs such as 80186 and 80386-EX have on-board
programmable serial ports that are initialized when the BIOS calls this function. This call occurs
after the standard 8250-compatible UARTs have been initialized by POST, so that the standard
UARTs have lower-numbered COM port assignments than the CPU UARTs.

If on-board serial port hardware is not available, this routine should return with carry clear.
Otherwise, it should initialize the hardware and return with carry clear if the operation was
successful, or carry set if the hardware could not be initialized.

This routine will be called if OPTION_SUPPORT_SERIAL and OPTION_SERIAL_CPU
are enabled.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

538 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

18.4.26 CpuInitSerial Routine

The CpuInitSerial function is called with routine linkage to test and initialize asynchronous I/O
hardware on-board the CPU, and to return a status that indicates whether there are any failures in
the hardware.

If no asynchronous serial ports hardware is available in the CPU, or if the adaptation engineer
does not wish to test the hardware, then this function should return with the carry flag clear. If
the hardware tested and initialized properly, then this routine returns with the carry flag clear if
the hardware is found to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_SERIAL and OPTION_SERIAL_CPU
are enabled.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.27 CpuInitTimer Routine

The CpuInitTimer function is called with routine linkage to test and initialize (i.e., start
running) any internal timers located within the CPU, and to return a status that indicates whether
there are any failures in the timer hardware.

If no timers are available in the CPU, or if the adaptation engineer does not wish to test the
timers, then this function should return with the carry flag clear. If timers are tested and initialize
properly, then this routine returns with the carry flag clear if the timers are operational, or set if
they fail the test.

This function should not make a decision about whether the CPU’s timers will be used over
external hardware. All policy decisions are made before this function is called in the core system
BIOS.

This function may need to interact with the CpuHookVectors function, so that the appropriate
timers can be routed to ISA-standard interrupt vectors, as on-board timers are usually hardwired
to nonstandard interrupt assignments.

This routine is entered with interrupts disabled and cannot reenable them.

Chapter 18 EMBEDDED BIOS Adaptation Guide 539

General Software EMBEDDED BIOS Adaptation Guide

This routine will be called if OPTION_TIMER_CPU is enabled, or if
OPTION_TIMER_BOARD is enabled and BoardInitTimer calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.28 CpuInitWatchdog Routine

The CpuInitWatchdog function is called with routine linkage to test and initialize the watchdog
timer hardware on-board the CPU, and to return a status that indicates whether there are any
failures in the watchdog timer hardware.

If no watchdog timer is available in the CPU, or if the adaptation engineer does not wish to test
the hardware, then this function should return with the carry flag clear. If the hardware tested
and initialized properly, then this routine returns with the carry flag clear if the hardware is found
to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG is enabled; and then if
OPTION_WATCHDOG_CPU is enabled, or if OPTION_WATCHDOG_BOARD is enabled
and BoardInitWatchdog calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.29 CpuKickWatchdog Procedure

The CpuKickWatchdog function is called with procedure linkage to restart the integrated
watchdog timer controller hardware on-board the CPU, if it exists. Restarting causes the timer to
be reloaded, so that it will take the entire expiration period for the timer to expire.

540 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
restarted.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG is enabled; and then if
OPTION_WATCHDOG_CPU is enabled, or if OPTION_WATCHDOG_BOARD is enabled
and BoardKickWatchdog calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

18.4.30 CpuPwrLvl Procedure

The CpuPwrLvl function is called with procedure linkage to notify the CPU of a change in
power state in the system. This function is called by the Power Management Subsystem in the
core BIOS, when the Cpu device is enabled in the POWER_DEVID device tree.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation.

This routine is called if OPTION_SUPPORT_POWERMAN is enabled; and then
OPTION_POWERMAN_CPU is enabled and the Cpu device is in the device tree.

Input Parameters:

DS - segment of the extended BIOS data area (EBDA).
BX - device index of the CPU itself.
CL - new power level.
CH - old power level.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

DS, BX, CL, Flags.

Chapter 18 EMBEDDED BIOS Adaptation Guide 541

General Software EMBEDDED BIOS Adaptation Guide

18.4.31 CpuSerGetCh Procedure

The CpuSerGetCh function is called with procedure linkage to read a character from an on-
board serial port, if CPU-integrated serial port hardware exists. If the specified amount of time
passes before a character can be read from the serial port, then this routine returns failure by
setting the CY flag.

If no hardware is available in the CPU, then this function should return with the carry flag set. If
the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation within the specified interval of time.

This routine will be called if OPTION_SUPPORT_SERIAL and OPTION_SERIAL_CPU
are enabled.

Input Parameters:

DX - port to read from, as follows:

01h - first CPU port.
02h - second CPU port.
03h - third CPU port.
04h - fourth CPU port.

DI - timeout in 18.2 Hz ticks to use for the operation.

Output Parameters:

CY - set if failure, else clear if success.
AL - if success, character read from port.

Unpreserved Registers:

Flags.

18.4.32 CpuSerGetStatus Procedure

The CpuSerGetStatus function is called with procedure linkage to read the status of an on-board
serial port, if CPU-integrated serial port hardware exists.

If no hardware is available in the CPU, then this function should return with the carry flag set. If
the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation.

This routine will be called if OPTION_SUPPORT_SERIAL and OPTION_SERIAL_CPU
are enabled.

Input Parameters:

542 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

DX - port to read status from, as follows:

01h - first CPU port.
02h - second CPU port.
03h - third CPU port.
04h - fourth CPU port.

DI - timeout in 18.2 Hz ticks to use for the operation.

Output Parameters:

CY - set if failure, else clear if success.
AH - if success, line status register in 8250 format.
AL - if success, modem status register in 8250 format.

Unpreserved Registers:

Flags.

18.4.33 CpuSerInit Procedure

The CpuSerInit function is called with procedure linkage to initialize the communications
parameters associated with an on-board serial port, if CPU-integrated serial port hardware exists.

If no hardware is available in the CPU, then this function should return with the carry flag set. If
the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation.

This routine will be called if OPTION_SUPPORT_SERIAL and OPTION_SERIAL_CPU
are enabled.

Input Parameters:

DX - port to initialize, as follows:

01h - first CPU port.
02h - second CPU port.
03h - third CPU port.
04h - fourth CPU port.

AL - Serial port initialization parameters:

bbb00000b - Baud rate, as follows:

000b - 110 baud.
001b - 150 baud.
010b - 300 baud.
011b - 600 baud.
100b - 1200 baud.
101b - 2400 baud.

Chapter 18 EMBEDDED BIOS Adaptation Guide 543

General Software EMBEDDED BIOS Adaptation Guide

110b - 4800 baud.
111b - 9600 baud.

000pp000b - Parity, as follows:

00b - No parity.
01b - Odd parity.
10b - No parity.
11b - Even parity.

00000s00b - Stop bits, as follows:

0b - One stop bit.
1b - Two stop bits.

00000011b - Data bits, as follows:

10b - 7 data bits.
11b - 8 data bits.

DI - timeout in 18.2 Hz ticks to use for the operation.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

18.4.34 CpuSerInitExt Procedure

The CpuSerInitExt function is called with procedure linkage to perform an extended initialize
with communications parameters associated with an on-board serial port, if CPU-integrated serial
port hardware exists.

If no hardware is available in the CPU, then this function should return with the carry flag set. If
the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation.

This routine will be called if OPTION_SUPPORT_SERIAL and OPTION_SERIAL_CPU
are enabled.

Input Parameters:

DX - port to initialize, as follows:

01h - first CPU port.
02h - second CPU port.
03h - third CPU port.

544 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

04h - fourth CPU port.

AL - 00h if no break signal, 01h if break signal.
BH - Parity, as follows:

00h - no parity.
01h - odd parity.
02h - even parity.
03h - stick parity odd.
04h - stick parity even.

BL - Stop bits, as follows:

00h - 1 stop bit.
01h - 2 stop bits if data length is 6, 7, or 8 bits.
02h - 1.5 stop bits if data length is 5 bits.

CH - Data length, as follows:

00h - 5 bits.
01h - 6 bits.
02h - 7 bits.
03h - 8 bits.

CL - Baud rate, as follows:

00h - 110 baud.
01h - 150 baud.
02h - 300 baud.
03h - 600 baud.
04h - 1200 baud.
05h - 2400 baud.
06h - 4800 baud.
07h - 9600 baud.
08h - 19.2 kbaud.
09h - 38.4 kbaud.
0ah - 56 kbaud.
0bh - 115 kbaud.

DI - timeout in 18.2 Hz ticks to use for the operation.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

18.4.35 CpuSerPutCh Procedure

Chapter 18 EMBEDDED BIOS Adaptation Guide 545

General Software EMBEDDED BIOS Adaptation Guide

The CpuSerPutCh function is called with procedure linkage to write a character to an on-board
serial port, if CPU-integrated serial port hardware exists.

If no hardware is available in the CPU, then this function should return with the carry flag set. If
the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation within the specified interval of time.

This routine will be called if OPTION_SUPPORT_SERIAL and OPTION_SERIAL_CPU
are enabled.

Input Parameters:

AL - character to write.
DX - port to write to, as follows:

01h - first CPU port.
02h - second CPU port.
03h - third CPU port.
04h - fourth CPU port.

DI - timeout in 18.2 Hz ticks to use for the operation.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

18.4.36 CpuSetFastSpeed Procedure

The CpuSetFastSpeed function is called with procedure linkage to switch the CPU clocking to
the highest speed supported by the hardware, if speed-switching hardware exists.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
programmed.

This routine is called if OPTION_SPEED_CPU is enabled; or OPTION_SPEED_BOARD is
enabled and BoardSetFastSpeed calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

546 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

Flags.

18.4.37 CpuSetSlowSpeed Procedure

The CpuSetSlowSpeed function is called with procedure linkage to switch the CPU clocking to
the slowest speed supported by the hardware, if speed-switching hardware exists.

If no hardware is available in the CPU, then this function should return with the carry flag clear.
If the hardware exists, then this routine returns with the carry flag set if the hardware cannot be
programmed.

This routine is called if OPTION_SPEED_CPU is enabled; or OPTION_SPEED_BOARD is
enabled and BoardSetSlowSpeed calls this routine.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

18.4.38 CpuStartDma Procedure

The CpuStartDma function is called with procedure linkage to program the CPU DMA
controller to perform a DMA operation, if available. CPUs such as 80186 and 80386-EX have
on-board programmable DMA controllers that are started when the BIOS calls this function.

If on-board DMA hardware is not available, this routine should return with carry set. Otherwise,
it should perform the operation and return with carry clear if the operation was successful, or set
if the DMA operation failed.

This function is not called to perform floppy disk I/O directly; instead, routine
BoardFloppyDma is called by the core BIOS, which calls CpuFloppyDma, and that routine
ultimately calls this one.

This routine is called if OPTION_SUPPORT_FLOPPY and OPTION_FLOPPY_DMA are
enabled; and then if OPTION_DMA_CPU is enabled and CpuFloppyDma calls this routine, or
OPTION_DMA_BOARD is enabled and BoardStartDma calls this routine.

Input Parameters:

Chapter 18 EMBEDDED BIOS Adaptation Guide 547

General Software EMBEDDED BIOS Adaptation Guide

DX:BX - 32-bit linear address of buffer.
CX - 16-bit byte count for transfer.
AH - DMA operation code, as follows:

00h - DMA to memory from I/O (read).
01h - DMA from memory to I/O (write/format).
02h - DMA from I/O, no memory (verify).

AL - DMA channel (0-3).

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

AX, BX, CX, DX, Flags.

18.4.39 CpuTestSyncIo Routine

The CpuTestSyncIo function is called with routine linkage to test the integrity of any
synchronous I/O hardware on-board the CPU, and to return a status that indicates whether there
are any failures in the hardware.

If no synchronous I/O unit is available in the CPU, or if the adaptation engineer does not wish to
test the hardware, then this function should return with the carry flag clear. If the hardware
tested, then this routine returns with the carry flag clear if the hardware is found to be
operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

18.4.40 CpuUnmaskInt Procedure

The CpuUnmaskInt function is called with procedure linkage to enable a specific interrupt level
at the CPU interrupt controller. CPUs such as 80186 and 80386-EX have on-board
programmable interrupt controllers that must be programmed to enable interrupts from specific
devices, each assigned a level.

548 EMBEDDED BIOS Adaptation Guide Chapter 18

General Software EMBEDDED BIOS Adaptation Guide

This routine will be called if OPTION_INT_CPU enabled, or if OPTION_INT_BOARD is
enabled and BoardUnmaskInt calls this routine.

Input Parameters:

AL - interrupt vector level to initialize, as follows:

00h - IRQ0, or INT 08h.
01h - IRQ1, or INT 09h.
02h - IRQ2, or INT 0ah.
03h - IRQ3, or INT 0bh.
04h - IRQ4, or INT 0ch.
05h - IRQ5, or INT 0dh.
06h - IRQ6, or INT 0eh.
08h - IRQ7, or INT 0fh.

Output Parameters:

None.

Unpreserved Registers:

Flags.

Chapter 19 EMBEDDED BIOS Adaptation Guide 549

General Software EMBEDDED BIOS Adaptation Guide

Chapter 19

CHIPSET PERSONALITY MODULES

EMBEDDED BIOS has a flexible, scalable architecture that enables it to support a wide
spectrum of chipsets, the hardware glue that binds the major building blocks in virtually every
desktop PC design, and many embedded designs. Typically consisting of one or two large
packages of VLSI, they may contain bus control logic, a few UARTs, DMA controllers, interrupt
controllers, a counter-timer unit, DRAM refresh controller, floppy disk controller, and other
functional items like wait state generators.

Commonly, chipsets consist of Northbridge and Southbridge components. The Northbridge
component normally handles communication with high-bandwidth devices, such as DRAM, PCI
and other high-performance busses, and bridges to other devices, such as AGP.

Southbridge components normally deal with slower legacy functions, such as the ISA bus, port
92h, as well as ISA legacy controllers such as the 8259s, 8237As, 8254s, and so on. Southbridge
components may include a keyboard controller (8042), Floppy Disk Controller (FDC), and other
controllers, although a given design may choose not to use portions of them so that an external
Super I/O part might be used instead.

Some vendors have chosen to define “Eastbridge” and “Westbridge” functions, although these
concepts are not well-established in the industry. You may find reference to these terms when
data sheets talk about high speed connections between the processor or Northbridge and a second
“glue” chip that performs other functions.

There are many chipset manufacturers, and each manufacturer provides a line of chipsets that is
constantly being improved. Thus, some chipsets become dated and obsolete, and new ones
become available with improved features or that respond to new market needs. There are no
industry standards for chipset design or chipset software programming, and so the initialization
and configuration of these devices is different for each chipset.

For this reason, EMBEDDED BIOS does not include the chipset initialization and configuration
code in the core BIOS itself. Rather, the core BIOS contains call-outs to a special module, called
a Chipset Personality Module (CSPM), that can be edited by the OEM to support any chipset.

550 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

The chipset for a given BIOS build is selected with the CHIPSET parameter in the project file.
For systems with no chipsets, the NOCHPSET chipset is used. Note that some high-integration
CPUs are more chipset-like than CPU-like. For example, AMD’s SC300, SC310, SC400,
SC410, and SC520 CPUs are all modeled as a standard 386 or 486 CPU core with chipset
functionality bound in the same package.

This chapter describes how CSPMs fit into the EMBEDDED BIOS build, and the details of the
CSPM interface called by the core EMBEDDED BIOS code that supports different chipsets.

19.1 How CSPM Override Routines Work

The EMBEDDED BIOS build links together many modules that implement BIOS services,
hardware managers, and function redirectors. Additionally, the module CHIPSET.ASM in the
SYSTEM directory is assembled and linked into the system build.

Actually, the CHIPSET.ASM module is a shell that uses assembly INCLUDE statements to include
the CSPM selected with the CHIPSET parameter in the Project file. The CHIPSET.ASM module
also contains default versions of the CSPM routines, should the CSPM only have a few routines
defined. Thus, a CSPM may be comprised of zero, any, or all, of the routines documented later
in this chapter. The routines defined in a CSPM are called override routines, and have the
special “OVERRIDE” parameter in their DefProc or DefRtn procedure definition MACROs.

The NOCHPSET CSPM is an excellent example of this default system in action. The
NOCHPSET CSPM contains no routines at all, so that when NOCHPSET is selected as the
CHIPSET parameter value, all of the default routines are used.

On the other hand, the TEMPLATE CSPM is an excellent example of the reverse. This module
is an example of a CSPM that has all of the routines defined, although they happen to contain
exactly the same code that the default routines do. The intent of providing this CSPM with
EMBEDDED BIOS is to enable the OEM to simply clone the TEMPLATE CSPM, change
routines that are necessary, and then delete the ones that go unchanged. This facilitates rapid
development of new CSPMs in the OEM environment.

19.2 How CSPMs are Packaged in Files

From a project-management point of view, a CSPM consists of at least two files; one is an .ASM
file that contains the routines provided by the OEM that override the default CSPM functions,
and the other is an .INC file that contains manifest constants, macro definitions, and other
definitions needed by the CSPM. In some circumstances, the Board Personality Module (BPM)
may need to use the definitions in the CSPM’s .INC file, so this file should be constructed so that
it does not define data storage areas where these areas would be duplicated in both modules.

A third file, CS1632.ASM, must be defined if OPTION_SUPPORT_BIOS32 is to be enabled
in project files for 32-bit BIOS support. When this option is enabled, then dual-build (16-bit and
32-bit) routines in the CSPM are assumed to be located in this file. When this option is not
enabled, then they are found in the primary CSPM .ASM file. New CSPM implementations
should always have this file.

All CSPMs have a name (from 1 to 8 filename characters), and the .ASM and .INC files (except
for CS1632.ASM) must carry this name. For example, the NOCHPSET CSPM consists of a
NOCHPSET.ASM file and a NOCHPSET.INC file.

Chapter 19 EMBEDDED BIOS Adaptation Guide 551

General Software EMBEDDED BIOS Adaptation Guide

Each CSPM’s files are contained within a subdirectory of the CHIPSETS directory. The
subdirectory must have the same name as the CSPM. For example, if the BIOS main directory is
C:\BIOS43, then the NOCHPSET CSPM’s files would be contained in the
C:\BIOS43\CHIPSETS\NOCHPSET directory.

Additional source files may be located in the CSPM’s subdirectory, but it is up to the OEM to
define their contents and ensure that they are assembled as a part of the BIOS build. It is
recommended that no core BIOS files be modified to include these sources; instead, it is a good
idea to include them with INCLUDE statements in the CSPM’s .ASM file.

19.3 Other Chipset Personality Modules

If you don't want to write your own personality module for a new chipset, it may actually already
be available through General Software. For example, the Ali M1487, M6117, and M1541
chipsets are all supported with separate CSPMs available from General Software (contact
General Software for more information).

19.4 The CSPM Interface

All CSPM implementations export the same set of functions callable from the core system BIOS.
This section documents the functions that must be implemented in a CSPM.

Be careful to define the proper function type when creating new CSPMs. Some CSPM functions
are written as coroutines, using the DefRtn/EndRtn macros. Others are written as procedures,
using the DefProc/EndProc macros. If these are confused, there will be errors during the link of
the system BIOS.

Unless otherwise specified, routines always return to their caller, and do not modify any register
contents. The CPU flags may be destroyed by CSPM functions, except that the carry flag is
normally used to indicate success if clear, or failure if false. Other flags, such as the zero flag,
are destroyed at random by the functions. The direction flag, however, must be preserved.

Functions declared as coroutines cannot modify the BP CPU register, as it is used for return
linkage. If they must use BP because they need to call another coroutine as a subroutine, then BP
can be placed into another register to save the original return address.

Some functions are entered with the interrupt flag cleared (disallowing interrupts). These
functions cannot enable interrupts for any reason, as they are used at times when interrupt
management has not been established. Other functions are entered with a random interrupt flag
as the context dictates. In this case, the routine can manipulate the interrupt flag if it wishes.
Unless otherwise specified, a routine may modify the IF flag.

19.4.1 CsAssignPciIrq Procedure

The CsAssignPciIrq function is called with procedure linkage from routine BoardAssignPciIrq
on behalf of the PCI Configuration Manager in the core BIOS to map a system IRQ level to a
PCI interrupt line.

This function is only called in PCI-based systems, if OPTION_SUPPORT_PCI is enabled, and
then only if BoardAssignPciIrq calls this routine.

552 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

This function must be implemented in the dual-build (16-bit/32-bit) file of the CSPM
(CS1632.ASM) in order to support both the 16-bit and 32-bit PCI services.

Input Parameters:

AH - PCI Interrupt assignment: 0=A, 1=B, 2=C, 3=D.
AL - System IRQ Level (0-15, 16=disable).

Output Parameters:

CY - set if failure (i.e., interrupt line not available), else clear if success.

Unpreserved Registers:

Flags.

19.4.2 CsDisableA20 Procedure

The CsDisableA20 function is called with procedure linkage to program the chipset to disable its
A20 gate, if the chipset supports it.

This routine will be called if OPTION_A20_CHIPSET enabled, or if OPTION_A20_BOARD
is enabled and BoardDisableA20 calls this routine.

If no hardware exists, then this routine should return with carry set. If hardware exists and the
A20 gate cannot be programmed, then the carry is set upon return. Otherwise, carry is cleared.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

19.4.3 CsDisableCache Procedure

The CsDisableCache function is called with procedure linkage to program the chipset to disable
the external (L2) cache, if available.

This routine is called if OPTION_SUPPORT_CACHE is enabled; and
OPTION_CACHE_CHIPSET is set, or OPTION_CACHE_BOARD is set and the
BoardDisableCache function calls this routine.

Chapter 19 EMBEDDED BIOS Adaptation Guide 553

General Software EMBEDDED BIOS Adaptation Guide

If no cache is available, this routine should return with carry clear. If cache is available, this
routine should return with carry clear if the cache could be disabled, or set if it could not be
disabled.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All.

19.4.4 CsDisableShadow Procedure

The CsDisableShadow function is called with procedure linkage to program the chipset to
disable all shadowing, so that the underlying ROMs are used instead.

This routine is called if OPTION_SUPPORT_SHADOW is enabled, and the
BoardDisableShadow function calls this routine.

If no shadowing is available, this routine should return with carry clear. If shadowing hardware
is available, this routine should return with carry clear if the shadow RAM could be disabled, or
set if it could not be disabled.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All.

19.4.5 CsDisableWatchdog Procedure

The CsDisableWatchdog function is called with procedure linkage to stop the watchdog timer
hardware supported by the chipset.

This routine is called if OPTION_SUPPORT_WATCHDOG is enabled; and
OPTION_WATCHDOG_CHIPSET is set, or OPTION_WATCHDOG_BOARD is set and
the BoardDisableWatchdog function calls this routine.

554 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

If no hardware exists, then this routine should return with carry set. If hardware exists and the
watchdog timer cannot be programmed, then the carry is set upon return. Otherwise, carry is
cleared.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

19.4.6 CsDisplayChipset Procedure

The CsDisplayChipset function is called with procedure linkage to display an OEM-defined
message associated with the chipset implementation. Typically, this would state the chipset
manufacturer’s name, the chipset part number, and the date the Chipset Personality Module code
was written.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All.

19.4.7 CsEnableA20 Procedure

The CsEnableA20 function is called with procedure linkage to program the chipset to enable its
A20 gate, if the chipset supports it.

This routine is called if OPTION_A20_CHIPSET is set, or OPTION_A20_BOARD is set and
the BoardEnableA20 function calls this routine.

If no hardware exists, then this routine should return with carry set. If hardware exists and the
A20 gate cannot be programmed, then the carry is set upon return. Otherwise, carry is cleared.

Input Parameters:

None.

Chapter 19 EMBEDDED BIOS Adaptation Guide 555

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

19.4.8 CsEnableApm Procedure

The CsEnableApm function is called during POST with procedure linkage to enable whatever
APM functionality is available in the chipset.

This routine will be called if OPTION_SUPPORT_APM is enabled; and then if
OPTION_POWERMAN_CHIPSET enabled.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

19.4.9 CsEnableCache Procedure

The CsEnableCache function is called with procedure linkage to program the chipset to enable
the external cache, if available.

This routine is called if OPTION_SUPPORT_CACHE is enabled; and
OPTION_CACHE_CHIPSET is set, or OPTION_CACHE_BOARD is set and the
BoardEnableCache function calls this routine.

If no cache is available, this routine should return with carry clear. If cache is available, this
routine should return with carry clear if the cache could be enabled, or set if it could not be
enabled.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

556 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

All.

19.4.10 CsEnableWatchdog Procedure

The CsEnableWatchdog function is called with procedure linkage to start the watchdog timer
hardware supported by the chipset.

This routine is called if OPTION_SUPPORT_WATCHDOG is enabled; and
OPTION_WATCHDOG_CHIPSET is set, or OPTION_WATCHDOG_BOARD is set and
the BoardEnableWatchdog function calls this routine.

If no hardware exists, then this routine should return with carry set. If hardware exists and the
watchdog cannot be programmed, then the carry is set upon return. Otherwise, carry is cleared.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

19.4.11 CsGetPciInfo Procedure

The CsGetPciInfo function is called with procedure linkage from routine BoardGetPciInfo on
behalf of the PCI Configuration Manager in the core BIOS to return a bitmask in the BX CPU
register of the system IRQ levels that are assigned for PCI use.

Only those interrupt levels supported by the chipset should be returned. If no interrupts are
assignable by the chipset, the value 0000h should be returned.

This function is only called in PCI-based systems if OPTION_SUPPORT_PCI is enabled, and
then only if BoardGetPciInfo calls this routine.

This function must be implemented in the dual-build (16-bit/32-bit) file of the CSPM
(CS1632.ASM) in order to support both the 16-bit and 32-bit PCI services.

Input Parameters:

None.

Output Parameters:

Chapter 19 EMBEDDED BIOS Adaptation Guide 557

General Software EMBEDDED BIOS Adaptation Guide

CY - set if failure, else clear if success.
BX - bitmask of assignable IRQ levels (bits set-IRQs assignable).

Unpreserved Registers:

Flags.

19.4.12 CsInit0 Routine

The CsInit0 function is called with routine linkage to perform very early initialization of the
chipset, including participating in the decision about whether a warm boot or a cold boot has
occurred.

Normally called from the BPM’s BoardInit0, this function accepts as a parameter in the SP
register a value of 0 if a cold boot has occurred, or -1 if the BPM has determined that a warm
boot may have occurred. If this routine determines that a cold boot has occurred, then it sets SP
to 0. Similarly, if it determines that a warm boot may have occurred, then it sets SP to -1. If it
has no additional information to provide POST during the boot detection process, then it does not
change SP.

A less-common function of this machine is the initialization of certain chipset functions that
must be disabled prior to POST’s commencement.

At the BPM implementor’s discretion, this routine may be called at any time during BoardInit0
processing, or not at all. See BoardInit0 for details.

This routine is entered with interrupts disabled and cannot reenable them.

Input Parameters:

DS - BIOS data segment (40h).
SP - 0 if BPM detects cold boot, else -1 if possible warm boot.

Output Parameters:

DS - BIOS data segment (40h).
SP - 0 if CSPM detects cold boot, else -1 if possible warm boot.

Unpreserved Registers:

All but DS, SP, BP and SS.

19.4.13 CsInit1 Routine

The CsInit1 function is called with routine linkage to perform very early initialization of the
chipset, including participating in the decision about whether a warm boot or a cold boot has
occurred.

558 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

The CsInit1 function is called with routine linkage to perform the bulk of initialization of the
chipset, particularly related to the initialization of the DRAM controller, bus clocking, internal
peripherals, and other functions.

Called from BoardInit1, this function typically loads the chipset with default operating values
that can then be changed by the BPM’s BoardInit1 routine after the call to CsInit1 has returned.

At the BPM implementor’s discretion, this routine may be called at any time during BoardInit1
processing, or not at all. See BoardInit1 for details.

While this function is used to program wait states, CPU clocking, and other parameters, DRAM
geometry analysis may be performed if this is not convenient for handling in routine
CsMemConfig.

Those chipset-like CPUs with on-board LCD controllers may need to have fonts loaded; this is
an ideal time to perform this function as well.

This routine is entered with interrupts disabled and cannot reenable them.

Input Parameters:

DS - BIOS data segment (40h).
SP - 0 if BPM detects cold boot, else -1 if warm boot.

Output Parameters:

DS - BIOS data segment (40h).

Unpreserved Registers:

All but DS, SP, BP and SS.

19.4.14 CsInitRefresh Routine

The CsInitRefresh function is called with routine linkage to program the chipset to initialize the
DRAM refresh controller in the chipset, if decoupled refresh is supported by the chipset.

This routine is called if OPTION_REFRESH_CHIPSET is enabled; or if
OPTION_REFRESH_BOARD is enabled and BoardInitRefresh calls this routine.

If no hardware is available, this routine should return with carry clear. If available, this routine
should return with carry clear if the refresh controller did not fail, or set if it failed.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Chapter 19 EMBEDDED BIOS Adaptation Guide 559

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

All but DS, BP and SS.

19.4.15 CsInitWatchdog Routine

The CsInitWatchdog function is called with routine linkage to program the chipset to initialize
the watchdog timer in the chipset, if supported by the chipset. In this context, initialization
means to stop any ongoing timing operation, and then start the watchdog timer running.

This routine is called if OPTION_WATCHDOG_CHIPSET is enabled; or if
OPTION_WATCHDOG_BOARD is enabled and BoardInitWatchdog calls this routine.

If no hardware is available, this routine should return with carry clear. If available, this routine
should return with carry clear if the watchdog timer did not fail, or set if it failed.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but DS, BP and SS.

19.4.16 CsKickWatchdog Routine

The CsKickWatchdog function is called with routine linkage to program the chipset to reset the
watchdog timer and restart its timer, whether it was previously running or not.

This routine is called if OPTION_WATCHDOG_CHIPSET is enabled; or if
OPTION_WATCHDOG_BOARD is enabled and BoardKickWatchdog calls this routine.

If no hardware is available, this routine should return with carry clear. If available, this routine
should return with carry clear if the watchdog timer did not fail, or set if it failed.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

560 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

All but DS, BP and SS.

19.4.17 CsMapAddress Procedure

The CsMapAddress function is normally called by the BPM’s BoardMapAddress with routine
linkage to translate a 32-bit media address to either a real-mode windowed address or a 32-bit
physical address.

If the chipset has memory mapping hardware (i.e., hardware EMS pages), then this routine
should program the chipset to map the specified address into an EMS window, and return the
translated address in real-mode 16:16 format, along with the number of bytes visible in the
window at that location.

If the chipset has no MMU, then this routine should clear the CY flag, indicating that no
windowing translation has occurred. Then, it should perform whatever modifications on the 32-
bit media address are required to transform it into a physical address reachable with the CPU’s
protected mode.

Commonly, no such further translation is necessary, but a provision is made for translating the
address if necessary. Note that some CPUs, notably the AMD SC400 and SC410, have
programmable mapping of ROM chip select lines, and therefore an artificial media address
architecture is invented by the CSPM to allow access to all ROMs in the system.

This routine is called if OPTION_SUPPORT_MCL is enabled, and then if BoardMapAddress
calls this routine. The BPM’s implementor may choose to handle the mapping of media
addresses at the board level, so this routine may not be called in an actual adaptation.

If a direct physical mapping is to be performed, then the CY flag should be cleared on exit.

Input Parameters:

DX:AX - 32-bit media address (see Chapter 13 for details).

Output Parameters:

CY - set if result is 16:16 real mode, else clear if 32-bit physical address.

If real mode translation:

DX:AX - 16:16 real-mode translation of the input address.
CX - number of bytes visible at the address within the window.

If physical translation:

DX:AX - 32-bit physical address corresponding to the 32-bit media address.

Unpreserved Registers:

Flags.

Chapter 19 EMBEDDED BIOS Adaptation Guide 561

General Software EMBEDDED BIOS Adaptation Guide

19.4.18 CsMemConfig Routine

The CsMemConfig routine is normally called by the BPM’s BoardMemConfig routine with
routine linkage to program the chipset to determine how many memory banks are available, what
size of SIMMs are in each bank, and how the banks are to be interleaved and positioned in the
address space.

This routine is called after the chipset has been initialized and DRAM refresh has been activated.
However, no stack yet exists because low memory (the base 64KB) has not been tested.
Therefore, this routine is not called with a valid stack, but may create one temporarily in the
bottom 64KB of memory in order to perform certain functions. This would be a rare case, since
all DRAM configuration methods implicitly require manipulation of chipset registers to change
the RAS and CAS assignments of banks of DRAM in the system, and changing this while the
stack has valid data on it will cause the data to be mapped to different locations or be made
unavailable.

It may be necessary to switch to protected mode temporarily during this routine’s operation to
test memory above 1MB. For sample code, consult routines ToProt and ToReal in
HELPER.ASM. During extended memory testing, make sure that the A20 gate is properly
enabled, or memory addresses will wrap to lower memory.

Typically, the algorithm by which the memory geometry is determined is provided by the chipset
manufacturer. If you need help implementing this routine, consult the manufacturer for the
recommended algorithm. Remember that you can either perform this work in this function, or in
the CsInit1 routine, although CsInit1 would need to enable DRAM refresh if that were the case.

This routine is called if BoardMemConfig calls this routine. The BPM’s implementor may
choose to handle DRAM sizing at the board level, so this routine may not be called in an actual
adaptation.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.
DI - if failure, POST_BEEP_CHIPSET.

Unpreserved Registers:

All but BP and SS.

18.4.19 CsPwrLvl Procedure

The CsPwrLvl function is called with procedure linkage to notify the chipset of a change in
power state in the system. This function is called by the Power Management Subsystem in the
core BIOS, when the Cs (chipset) device is enabled in the POWER_DEVID device tree.

562 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

If no hardware is available in the chipset, then this function should return with the carry flag
clear.

If the hardware exists, then this routine returns with the carry flag set if the hardware fails to
perform the requested operation.

Input Parameters:

DS - segment of the extended BIOS data area (EBDA).
BX - device index of the chipset itself.
CL - new power level.
CH - old power level.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

DS, BX, CL, Flags.

19.4.20 CsReadReg Procedure

The CsReadReg function is called with procedure linkage by the debugger module to read a
chipset configuration register.

Note that some chipsets have 16-bit-wide configuration registers, and others have 8-bit
configuration registers. The interface supports both by providing a 16-bit data path.

This routine is not used unless OPTION_SUPPORT_DEBUGGER is enabled.

Input Parameters:

AX - Index of register to read.

Output Parameters:

CY - Set if failure, else clear if success.
AX - If success, contents of register.

Unpreserved Registers:

Flags.

19.4.21 CsReboot Procedure

The CsReboot function is called with coroutine linkage to handle a reboot request that originates
from the debugger, the CTL-ALT-DEL mechanism, or other internal functions of the BIOS.

Chapter 19 EMBEDDED BIOS Adaptation Guide 563

General Software EMBEDDED BIOS Adaptation Guide

This routine is called if OPTION_REBOOT_CHIPSET is enabled; or if
OPTION_REBOOT_BOARD is enabled and then if BoardMapAddress calls this routine.
The BPM’s implementor may choose to handle the reboot process at the board level, so this
routine may not be called in an actual adaptation.

Input Parameters:

None.

Output Parameters:

None; should not return unless reboot cannot be performed.

Unpreserved Registers:

Flags.

19.4.22 CsSetFastSpeed Procedure

The CsSetFastSpeed function is called with procedure linkage to program the chipset to set the
CPU clocking to the highest value, if clocking hardware controls are available.

This routine is called if OPTION_SPEED_CHIPSET is enabled; or if
OPTION_SPEED_BOARD is enabled and then if BoardSetFastSpeed calls this routine. The
BPM’s implementor may choose to handle speed controls at the board level, so this routine may
not be called in an actual adaptation.

If no hardware is available, this routine should return with carry clear. If available, this routine
should return with carry clear if the speed could be changed, or set if it could not be changed.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

19.4.23 CsSetSlowSpeed Procedure

The CsSetSlowSpeed function is called with procedure linkage to program the chipset to set the
CPU clocking to the lowest value (i.e., 4.77 Mhz or lower), if clocking hardware controls are
available.

564 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

This routine is called if OPTION_SPEED_CHIPSET is enabled; or if
OPTION_SPEED_BOARD is enabled and then if BoardSetSlowSpeed calls this routine. The
BPM’s implementor may choose to handle speed controls at the board level, so this routine may
not be called in an actual adaptation.

If no hardware is available, this routine should return with carry clear. If available, this routine
should return with carry clear if the speed could be changed, or set if it could not be changed.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

19.4.24 CsShadowArea Procedure

The CsShadowArea function is normally called by the BPM’s BoardShadowArea function
with procedure linkage to shadow an area of ROM using RAM remapped by the chipset. This
routine must perform two operations to make this happen.

First, it must program the chipset to map pieces of shadow RAM to the address assigned to the
ROM. This is done with chipset register manipulations.

Next, this routine must copy the contents of the ROM into the shadow RAM. This is
accomplished in either of two ways. Some chipsets support a special "copy mode" that causes
reads to occur from ROM at a given address, but writes to be written to RAM at the same
address. If this mode is supported, it can be used by the CsShadowArea routine to perform a
copy in place. Then, when the mode is disabled, both reads and writes are directed to the shadow
RAM.

If the chipset does not support the special "copy mode" feature, then the shadowing can be
accomplished by copying the 16KB ROM contents to a temporary location in low memory, then
switching shadow RAM for the ROM, and copying the data back to RAM. Note that this
technique must be used with care when shadowing the system BIOS itself, since the processor is
executing instructions from the area of shadow RAM that has not been initialized until after the
copy. To solve this problem, this routine should copy its code to low memory and run the rest of
itself there until the shadow RAM contents are valid; then control can resume from RAM.

This routine is called if OPTION_SUPPORT_SHADOW is enabled, and at least one region of
ROM is to be shadowed; and then if BoardShadowArea calls this routine. The BPM’s
implementor may choose to handle shadowing at the board level, so this routine may not be
called in an actual adaptation.

Input Parameters:

Chapter 19 EMBEDDED BIOS Adaptation Guide 565

General Software EMBEDDED BIOS Adaptation Guide

DI - index of area to shadow, as follows:

0000h - segment C000h.
0001h - segment C400h.
0002h - segment C800h.
0003h - segment CC00h.
0004h - segment D000h.
0005h - segment D400h.
0006h - segment D800h.
0007h - segment DC00h.
0008h - segment E000h.
0009h - segment E400h.
000ah - segment E800h.
000bh - segment EC00h.
000ch - segment F000h.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

19.4.25 CsShadowWriteCtl Procedure

The CsShadowWriteCtl function is normally called by the BPM’s BoardShadowWriteCtl
function with procedure linkage to enable or disable write protection for the entire system. This
function is normally used by the PCI option ROM shadowing support in the core BIOS.

If the chipset uses write protect bits in the hardware to remember which areas have been
shadowed, then these bits may be saved/restored using some location in the extended BIOS data
area.

This routine is called if OPTION_SUPPORT_SHADOW is enabled, and then if
BoardShadowWriteCtl calls this routine. The BPM’s implementor may choose to handle
shadowing at the board level, so this routine may not be called in an actual adaptation.

Input Parameters:

AX - 0 to write-protect shadow RAM, or 1 to write-enable shadow RAM.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

566 EMBEDDED BIOS Adaptation Guide Chapter 19

General Software EMBEDDED BIOS Adaptation Guide

19.4.26 CsTimerTick Procedure

The CsTimerTick function is called with procedure linkage from the BPM’s BoardTimerTick
function, so that the CSPM has a way to receive notification that timer ticks have occurred.

The OEM or chipset adaptation engineer may use this routine for any purpose that helps to
implement other CSPM functions, such as timing out certain requests. The OEM may also want
to use the routine for proprietary value-added functions, such as the regular polling of hardware
in the background, for example.

Commonly, this routine is coded to interact with other routines in the CSPM through memory
fields in the Extended BIOS Data Area (EBDA), and most commonly, in the CsData byte array
that is reserved for CSPM use (see DATA.INC for layout of the EBDA).

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

19.4.27 CsUnMapAddress Procedure

The CsUnMapAddress function is called with procedure linkage by the BPM’s
BoardUnMapAddress routine on behalf of MCL when it has completed calling an MTD for a
requested function, so that the chipset’s mapping registers (if any), may be restored to their initial
values before the CsMapAddress function changed them.

It is the responsibility of the CSPM to keep track of whether any chipset-level hardware registers
have been programmed, perhaps with a RAM variable in the EBDA’s CsData field, so that the
CsUnMapAddress procedure can determine if it should perform any work at all.

This routine is not used unless OPTION_SUPPORT_MCL is enabled.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Chapter 19 EMBEDDED BIOS Adaptation Guide 567

General Software EMBEDDED BIOS Adaptation Guide

Flags.

19.4.28 CsWriteReg Procedure

The CsWriteReg function is called with procedure linkage by the debugger module to write a
chipset configuration register with a specific value.

Note that some chipsets have 16-bit-wide configuration registers, and others have 8-bit
configuration registers. The interface supports both by providing a 16-bit data path.

This routine is not used unless OPTION_SUPPORT_DEBUGGER is enabled.

Input Parameters:

AX - Index of register to write.
DX - Data to write to register.

Output Parameters:

CY - Set if failure, else clear if success.

Unpreserved Registers:

Flags.

Chapter 20 EMBEDDED BIOS Adaptation Guide 569

General Software EMBEDDED BIOS Adaptation Guide

Chapter 20

BOARD PERSONALITY MODULES

EMBEDDED BIOS contains an architected interface that allows it to work with OEM-written
code that initializes and controls OEM-specific hardware glue, collectively referred to as the
board, in a custom design.

Consider that many issues, including A20 gate control, shadowing, cache management, floppy
DMA channel assignments, PCI interrupt structure, and Super I/O programming to name a few,
must be customizable at the board level by the OEM. For example, while one design may gate
A20 with the chipset or port 92h, another may use the keyboard controller and some other
proprietary I/O port mechanism. EMBEDDED BIOS provides a way to handle these designs and
all the other possible ones, without requiring the OEM to write code for reference designs, such
as the commonly-available evaluation boards from silicon vendors.

The EMBEDDED BIOS core does not contain any board-specific code that deals with board-
level issues, but instead contains call-outs to a special module, called a Board Personality
Module (BPM), that contains the board-specific code.

The specific board for a given BIOS build is selected with the BOARD parameter in the project
file. For systems with unremarkable boards (i.e., boards without any glue logic whatsoever), the
NOBOARD board name is used.

This chapter describes how BPMs fit into the EMBEDDED BIOS build, and the details of the
BPM interface called by the core EMBEDDED BIOS code that supports different designs.

The routines in the BPM call CPM and CSPM routines to perform much of their work by default.
For more information about the CPM and CSPM helpers, see Chapters 18 and 19, respectively.

20.1 How BPM Override Routines Work

The EMBEDDED BIOS build links together many modules that implement BIOS services,
hardware managers, and function redirectors. Additionally, the module BOARD.ASM in the SYSTEM
directory is assembled and linked into the system build.

570 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

Actually, the BOARD.ASM module is a shell that uses assembly INCLUDE statements to include the
CPM selected with the BOARD parameter in the Project file. The BOARD.ASM module also
contains default versions of the BPM routines, should the BPM only have a few routines defined.
Thus, a BPM may be comprised of zero, any, or all, of the routines documented later in this
chapter. The routines defined in a BPM are called override routines, and have the special
“OVERRIDE” parameter in their DefProc or DefRtn procedure definition MACROs.

The NOBOARD BPM is an excellent example of this default system in action. The
NOBOARD BPM contains no routines at all, so that when NOBOARD is selected as the
BOARD parameter value, all of the default routines are used.

On the other hand, the TEMPLATE BPM is an excellent example of the reverse. This module
is an example of a BPM that has all of the routines defined, although they happen to contain
exactly the same code that the default routines do. The intent of providing this BPM with
EMBEDDED BIOS is to enable the OEM to simply clone the TEMPLATE BPM, change
routines that are necessary, and then delete the ones that go unchanged. This facilitates rapid
development of new BPMs in the OEM environment.

20.2 How BPMs are Packaged in Files

From a project-management point of view, a BPM consists of at least two files; one is an .ASM
file that contains the routines provided by the OEM that override the default BPM functions, and
the other is an .INC file that contains manifest constants, macro definitions, and other definitions
needed by the BPM.

A third file, BPM1632.ASM, must be defined if OPTION_SUPPORT_BIOS32 is to be enabled
in project files for 32-bit BIOS support. When this option is enabled, then dual-build (16-bit and
32-bit) routines in the BPM are assumed to be located in this file. When this option is not
enabled, then they are found in the primary BPM .ASM file. New BPM implementations should
always have this file.

All BPMs have a name (from 1 to 8 filename characters), and the .ASM and .INC files (except
for BPM1632.ASM) must carry this name. For example, the NOBOARD BPM consists of a
NOBOARD.ASM file and a NOBOARD.INC file.

Each BPM’s files are contained within a subdirectory of the BOARDS directory. The subdirectory
must have the same name as the BPM. For example, if the BIOS main directory is C:\BIOS43,
then the NOBOARD BPM’s files would be contained in the C:\BIOS43\BOARDS\NOBOARD

directory.

Additional source files may be located in the BPM’s subdirectory, but it is up to the OEM to
define their contents and ensure that they are assembled as a part of the BIOS build. It is
recommended that no core BIOS files be modified to include these sources; instead, it is a good
idea to include them with INCLUDE statements in the BPM’s .ASM file.

20.3 Other Board Personality Modules

If you don't want to write your own personality module for a new board design, it may actually
already be available through General Software. Most standard reference designs provided by the
silicon vendors have BPMs available from General Software or a Technology Center. Contact
General Software for more information.

Chapter 20 EMBEDDED BIOS Adaptation Guide 571

General Software EMBEDDED BIOS Adaptation Guide

20.4 The BPM Interface

All BPM implementations export the same set of functions callable from the core system BIOS.
This section documents the functions that must be implemented in a BPM.

More often than not, the default board routines call CPM or CSPM functions to perform similar
functions. For example, the BoardSetFastSpeed function calls the CpuSetFastSpeed and/or
CsSetFastSpeed functions, depending on whether OPTION_SPEED_CPU and/or
OPTION_SPEED_CHIPSET are enabled. If OPTION_SPEED_BOARD is not enabled, then
the core BIOS doesn’t call the board-level routine, but instead calls the CPU or chipset-level
routine directly. This sounds complex, until it is understood that the system is designed to do the
right thing for a generic system if all the defaults are used, and only when proprietary routines
are added does it become necessary to select options that define how the core BIOS should use
the new code. In practice, OEMs usually start with a BPM for a standard reference design, and
slowly metamorphise it into their design’s BPM, making the job easier.

Be careful to define the proper function type when creating new BPMs. Some BPM functions
are written as coroutines, using the DefRtn/EndRtn macros. Others are written as procedures,
using the DefProc/EndProc macros. If these are confused, there will be errors during the link of
the system BIOS.

Unless otherwise specified, routines always return to their caller, and do not modify any register
contents. The CPU flags may be destroyed by BPM functions, except that the carry flag is
normally used to indicate success if clear, or failure if false. Other flags, such as the zero flag,
are destroyed at random by the functions. The direction flag, however, must be preserved.

Functions declared as coroutines cannot modify the BP CPU register, as it is used for return
linkage. If they must use BP because they need to call another coroutine as a subroutine, then BP
can be placed into another register to save the original return address.

Some functions are entered with the interrupt flag cleared (disallowing interrupts). These
functions cannot enable interrupts for any reason, as they are used at times when interrupt
management has not been established. Other functions are entered with a random interrupt flag
as the context dictates. In this case, the routine can manipulate the interrupt flag if it wishes.
Unless otherwise specified, a routine may modify the IF flag, but must restore it to its value at
the time the routine was called.

20.4.1 BoardApmMode Procedure

The BoardApmMode function is called with procedure linkage from the APM request router to
handle a mode change request or to get status or event information.

This routine will be called if OPTION_SUPPORT_APM is enabled and requests are received
by the APM request router from the operating system, application software, or other components
of the core BIOS.

Input Parameters:

DL - command code, as follows:

00h - Transition system to READY state.

572 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

01h - Transition system to STANDBY state.
02h - Transition system to SUSPEND state.
03h - Transition system to OFF state.
feh - get event information (returns event code in DH).
ffh - get status information (returns last return code in DH).

Output Parameters:

CY - set if failure, else clear if success.
All others - as set by APM functions (see Chapter 21 for details).

Unpreserved Registers:

Flags.

20.4.2 BoardAssignPciIrq Procedure

The BoardAssignPciIrq function is called with procedure linkage from the PCI Configuration
Manager in the core BIOS to map a system IRQ level to a PCI interrupt line.

This routine will be called if OPTION_SUPPORT_PCI is enabled. Normally, this routine calls
CsAssignPciIrq to route the request to the chipset module.

This function must be implemented in the dual-build (16-bit/32-bit) file of the BPM
(BPM1632.ASM) in order to support both the 16-bit and 32-bit PCI services.

Input Parameters:

AH - PCI Interrupt assignment: 0=A, 1=B, 2=C, 3=D.
AL - System IRQ Level (0-15, 16=disable).

Output Parameters:

CY - set if failure (i.e., interrupt line not available), else clear if success.

Unpreserved Registers:

Flags.

20.4.3 BoardAutoRedirect Procedure

The BoardAutoRedirect function is called with procedure linkage from POST to allow the
BPM a chance to detect video devices and cancel console redirection if any other devices are
detected.

The default routine checks for a VGA BIOS ROM at segment CONFIG_VIDEO_ROM_SCAN
(usually, set to C000h), and if found, any redirection established for the console is reset to the
primary keyboard and screen.

This policy can be overridden by the OEM by redefining this routine in the BPM.

Chapter 20 EMBEDDED BIOS Adaptation Guide 573

General Software EMBEDDED BIOS Adaptation Guide

This routine is only called, and automatic redirection is only enabled, if
OPTION_CON_REDIR_AUTO and OPTION_SUPPORT_CON_REDIRECTOR are both
enabled. The normal usage of this feature calls for enabling the above parameters, then setting
CONFIG_CON_REDIR_STD, CONFIG_CON_REDIR_DEBUG, and
CONFIG_CON_REDIR_SETUP to nonzero values specifying the default COM port to use for
console redirection, for those components.

Input Parameters:

None.

Output Parameters:

CY – set if failure, else clear if success.

Unpreserved Registers:

Flags.

20.4.4 BoardBeep Routine

The BoardBeep function is called with routine linkage to cause the speaker to start or stop
beeping.

This routine will be called if OPTION_SUPPORT_SOUND and OPTION_SOUND_BOARD
are both enabled. Normally, this routine calls CpuBeep or CsBeep to route the request to the
CPU or chipset modules, respectively.

Input Parameters:

AL - 1 to enable tone, 0 to disable tone.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

AX, CX, DX, Flags.

20.4.5 BoardDelayUsec Routine

The BoardDelayUsec function is called with routine linkage to cause a microdelay to occur, so
that core BIOS functions are able to time device operations that are very short.

The default implementation of this routine works as follows: If an 8254 counter/timer controller
is present in the system, then this routine uses it to perform the delay. Otherwise, if Port B is
available, the refresh toggle bit is used. Lastly, if neither of these options are available, then a
CPU spin loop is executed, with the CPU_MHZ parameter used as a factor in the loop counter.

574 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

The OEM can redefine this routine to change the way time is measured in the system, in the
event that these methods are not adequate for a given design, or if they produce incorrect results
because the design uses different clocking or timing.

This routine is called with interrupts disabled, and it must not enabled interrupts for any length of
time.

Input Parameters:

DX - Number of microseconds to delay, from 0-50,000.

Output Parameters:

None.

Unpreserved Registers:

AX, BX, CX, DX, SI, DI, Flags.

20.4.6 BoardDisableA20 Hybrid

The BoardDisableA20 function is called with hybrid (dual) linkage to disable the A20 line gate
hardware on-board the CPU, if it exists. Normally, the A20 gate on 80286 and above CPUs is
provided by external components, such as the 8042 keyboard controller, port 92h, or the chipset.

If the function cannot be performed, then this function should return with the carry flag set;
otherwise, clear.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify
BP or use any RAM while inside this function, as it may be called during a period of time where
DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_A20_BOARD is enabled. Normally, this routine calls
CpuDisableA20 or CsDisableA20 to route the request to the CPU or chipset modules,
respectively.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Chapter 20 EMBEDDED BIOS Adaptation Guide 575

General Software EMBEDDED BIOS Adaptation Guide

All but BP.

20.4.7 BoardDisableCache Procedure

The BoardDisableCache function is called with procedure linkage to disable all L2 cache
memory in the system. This routine explicitly does not disable the L1 (CPU) cache.

If the function cannot be performed, then this function should return with the carry flag set, else
clear.

This routine will be called if OPTION_SUPPORT_CACHE and OPTION_CACHE_BOARD
are enabled. Normally, this routine calls CsEnableCache to route the request to the chipset
module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All.

20.4.8 BoardDisableDmaCtrl Routine

The BoardDisableDmaCtrl function is called with routine linkage to disable DMA controller
hardware in the system. Disabling means to reset the controller so that no DMA processes are
running after the routine returns to its caller.

If the function cannot be performed, then this function should return with the carry flag set, else
clear.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_DMA_BOARD is enabled. Normally, this routine calls
CpuDisableDma to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

576 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

All but BP, including SS.

20.4.9 BoardDisableIntCtrl Hybrid

The BoardDisableIntCtrl function is called with hybrid (dual) linkage to disable the interrupt
controller hardware in the system. Disabling in this context means to cause the interrupt control
to reset to the condition where there are no pending interrupts to be serviced, and no interrupt
levels enabled (or unmasked) upon return from this routine.

If the function cannot be performed, then this routine should return with the carry flag set, else
clear.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify
BP or use any RAM while inside this function, as it may be called during a period of time where
DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_INT_BOARD is enabled. Normally, this routine calls
CpuDisableIntCtrl to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

20.4.10 BoardDisableShadow Procedure

The BoardDisableShadow function is called with procedure linkage to disable all shadowing in
the system, so that the underlying ROMs are used instead.

This routine will be called if OPTION_SUPPORT_SHADOW is enabled. Normally, this
routine calls CsDisableShadow to route the request to the chipset module.

If no shadowing is available, this routine should return with carry clear. If shadowing hardware
is available, this routine should return with carry clear if the shadow RAM could be disabled, or
set if it could not be disabled.

Input Parameters:

None.

Chapter 20 EMBEDDED BIOS Adaptation Guide 577

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All.

20.4.11 BoardDisableTestMode Procedure

The BoardDisableTestMode function is called with procedure linkage immediately upon entry
to Manufacturing Mode, to reset any software condition used by BoardTestMode to enter the
mode.

It is possible for the implementor of the BoardTestMode routine to cause Manufacturing Mode
to be entered if the hardware signal is present, or if a software-programmable register is set to a
specific value. This allows a target to be booted, and with the debugger, the register can be set
by the OEM in the lab. Upon rebooting the system, Manufacturing Mode is then entered.
Immediately upon entry into Manufacturing Mode, the system calls BoardDisableTestMode,
which allows the BPM implementor to reset this software-programmable register so that the
system does not continually enter Manufacturing Mode thereafter.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

20.4.12 BoardDisableWatchdog Procedure

The BoardDisableWatchdog function is called with procedure linkage to disable the watchdog
timer controller hardware in the system. Disabling in this context means to cause the watchdog
timer to stop running, so that it will not possibly expire without restarting it.

If the function cannot be performed, then this routine should return with the carry flag set; else
clear.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG and
OPTION_WATCHDOG_BOARD are enabled. Normally, this routine calls
CpuDisableWatchdog or CsDisableWatchdog to route the request to the CPU or chipset
modules, respectively.

578 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

20.4.13 BoardDisableWrites Procedure

The BoardDisableWrites function is called with procedure linkage by the Media Control Layer
(MCL) to disable any programming voltage (Vpp) and enable any write protect signals
associated with Flash or other similar components as a measure to save power and preserve
integrity of the device(s).

This routine allows the core BIOS to support arbitrarily-complex methods used by OEM
hardware for performing these functions without modifying the core BIOS itself.

While MCL has a delayed Vpp disable feature, this is embodied solely in MCL itself. When this
routine is called, Vpp should be disabled immediately, as the delay has already occurred.

This routine will be called if OPTION_SUPPORT_MCL is enabled.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

None, not even flags.

20.4.14 BoardEnableA20 Hybrid

The BoardEnableA20 function is called with hybrid (dual) linkage to enable the A20 line gate
hardware in the system; normally, a chipset or high-integration CPU function.

If the function cannot be performed, then this routine should return with the carry flag set; else
clear.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify

Chapter 20 EMBEDDED BIOS Adaptation Guide 579

General Software EMBEDDED BIOS Adaptation Guide

BP or use any RAM while inside this function, as it may be called during a period of time where
DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_A20_BOARD is enabled. Normally, this routine calls
CpuEnableA20 or CsEnableA20 to route the request to the CPU or chipset modules,
respectively.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

20.4.15 BoardEnableApm Procedure

The BoardEnableApm function is called with procedure linkage to initialize any APM
hardware or data structures managed by the BPM. This hardware and any data fields may be
used by the BoardApmMode function to satisfy APM requests.

This routine will be called if OPTION_SUPPORT_APM option is enabled.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

20.4.16 BoardEnableCache Procedure

The BoardEnableCache function is called with procedure linkage to enable all L2 caches in the
system. This routine specifically does not enable the CPU (L1) cache.

If the function cannot be performed, then this routine should return with the carry flag set; else
clear.

580 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

This routine will be called if OPTION_SUPPORT_CACHE and OPTION_CACHE_BOARD
are enabled. Normally, this routine calls CsEnableCache to route the request to the chipset
module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All.

20.4.17 BoardEnableDmaCtrl Routine

The BoardEnableDmaCtrl function is called with routine linkage to enable the DMA controller
hardware in the system. Enabling means to cause the DMA controller to be ready to accept a
programming sequence for a DMA operation. This routine is provided for symmetry with
BoardDisableDmaCtrl, and is rarely used.

If the function cannot be performed, then this routine should return with the carry flag set; else
clear.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_DMA_BOARD is enabled. Normally, this routine calls
CpuEnableDma to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

20.4.18 BoardEnableIntCtrl Hybrid

The BoardEnableIntCtrl function is called with hybrid (dual) linkage to enable the interrupt
controller hardware in the system. Enabling in this context means to cause the interrupt
controller to be ready to receive unmask or EOI commands and handle interrupts from that point
forward. This routine is rarely used, but is provided for symmetry with BoardDisableIntCtrl.

Chapter 20 EMBEDDED BIOS Adaptation Guide 581

General Software EMBEDDED BIOS Adaptation Guide

If the function cannot be performed, then this routine should return with the carry flag set; else
clear.

This routine is entered with interrupts disabled and cannot reenable them. It can also be called
with procedure linkage or routine linkage, since it is a hybrid function. Be careful not to modify
BP or use any RAM while inside this function, as it may be called during a period of time where
DRAM is inoperative. Thus, this routine cannot use any PUSH, POP, CALL, RET, INT, or
IRET instructions.

This routine will be called if OPTION_INT_BOARD is enabled. Normally, this routine calls
CpuEnableIntCtrl to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

20.4.19 BoardEnablePciRegion Procedure

The BoardEnablePciRegion function is called with procedure linkage by the core PCI
subsystem when shadowing PCI option ROMs to give the BPM the chance to program chipset
registers that would mark selective regions as mapped for PCI purposes.

Not all chipsets require this work, but some do; it is up to the BIOS adaptation engineer to
determine whether this requirement exists, and if so, to implement this routine appropriately.

The PCI subsystem automatically calls this routine before calling BoardShadowArea to create
shadow memory for the region to be used for shadowing the PCI option ROM; therefore, this
routine does not perform the tasks that BoardShadowArea is specified to perform.

This routine will be called if OPTION_SUPPORT_PCI is enabled.

Input Parameters:

DI - index of area to be mapped for PCI access, as follows:

0000h - segment C000h.
0001h - segment C400h.
0002h - segment C800h.
0003h - segment CC00h.
0004h - segment D000h.
0005h - segment D400h.

582 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

0006h - segment D800h.
0007h - segment DC00h.
0008h - segment E000h.
0009h - segment E400h.
000ah - segment E800h.
000bh - segment EC00h.
000ch - segment F000h.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

20.4.20 BoardEnableWatchdog Procedure

The BoardEnableWatchdog function is called with procedure linkage to enable the integrated
watchdog timer controller hardware in the system. Enabling in this context means to start the
watchdog timer running, so that if the timer is not reset within one expiration period, the timer
will expire.

If the function cannot be performed, then this routine should return with the carry flag set; else
clear.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG and
OPTION_WATCHDOG_BOARD are enabled. Normally, this routine calls
CpuEnableWatchdog or CsEnableWatchdog to route the request to the CPU or chipset
modules, respectively.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

20.4.21 BoardEnableWrites Procedure

The BoardEnableWrites function is called with procedure linkage by the Media Control Layer
(MCL) to enable any programming voltage (Vpp) and disable any write protect signals

Chapter 20 EMBEDDED BIOS Adaptation Guide 583

General Software EMBEDDED BIOS Adaptation Guide

associated with Flash or other similar components so that the device(s) can be written, erased,
locked, or otherwise programmed.

This routine allows the core BIOS to support arbitrarily-complex methods used by OEM
hardware for performing these functions without modifying the core BIOS itself.

While MCL has a delayed Vpp disable feature, this is embodied solely in MCL itself. When this
routine is called, Vpp should be enabled immediately, and this routine must delay until Vpp has
stabilized sufficiently to provide ample current to the device(s).

This routine will be called if OPTION_SUPPORT_MCL is enabled.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

None, not even flags.

20.4.22 BoardEoi Procedure

The BoardEoi function is called with procedure linkage to issue an "end-of-interrupt" command
to the board’s interrupt controller.

This routine will be called if OPTION_INT_BOARD is enabled. Normally, this routine calls
CpuEoi to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

None, NOT EVEN FLAGS.

20.4.23 BoardFloppyDma Procedure

The BoardFloppyDma function is called with procedure linkage to program the DMA controller
to perform a DMA operation for floppy disk I/O. Typically, this routine calls CpuFloppyDma,
although other actions, such coordinating activities between a Super I/O package and a chipset,
may need to be handled here.

584 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

If on-board DMA hardware is not available, this routine should return with carry set. Otherwise,
it should perform the operation and return with carry clear if the operation was successful, or set
if the DMA operation failed.

This routine will be called if OPTION_SUPPORT_FLOPPY, OPTION_FLOPPY_DMA, and
OPTION_DMA_BOARD are enabled. Normally, this routine calls CpuFloppyDma to route
the request to the CPU module.

Input Parameters:

DX:BX - 32-bit linear address of buffer.
CX - 16-bit byte count for transfer.
AH - DMA operation code, as follows:

00h - DMA to memory from I/O (read).
01h - DMA from memory to I/O (write/format).
02h - DMA from I/O, no memory (verify).

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

AX, BX, CX, DX, Flags.

20.4.24 BoardFsInit Procedure

The BoardFsInit function is called with procedure linkage by the File System Control Layer
(FSCL) during POST to give the BPM the chance to intervene on the initialization of a file
system.

Normally, FSCL makes FsInit calls to all of the enabled file systems defined in the
FILE_SYSTEM table in the project file. However, the board-level design may require that
certain file system definitions be modified, such as the size and location of ROM, RAM, or Flash
memory to be used by a certain file system.

The mechanism that the board module uses to determine the availability of ROM, RAM, Flash,
or other media in the system is OEM-specific. For example, a jumper could be read from an I/O
port or an 8042 pin. Or, a memory test could be performed to verify the existence of the memory
in the address space. For applications where a file system engages a host machine via protocol
over a transmission media such as Ethernet or RS-232, the board module may use this
opportunity to initialize any OEM-specific hardware that allows the transmission to take place.

This function gets called on every FsInit call. This means the board module may need to
distinguish between file systems by inspecting the FS_UNIT and FS_PACKET data structures.
For information about the organization of these structures, and the FSCL in general, see Chapter
12.

This entrypoint obsoletes the BoardInitAppRom function; use of the latter is discouraged.

Chapter 20 EMBEDDED BIOS Adaptation Guide 585

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - Major function code (FSCALL_INIT).
SI - Subfunction code (FSCALL_HARD or FSCALL_SOFT).
DX:CX - 0:0 (logical block address for a possible read of the boot record).
DS:DI - 16:16 segment offset pointer to the FS_UNIT structure for this file system.
SS:BP - 16:16 segment offset pointer to the FS_PACKET structure for this file system.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

20.4.25 BoardGetPciInfo Procedure

The BoardGetPciInfo function is called with procedure linkage from the PCI Configuration
Manager in the core BIOS to return a bitmask in the BX CPU register of the system IRQ levels
that are assigned for PCI use.

Only those interrupt levels supported by the chipset should be returned. If no interrupts are
assignable by the chipset, the value 0000h should be returned.

This routine will be called if OPTION_SUPPORT_PCI is enabled. Normally, this routine calls
CsGetPciInfo to route the request to the chipset module.

This function must be implemented in the dual-build (16-bit/32-bit) file of the BPM
(BPM1632.ASM) in order to support both the 16-bit and 32-bit PCI services.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.
BX - bitmask of assignable IRQ levels (bits set-IRQs assignable).

Unpreserved Registers:

Flags.

20.4.26 BoardHelp1 Procedure

The BoardHelp1 function is called with procedure linkage from certain implementations of
CPM or CSPM functions, to perform board-level functions for the CPM or CSPM. Generally,
BPM routines call down to CPM and CSPM functions, but occasionally, there is a need for CPM

586 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

and CSPM functions to access code specific to a board’s design. The purpose of this routine
(and BoardHelp2) is to provide an unarchitected entrypoint that is always present, that can
perform whatever functions required by the OEM.

An example of the use of this unarchitected entrypoint is in the implementation of the AMD
SC300 CSPM, where the CSPM must become aware of the board’s use of the LCD controller
before making a decision about how to program the LCD controller.

The core BIOS does not call this function. It is reserved for the OEM.

Input Parameters:

Unarchitected.

Output Parameters:

Unarchitected.

Unpreserved Registers:

Unarchitected.

20.4.27 BoardHelp2 Procedure

The BoardHelp2 function is called with procedure linkage from certain implementations of
CPM or CSPM functions, to perform board-level functions for the CPM or CSPM. Generally,
BPM routines call down to CPM and CSPM functions, but occasionally, there is a need for CPM
and CSPM functions to access code specific to a board’s design. The purpose of this routine
(and BoardHelp1) is to provide an unarchitected entrypoint that is always present, that can
perform whatever functions required by the OEM.

The core BIOS does not call this function. It is reserved for the OEM.

Input Parameters:

Unarchitected.

Output Parameters:

Unarchitected.

Unpreserved Registers:

Unarchitected.

20.4.28 BoardIdeAutoDetect Procedure

The BoardAutoDetectIde function is called with procedure linkage from the IDE/ATA file
system driver to allow the BPM to perform custom IDE autodetection and set board/chipset
parameters as necessary to accommodate faster data transfer rates.

Chapter 20 EMBEDDED BIOS Adaptation Guide 587

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

ES:DI – 16:16 pointer to IDE drive identification table.
AX – Sectors per cylinder from FSD’s autodetection.
BX – Sectors per track from FSD’s autodetection.
CX – Number of heads from FSD’s autodetection.
DX – Number of cylinders from FSD’s autodetection.

Output Parameters:

AX – Sectors per cylinder as modified by BPM.
BX – Sectors per track as modified by BPM.
CX – Number of heads as modified by BPM.
DX – Number of cylinders as modified by BPM.

Unpreserved Registers:

Flags.

20.4.29 BoardInit0 Routine

The BoardInit0 function is normally called with routine linkage to perform very early
initialization of the system, including participating in the decision about whether a warm boot or
a cold boot has occurred.

This routine is called before the CMOS shutdown byte is tested during POST. Code should not
be placed in this routine that could otherwise be placed in BoardInit1, since the bulk of
initialization should be placed there unless there is a good reason not to place it there.

Called from POST, this function accepts as a parameter in the SP register a value of 0 if a cold
boot has occurred, or -1 if POST has determined that a warm boot may have occurred. If this
routine determines that a cold boot has occurred, then it sets SP to 0. Similarly, if it determines
that a warm boot may have occurred, then it sets SP to -1. If it has no additional information to
provide POST during the boot detection process, then it does not change SP.

Commonly, this routine calls CpuInit0 and CsInit0, to initialize the CPU and chipset
respectively, and to allow these modules to participate in the determination about whether a
warm or cold boot has occurred.

This routine is entered with interrupts disabled and cannot enable them.

Input Parameters:

DS - BIOS data segment (40h).
SP - 0 if POST detects cold boot, else -1 if possible warm boot.

Output Parameters:

DS - BIOS data segment (40h).
SP - 0 if BPM detects cold boot, else -1 if possible warm boot.

588 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

All but DS, BP, including SS.

20.4.30 BoardInit1 Routine

The BoardInit1 function is called with routine linkage to perform the bulk of initialization of the
system. This may include the CPU, chipset, Super I/O controllers, and all other functions of the
board that must be initialized, especially relating to DRAM control, bus clocking, and enabling
or disabling of certain functions as the design requires.

Normally, this routine calls CpuInit1 and CsInit1 to initialize the CPU and chipset, respectively.
The BPM implementor may elect to remove either or both of these calls, and handle the relevant
initialization directly in the BPM, if desired.

Alternatively, the BPM implementor may provide additional initialization beyond what
CpuInit1 and CsInit1 provide. For example, a Super I/O controller’s function control registers
may need to be initialized so that UARTs, a floppy disk controller, parallel ports, and an IDE
interface be made available to the system. In other cases, it may be necessary to disable certain
duplicated functions found in both the chipset and in a Super I/O controller.

This routine is entered with interrupts disabled and cannot enable them.

Input Parameters:

DS - BIOS data segment (40h).

Output Parameters:

CY - set if failure, else clear if success.
DS - BIOS data segment (40h).

Unpreserved Registers:

All but DS, BP, including SS.

20.4.31 BoardInit4 Procedure

The BoardInit4 function is called in the middle of POST with procedure linkage to perform any
initialization that may be required by the BPM after DRAM is operational, but before the
keyboard and video controllers are initialized.

If no custom initialization is required at this point by the OEM’s design, then this routine need
not be implemented by the OEM.

Input Parameters:

None.

Chapter 20 EMBEDDED BIOS Adaptation Guide 589

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

CY - set if failure, else clear if success.
DI - POST_BEEP_BOARD, if failure.

Unpreserved Registers:

All but DS, SS, and SP.

20.4.32 BoardInit6 Procedure

The BoardInit6 function is called in the middle of POST with procedure linkage to perform any
initialization that may be required by the BPM after the keyboard and video controllers have
been initialized, but before the power-on message is displayed.

If no custom initialization is required at this point by the OEM’s design, then this routine need
not be implemented by the OEM.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

All but DS, SS, and SP.

20.4.33 BoardInit8 Procedure

The BoardInit8 function is called at the end of POST, after Manufacturing Mode initialization
has taken place, but before the Configuration Box has been displayed, in preparation for booting
the operating system. This function’s architected purpose is to allow the BPM to receive control
at a time when it is safe to configure the chipset, Super I/O, and/or high-integration CPU in
special ways according to the values stored in the BPM’s proprietary CMOS cells.

See also BoardInitFields, which also reads the contents of these unarchitected CMOS cells and
stores the information in the RAM array used by the Custom SETUP screen, and
BoardSaveFields, which is called by the Custom SETUP screen to save changes in RAM back
to CMOS.

If no custom SETUP is required in the design, then this routine need not be implemented by the
OEM.

Input Parameters:

None.

590 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

None.

Unpreserved Registers:

All but SS and SP.

20.4.34 BoardInitAppRom Routine

The BoardInitAppRom function is called with procedure linkage during POST right before the
application (or operating system) ROM at the usual E000h segment is called as a ROM
extension. This allows the BPM to receive control so that it may cause the ROM to be visible in
the address space at the time the call is made, in systems where this segment serves several
purposes.

The segment value E000h is configurable. The actual configuration parameter that is used to
change this value is CONFIG_MINI_DOS_SCAN, documented in Chapter 7.

This function has been made obsolete by function BoardFsInit. Use of BoardInitAppRom in
future designs is discouraged.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

20.4.35 BoardInitDma Routine

The BoardInitDma function is called with routine linkage to test and initialize the DMA
controller hardware in the system, and to return a status that indicates whether there are any
failures in the hardware.

If no DMA controller hardware is available, or if the adaptation engineer does not wish to test the
hardware, then this function should return with the carry flag clear. If the hardware tested and
initialized properly, then this routine returns with the carry flag clear if the hardware is found to
be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_DMA_BOARD is enabled. Normally, this routine calls
CpuInitDma to route the request to the CPU module.

Chapter 20 EMBEDDED BIOS Adaptation Guide 591

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

20.4.36 BoardInitFields Procedure

The BoardInitFields function is called by the SETUP screen system to initialize the RAM
scratch area used by the Custom SETUP screen with values read from the unarchitected CMOS
cells maintained by the BPM.

The Custom SETUP screen never manipulates these CMOS cells directly; rather, it requests that
BoardInitFields interpret and initialize the RAM fields accordingly (which it then uses), and
then upon exit from the Custom SETUP screen, BoardSaveFields is called to interpret the RAM
scratch area fields and store appropriate values in CMOS.

See also BoardInit8, which also reads the contents of these unarchitected CMOS cells and uses
that information to program the chipset and Super I/O controller, and BoardSaveFields, which is
called by the Custom SETUP screen to save changes in RAM back to CMOS.

If no custom SETUP is required in the design, then this routine need not be implemented by the
OEM.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

All but SS and SP.

20.4.37 BoardInitIntCtrl Routine

The BoardInitIntCtrl function is called with routine linkage to test and initialize the interrupt
controller hardware in the system, and to return a status that indicates whether there are any
failures in the hardware.

592 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

If no interrupt controller hardware is available, or if the adaptation engineer does not wish to test
the hardware, then this function should return with the carry flag clear. If the hardware tested
and initialized properly, then this routine returns with the carry flag clear if the hardware is found
to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_INT_BOARD is enabled. Normally, this routine calls
CpuInitIntCtrl to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

20.4.38 BoardInitRefresh Routine

The BoardInitRefresh function is called with routine linkage to test and initialize the DRAM
refresh controller hardware in the system, and to return a status that indicates whether there are
any failures in the hardware.

If no refresh controller hardware is available, or if the adaptation engineer does not wish to test
the hardware, then this function should return with the carry flag clear. If the hardware tested
and initialized properly, then this routine returns with the carry flag clear if the hardware is found
to be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_REFRESH_BOARD is enabled. Normally, this routine
calls CpuInitRefresh and CsInitRefresh to route the request to the CPU and chipset modules,
respectively.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

Chapter 20 EMBEDDED BIOS Adaptation Guide 593

General Software EMBEDDED BIOS Adaptation Guide

20.4.39 BoardInitTimer Routine

The BoardInitTimer function is called with routine linkage to test and initialize (i.e., start
running) any timers in the system, and to return a status that indicates whether there are any
failures in the timer hardware.

If no timers are available, or if the adaptation engineer does not wish to test the timers, then this
function should return with the carry flag clear. If timers are tested and initialize properly, then
this routine returns with the carry flag clear if the timers are operational, or set if they fail the
test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_TIMER_BOARD is enabled. Normally, this routine
calls CpuInitTimer to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

20.4.40 BoardInitWatchdog Routine

The BoardInitWatchdog function is called with routine linkage to test and initialize the
watchdog timer hardware in the system, and to return a status that indicates whether there are any
failures in the watchdog timer hardware.

If no watchdog timer is available, or if the adaptation engineer does not wish to test the
hardware, then this function should return with the carry flag clear. If the hardware tested and
initialized properly, then this routine returns with the carry flag clear if the hardware is found to
be operational, or set if it fails the test.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG and
OPTION_WATCHDOG_BOARD are enabled. Normally, this routine calls
CpuInitWatchdog or CsInitWatchdog to route the request to the CPU or chipset modules,
respectively.

Input Parameters:

594 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP, including SS.

20.4.41 BoardKickWatchdog Procedure

The BoardKickWatchdog function is called with procedure linkage to restart the watchdog
timer controller hardware in the system, if it exists. Restarting causes the timer to be reloaded, so
that it will take the entire expiration period for the timer to expire.

If no hardware is available, then this function should return with the carry flag clear. If the
hardware exists, then this routine returns with the carry flag set if the hardware cannot be
restarted.

This routine is entered with interrupts disabled and cannot reenable them.

This routine will be called if OPTION_SUPPORT_WATCHDOG and
OPTION_WATCHDOG_BOARD are enabled. Normally, this routine calls
CpuKickWatchdog or CsKickWatchdog to route the request to the CPU or chipset modules,
respectively.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

All but BP.

20.4.42 BoardMapAddress Procedure

The BoardMapAddress function is normally called by Media Control Layer in the core BIOS
with procedure linkage to translate a 32-bit media address to either a real-mode windowed
address or a 32-bit physical address.

Normally, this routine calls the underlying CsMapAddress function in the CSPM, so that the
chipset has a chance to perform a windowing function to keep the mapping in real mode, if
possible. Then, if the CSPM does not implement the windowing function, it uses direct physical
mapping if the address is over 1MB, and real mode mapping if under 1MB.

Chapter 20 EMBEDDED BIOS Adaptation Guide 595

General Software EMBEDDED BIOS Adaptation Guide

Occasionally, it may be necessary for this routine to adjust the 32-bit media address before
passing it on to the CsMapAddress function. For example, if a discontiguous Flash array
consisted of separate devices in different address spaces, this routine could modify incoming
addresses (perhaps through a lookup table) and present a contiguous media address space, even
though the parts were discontiguous in the address space.

This routine is called if OPTION_SUPPORT_MCL is enabled.

If a direct physical mapping is to be performed, then the CY flag should be cleared on exit.

Input Parameters:

DX:AX - 32-bit media address (see Chapter 13 for details).

Output Parameters:

CY - set if result is 16:16 real mode, else clear if 32-bit physical address.

If real mode translation:

DX:AX - 16:16 real-mode translation of the input address.
CX - number of bytes visible at the address within the window.

If physical translation:

DX:AX - 32-bit physical address corresponding to the 32-bit media address.

Unpreserved Registers:

Flags.

20.4.43 BoardPciControl Procedure

The BoardPciControl function is called with procedure linkage from several places in the PCI
device manager of the 16-bit core BIOS to provide notification and opportunity for control at
various places during initialization. It may be used to debug and control PCI VGA boot device
selection and System IRQ to PCI INT routing.

This routine is notified when PCI VGA devices have been detected, when enumeration is
completed, when the PCI VGA boot device is being assigned, and when the PCI VGA scan is
completed.

BoardPciControl accepts may be used to modify the policy used for selection of the PCI VGA
boot device. When this routine is called, the caller within the core BIOS passes a context
associated with the call in the top half of the EAX general purpose register. This BPM routine
can then inspect the EAX register to determine whether the call is of interest or not.

When called with the context set to BPC_FUNC_VGA_SCAN or BPC_FUNC_VGA_SCAN0,
then AX contains the encoded bus, device, and function value for a detected PCI VGA device.
The value in AX may be inspected and stored if it is the best candidate found thus far, or a list

596 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

may be stored to allow a final decision to be made when this routine is called with context
BPC_FUNC_GET_VGA_LOC. In order to scan all PCI VGA devices, the AX register should
be set to 0FFFFh before returning from the BPC_FUNC_VGA_SCAN and
BPC_FUNC_VGA_SCAN0 invocations. Finally, when this routine is called with the
BPC_FUNC_GET_VGA_LOC context, the AX register should be set by this routine to the
chosen bus, device, and function number (encoded appropriately) of the PCI VGA device used
for POST.

The default policy for selecting the PCI VGA boot device is to select the PCI VGA device found
on the highest-numbered PCI bus, or the highest-numbered device found on PCI bus 0. The
reasoning for this policy is that rack-mounted equipment with Compact PCI, for example, might
have the highest-numbered PCI bus available for a technician to plug-in a VGA card. There
might exist VGA devices elsewhere on the bus hierarchy that do not have connectors. Likewise,
on bus 0, the board may implement an on-board VGA and it would be desirable to be able to
override it with a PCI VGA add-in card.

For System IRQ to PCI INT routing, this BPM routine is called when the initial routing has been
made, when the routing is modified by the PciIrqTbl, and when the final assignment is made
just before BoardAssignPciIrq is called for each PCI INT line, where at least one PCI device
has requested the assignment of an IRQ.

For BPC_FUNC_SCAN or BPC_FUNC_VGA_SCAN0 contexts, this routine must only return
in AX the incoming value of AX or 0FFFFh. Other values will cause undefined and most likely
erroneous system behavior.

This routine must not respond to unknown BPC_FUNC values; in these cases, all registers must
be preserved, for forward compatibility.

This routine will be called if OPTION_SUPPORT_PCI is enabled.

Input Parameters:

High portion of EAX – A 16-bit context, defined in INC\PCI.INC, that defines the reason
for the call to this BPM routine. The following pre-defined values are architected
at the time of this writing:

BPC_FUNC_VGA_SCAN – Scan found VGA, not on PCI bus 0.
BPC_FUNC_ENUM_DONE – PCI enumeration completed.
BPC_FUNC_VGA_SCAN0 – Scan found VGA on PCI bus 0.
BPC_FUNC_GET_VGA_LOC – Return desired boot VGA bus/dev/func.
BPC_FUNC_SCAN_VIDEO_DONE – Video scan completed.
BPC_FUNC_INIT_PCI_IRQ – (EDX) = initial IRQ to PCI INT routing.
BPC_FUNC_IRQ_REROUTE – Rerouting PCI INT line due to PciIrqTbl.
BPC_FUNC_FINAL_PCI_IRQ – (EDX) = final IRQ to PCI INT routing.

Other input parameters depend on the input context, as follows:

BPC_FUNC_VGA_SCAN:

AX – Detected PCI VGA bus/dev/func.

BPC_FUNC_VGA_SCAN0:

Chapter 20 EMBEDDED BIOS Adaptation Guide 597

General Software EMBEDDED BIOS Adaptation Guide

AX – Detected PCI VGA bus/dev/func.

BPC_FUNC_ENUM_DONE:

No input parameters.

BPC_FUNC_GET_VGA_LOC:

AX – Proposed PCI VGA bus/dev/func for VGA boot device. A value of 0FFFFh
indicates no PCI VGA boot device has been found or selected yet.

BPC_FUNC_SCAN_VIDEO_DONE:

No input parameters.

BPC_FUNC_INIT_PCI_IRQ:

EDX – Contains the initial routing of System IRQs to PCI INTs, one routing
assignment per 8-bit byte. Thus bits 0-7 contain the IRQ assignment for
PCI INT#A, bits 8-15 contain the IRQ for PCI INT#B, and so on. Note
that IRQ 0 is not a valid assignment for PCI INTs and is used to indicate
an initial assignment could not be made.

BPC_FUNC_IRQ_REROUTE:

BX – Specifies the PCI bus/dev/func whose PciIrqTbl entry conflicts with the
current System IRQ to PCI INT routing.

SI – Specifies the PCI INT line (0=A, 1=B, 2=C, 3=D) being rerouted because of
a conflict with a PciIrqTbl entry.

AH – Specifies the current IRQ routed to the line specified by the parameter in the
SI register.

AL – Specifies the new IRQ assignment for the line specified by the parameter in
the SI register.

BPC_FUNC_FINAL_PCI_IRQ:

EDX – Contains the final routing of System IRQs to PCI INTs, one routing
assignment per 8-bit byte. Thus bits 0-7 contain the IRQ assignment for
PCI INT#A, bits 8-15 contain the IRQ for PCI INT#B, and so on. Note
that IRQ 0 is not a valid assignment for PCI INTs and is used to indicate
an initial assignment could not be made.

Output Parameters:

Output parameters depend on the input context, as follows:

BPC_FUNC_VGA_SCAN:

AX – Accepted PCI VGA bus/dev/func, or 0FFFFh to continue the scan.

598 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

BPC_FUNC_VGA_SCAN0:

AX – Passed through bus/dev/func from entry only of PCI VGA device as PCI bus
0 is scanned, or 0FFFFh to continue scanning.

BPC_FUNC_ENUM_DONE:

No output parameters.

BPC_FUNC_GET_VGA_LOC:

AX – Accepted PCI VGA bus/dev/func for VGA boot device. A value of 0FFFFh
indicates no PCI VGA boot device has been found or selected.

BPC_FUNC_SCAN_VIDEO_DONE:

No output parameters.

BPC_FUNC_INIT_PCI_IRQ:

EDX – Contains the initial routing of System IRQs to PCI INTs, which may be
modified from the input parameter, but is likely to be overridden by the
PciIrqTbl. Use BPC_FUNC_FINAL_PCI_IRQ to control the final
assignment of PCI IRQ routing.

BPC_FUNC_IRQ_REROUTE:

AL – Specifies the new IRQ assignment for the line specified by the parameter in
the SI register. Changing the value passed in is discouraged since it
should be possible to fix the problem by editing the PciIrqTbl, but there
may be circumstances where this might be necessary.

BPC_FUNC_FINAL_PCI_IRQ:

EDX – Contains the final routing of System IRQs to PCI INTs, as modified (or
untouched) by this BPM function.

Unpreserved Registers:

Flags.

20.4.44 BoardPciReadScratch Procedure

The BoardPciReadScratch function is called with procedure linkage from the PCI subsystem in
the core BIOS to read from an 8-bit hardware location that does not involve a RAM access.
There is no requirement that the contents of this storage location survive across a warm or cold
boot. This mechanism is necessary because it may be called in a protected mode context in
which there is no addressibility to the BIOS Data Area or the Extended BIOS Data Area.

This routine will be called if OPTION_SUPPORT_PCI is enabled. The default BPM routine
uses an architected CMOS cell for this purpose. The OEM may supply an alternate mechanism

Chapter 20 EMBEDDED BIOS Adaptation Guide 599

General Software EMBEDDED BIOS Adaptation Guide

for reading and writing this data by defining new implementations for the
BoardPciReadScratch and BoardPciWriteScratch routines.

This function must be implemented in the dual-build (16-bit/32-bit) file of the BPM
(BPM1632.ASM) in order to support both the 16-bit and 32-bit PCI services.

Input Parameters:

None.

Output Parameters:

AL – value read from storage area.

Unpreserved Registers:

Flags.

20.4.45 BoardPciWriteScratch Procedure

The BoardPciWriteScratch function is called with procedure linkage from the PCI subsystem
in the core BIOS to write to an 8-bit hardware location that does not involve a RAM access.
There is no requirement that the contents of this storage location survive across a warm or cold
boot. This mechanism is necessary because it may be called in a protected mode context in
which there is no addressibility to the BIOS Data Area or the Extended BIOS Data Area.

This routine will be called if OPTION_SUPPORT_PCI is enabled. The default BPM routine
uses an architected CMOS cell for this purpose. The OEM may supply an alternate mechanism
for reading and writing this data by defining new implementations for the
BoardPciReadScratch and BoardPciWriteScratch routines.

This function must be implemented in the dual-build (16-bit/32-bit) file of the BPM
(BPM1632.ASM) in order to support both the 16-bit and 32-bit PCI services.

Input Parameters:

AL – value to write to storage area.

Output Parameters:

None.

Unpreserved Registers:

Flags.

20.4.46 BoardPostCodeCom Routine

The BoardPostCodeCom function is called with routine linkage from the POSTCODECOM
macro to cause a null-terminated ASCII string to be displayed on the POSTCODECOM

600 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

debugging device managed by this BPM routine. Because this routine has register linkage and
not stack linkage, and because it is called by the POSTCODECOM macro in situations where
destroyed registers could negatively impact POST, this routine must be carefully crafted to avoid
using any memory, stack, or destroy additional registers besides those allowed to be destroyed,
as indicated below.

The default implementation of this BPM routine writes the ASCIIZ string to an 8250-compatible
UART device addressed at the I/O location specified by the
CONFIG_POST_PROGRESS_COM. The UART’s communication parameters are set by the
BoardPostCodeComInit BPM function, described elsewhere in this Chapter.

The CONFIG_WAIT_PROGRESS_COM parameter is used by the default implementation of
this routine to determine how the routine will handle handshaking with the monitoring host. By
default, RTS/CTS is used (the value of this parameter is set to 0). When this value is nonzero,
then the value is interpreted by the default version of this BPM routine as a delay factor to pause
between each character being printed. This allows the feature to work with very minimal
hardware setup established. Note that the spin loop, by its very nature, can behave differently
when cache is enabled/disabled, and when the BIOS is shadowed or not. Therefore, the delay
may have to be established with an excessively high value to accommodate fast processors with
L2 cache and shadowing enabled. This will result in slow progress messages during early POST.
These restrictions only apply when the OEM changes the value of this parameter to
accommodate a hardware-limited situation where RTS/CTS cannot be used.

Note that if the BPM subsequently reprograms the UART or the component containing the
UART (such as a Super I/O component or Southbridge part), then this function may appear to
stop working. The responsibility for not reprogramming the address or communications
parameters of the UART being used for this service to ensure continued operation during POST
remains with the OEM.

This routine has a very special linkage convention because of its use throughout the core BIOS in
different (and sometimes limited) contexts. Particularly, the return address is automatically
calculated by advancing BP to the location immediately following the zero byte, where the next
instruction after the POSTCODECOM macro invocation can be found. Thus, the following is a
general format of a POSTCODECOM macro expansion within a framework of surrounding
code:

... executable instructions here ...
Rcall BoardPostCodeCom
db ‘Here is the string to print.’, 0
... more executable instructions here ...

Input Parameters:

CS:BP – Specifies a 16:16 real-mode pointer to an ASCIIZ (null-byte terminated) string.

Output Parameters:

None.

Unpreserved Registers:

AL, DX, and Flags.

Chapter 20 EMBEDDED BIOS Adaptation Guide 601

General Software EMBEDDED BIOS Adaptation Guide

20.4.47 BoardPostCodeComInit Routine

The BoardPostCodeComInit function is called with routine linkage from the mainline POST to
initialize the POSTCODECOM debugging system, used by the POSTCODECOM macro to
generate ASCIIZ progress messages on a debugging output device.

The default implementation of this BPM routine initializes the communication parameters of an
8250-compatible UART device addressed at the I/O location specified by the
CONFIG_POST_PROGRESS_COM. The parameters are set to no parity, 8 data bits, one
stop bit, and a baud rate specified by CONFIG_POST_PROGRESS_BAUD. Note that if the
UART being addressed is embedded in a Super I/O or Southbridge component, the large
component must be properly configured, usually through additional programming, to cause the
UART device to be enabled so that the programming in this routine can operate. This
programming should be placed in this routine as well.

Note that if the BPM subsequently reprograms the UART or the component containing the
UART (such as a Super I/O component or Southbridge part), then this function may appear to
stop working. The responsibility for not reprogramming the address or communications
parameters of the UART being used for this service to ensure continued operation during POST
remains with the OEM.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

AX, DX, and Flags.

20.4.48 BoardMemConfig Routine

The BoardMemConfig routine is normally called by POST with routine linkage to program the
chipset to determine how many memory banks are available, what size of SIMMs are in each
bank, and how the banks are to be interleaved and positioned in the address space.

Normally, this routine calls CsMemConfig in the CSPM to perform the work; however, at the
BPM implementor’s option, this work may be done in the BPM in this routine by inserting the
code in this routine and removing the call to CsMemConfig.

This routine is called after the chipset has been initialized and DRAM refresh has been activated.
However, no stack yet exists because low memory (the base 64KB) has not been tested.
Therefore, this routine is not called with a valid stack, but may create one temporarily in the
bottom 64KB of memory in order to perform certain functions. This would be a rare case, since
all DRAM configuration methods implicitly require manipulation of chipset registers to change
the RAS and CAS assignments of banks of DRAM in the system, and changing this while the

602 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

stack has valid data on it will cause the data to mapped to different locations or made
unavailable.

It may be necessary to switch to protected mode temporarily during this routine’s operation to
test memory above 1MB. For sample code, consult routines ToProt and ToReal in
HELPER.ASM. During extended memory testing, make sure that the A20 gate is properly
enabled, or memory addresses will wrap to lower memory.

Typically, the algorithm by which the memory geometry is determined is provided by the chipset
manufacturer. If you need help implementing this routine, consult the manufacturer for the
recommended algorithm. Remember that you can either perform this work in this function, or in
the BoardInit1 routine, although BoardInit1 would need to enable DRAM refresh if that were
the case.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.
DI - if failure, POST_BEEP_CHIPSET.

Unpreserved Registers:

All but BP and SS.

20.4.49 BoardPwrLvl Procedure

The BoardPwrLvl function is called with procedure linkage to notify the BPM of a change in
power state in the system. This function is called by the Power Management Subsystem in the
core BIOS, when the Board device is enabled in the POWER_DEVID device tree.

If no power control hardware is available, then this function should return with the carry flag
clear. If the hardware exists, then this routine returns with the carry flag set if the hardware fails
to perform the requested operation.

This routine is called if OPTION_SUPPORT_POWERMAN is enabled; and then
OPTION_POWERMAN_BOARD is enabled and the Board device is in the device tree.

Input Parameters:

DS - segment of the extended BIOS data area (EBDA).
BX - device index of the board itself.
CL - new power level.
CH - old power level.

Output Parameters:

CY - set if failure, else clear if success.

Chapter 20 EMBEDDED BIOS Adaptation Guide 603

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

DS, BX, CL, Flags.

20.4.50 BoardPostError Routine

The BoardPostError function is called with routine linkage by POST when a critical error
occurs. This allows the BPM to take actions for purposes of logging errors, reporting a
malfunction with a visual indicator, or interacting with a debugger in the lab.

The default version of this routine calls BoardTestMode to determine if the Manufacturing
Mode hardware is attached, and if so, it enters Manufacturing Mode. The OEM may replace this
functionality with whatever is required for a given design.

This routine is called if OPTION_CRITICAL_BOARD is enabled.

If this routine returns, then control will continue in POST to the next critical error handler (such
as the speaker beep code). If this routine does not return, then it may perform any desired action,
such as rebooting the system or halting.

Input Parameters:

DI - Beep code (see POSTERR.INC), normally used as a number of speaker beeps.

Output Parameters:

DI - Beep code as above.

Unpreserved Registers:

All but DI.

20.4.51 BoardReboot Procedure

The BoardReboot function is called with coroutine linkage to handle a reboot request that
originates from the debugger, the CTL-ALT-DEL mechanism, or other internal functions of the
BIOS.

This routine will be called if OPTION_REBOOT_BOARD is enabled. Normally, this routine
calls CpuReboot or CsReboot to route the request to the CPU or chipset modules, respectively.

Input Parameters:

None.

Output Parameters:

None; should not return unless reboot cannot be performed.

604 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

Unpreserved Registers:

Flags.

20.4.52 BoardResetCmos Routine

The BoardResetCmos function is called with routine linkage by the core BIOS when the CMOS
must be initialized with factory default values. This routine may indicate to its caller that the
factory default table (initialized with configuration options maintained in the Project file), or the
routine may perform the work itself.

This routine’s purpose is to provide a way for the BPM implementor to write the CMOS data to
nonvolatile storage when the CMOS storage is volatile; i.e., when it does not employ a battery in
the design to save CMOS contents when power is removed from the system.

This routine will be called if OPTION_SUPPORT_CMOS is enabled.

Input Parameters:

None.

Output Parameters:

CY - set if factory default table should be used; clear if this routine performed the work.

Unpreserved Registers:

Flags.

20.4.53 BoardSaveCmos Procedure

The BoardSaveCmos function is called with procedure linkage by the SETUP screen system in
response to the user’s selection of “WRITE TO CMOS AND EXIT,” so that the BPM can save
the CMOS cell data to nonvolatile storage when the CMOS memory itself is volatile (no battery
is used in the design, for example).

Routine BoardResetCmos may be used in conjunction with this routine to provide the OEM
with a way to change the factory defaults in the production line or in the field without patching
the BIOS or rebuilding it.

This routine will be called if OPTION_SUPPORT_CMOS is enabled.

Input Parameters:

None.

Output Parameters:

Chapter 20 EMBEDDED BIOS Adaptation Guide 605

General Software EMBEDDED BIOS Adaptation Guide

None.

Unpreserved Registers:

Flags.

20.4.54 BoardSaveFields Procedure

The BoardSaveFields function is called by the SETUP screen system to interpret the fields in
the RAM scratch area used by the Custom SETUP screen and store appropriate values into the
unarchitected CMOS cells maintained by the BPM that represent the RAM scratch area fields’
contents.

The Custom SETUP screen never manipulates these CMOS cells directly; rather, it requests that
BoardInitFields interpret and initialize the RAM fields accordingly (which it then uses), and
then upon exit from the Custom SETUP screen, BoardSaveFields is called to interpret the RAM
scratch area fields and store appropriate values in CMOS.

See also BoardInit8, which also reads the contents of these unarchitected CMOS cells and uses
that information to program the chipset and Super I/O controller, and BoardInitFields, which is
called by the Custom SETUP screen to read the CMOS cells and initialize the RAM scratch area.

If no custom SETUP is required in the design, then this routine need not be implemented by the
OEM.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

All but SS and SP.

20.4.55 BoardSetFastSpeed Procedure

The BoardSetFastSpeed function is called with procedure linkage to switch the system’s
clocking to the highest speed supported by the hardware, if speed-switching hardware exists.

If no hardware is available, then this function should return with the carry flag clear. If the
hardware exists, then this routine returns with the carry flag set if the hardware cannot be
programmed.

This routine will be called if OPTION_SPEED_BOARD is enabled. Normally, this routine
calls CpuSetFastSpeed to route the request to the CPU module.

Input Parameters:

606 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

20.4.56 BoardSetSlowSpeed Procedure

The BoardSetSlowSpeed function is called with procedure linkage to switch the system’s
clocking to the slowest speed supported by the hardware, if speed-switching hardware exists.

If no hardware is available, then this function should return with the carry flag clear. If the
hardware exists, then this routine returns with the carry flag set if the hardware cannot be
programmed.

This routine will be called if OPTION_SPEED_BOARD is enabled. Normally, this routine
calls CpuSetSlowSpeed to route the request to the CPU module.

Input Parameters:

None.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

20.4.57 BoardSetVideoMode Procedure

The BoardSetVideoMode function is called with procedure linkage from the 6845 CRT
controller driver software in the core BIOS when it receives a request to set the video mode.

This call-out gives the BPM a chance to adjust the BIOS Data Area (BDA) fields set by the core
BIOS before they are actually used, so that the number of colums, rows, and other fields can be
changed. Changing these parameters in this routine is necessary to support certain LCD
controllers that support screen geometries other than than 25 lines and 80 columns.

This routine should perform no action if no translation of parameters is necessary. The OEM
should feel free to review VIDEO.ASM (the 6845 CRT driver in the core BIOS) to see the
conditions under which this routine is called, and use those conditions as necessary to make the
system work properly.

Chapter 20 EMBEDDED BIOS Adaptation Guide 607

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

See VIDEO.ASM.

Output Parameters:

See VIDEO.ASM.

Unpreserved Registers:

See VIDEO.ASM.

20.4.58 BoardSioReadReg Procedure

The BoardSioReadReg function is called with procedure linkage from the debugger to read a
register from a board-level entity, usually a Super I/O part or South Bridge PCI component. The
exact semantics are left to the implementor of the BPM.

This routine will be called if OPTION_SUPPORT_DEBUGGER is enabled.

Input Parameters:

AX – 16-bit register number to be read.

Output Parameters:

CY – set if failure to read register, else clear if success.
AX – if success, the 16-bit value read from the specified register.

Unpreserved Registers:

Flags.

20.4.59 BoardSioWriteReg Procedure

The BoardSioWriteReg function is called with procedure linkage from the debugger to write a
16-bit value to a register in a board-level entity, usually a Super I/O part or South Bridge PCI
component. The exact semantics are left to the implementor of the BPM.

This routine will be called if OPTION_SUPPORT_DEBUGGER is enabled.

Input Parameters:

AX – 16-bit register number to be written.
DX – 16-bit value to be written to the register.

Output Parameters:

608 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

CY – set if failure to read register, else clear if success.

Unpreserved Registers:

Flags.

20.4.60 BoardShadowArea Procedure

The BoardShadowArea function is normally called by POST with procedure linkage to shadow
an area of ROM using RAM remapped by the chipset. For procedural details about how
shadowing is typically performed in a system, see Chapter 19, routine CsShadowArea.

This routine will be called if OPTION_SUPPORT_SHADOW is enabled. Normally, this
routine calls CsShadowArea to route the request to the chipset module.

Input Parameters:

DI - index of area to shadow, as follows:

0000h - segment C000h.
0001h - segment C400h.
0002h - segment C800h.
0003h - segment CC00h.
0004h - segment D000h.
0005h - segment D400h.
0006h - segment D800h.
0007h - segment DC00h.
0008h - segment E000h.
0009h - segment E400h.
000ah - segment E800h.
000bh - segment EC00h.
000ch - segment F000h.

Output Parameters:

CY - set if failure, else clear if success.

Unpreserved Registers:

Flags.

20.4.61 BoardTestMode Procedure

The BoardTestMode function is called with procedure linkage to determine if the system should
enter Manufacturing Mode. This call-out allows the BPM implementor to provide code which
checks the status of a package pin, shunt, or other hardware mechanism in the hardware to make
this determination.

Because the BPM’s decision may be arbitrarily complex, it is possible for the implementor of
this routine to cause Manufacturing Mode to be entered if the hardware signal is present, or if a

Chapter 20 EMBEDDED BIOS Adaptation Guide 609

General Software EMBEDDED BIOS Adaptation Guide

software-programmable register is set to a specific value. This allows a target to be booted, and
with the debugger, the register can be set by the OEM in the lab. Upon rebooting the system,
Manufacturing Mode is then entered. Immediately upon entry into Manufacturing Mode, the
system calls BoardDisableTestMode, which allows the BPM implementor to reset this
software-programmable register so that the system does not continually enter Manufacturing
Mode thereafter.

The default version of this routine always returns a “do not enter Manufacturing Mode” value, so
that POST can continue to boot the operating system rather than enter Manufacturing Mode.

Input Parameters:

None.

Output Parameters:

CY - Set to enter Manufacturing Mode, else clear.

Unpreserved Registers:

Flags.

20.4.62 BoardTimerTick Procedure

The BoardTimerTick function is called with procedure linkage from the INT 08h timer tick
handler in the core BIOS, so that the BPM has a way to receive notification that timer ticks have
occurred.

The OEM may use this routine for any purpose that helps to implement other BPM functions,
such as timing out certain requests. The OEM may also want to use the routine for proprietary
value-added functions, such as the regular polling of hardware in the background, for example.

Commonly, this routine is coded to interact with other routines in the BPM through memory
fields in the Extended BIOS Data Area (EBDA), and most commonly, in the BoardData byte
array that is reserved for BPM use (see DATA.INC for layout of the EBDA).

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

20.4.63 BoardUnMapAddress Procedure

610 EMBEDDED BIOS Adaptation Guide Chapter 20

General Software EMBEDDED BIOS Adaptation Guide

The BoardUnMapAddress function is normally called by Media Control Layer in the core
BIOS with procedure linkage upon completion of a Media API request to allow the BPM
implementor to restore the registers previously changed by the BoardMapAddress procedure to
their original, user-defined, state.

Implementation of this routine is called for if BoardMapAddress is implemented, and if user-
level application code depends on the state of certain board-level or chipset-level hardware to
remain under the sole control of the application. It is not necessary to implement this routine
unless the restoration of mapping hardware registers is a requirement.

It should be noted that this routine is called once for each Media API request made, whether or
not that API request caused any calls to BoardMapAddress or not. The BoardUnMapAddress
function should be able to handle the condition where the BoardMapAddress function had
previously been called zero, one, or more times for the given Media API request that is causing
BoardUnMapAddress to be invoked. The recommended implementation method for the
engineer desiring to incorporate an unmap function is to use RAM variables located in the
EBDA’s BoardData array to save the old contents of the mapping registers in the
BoardMapAddress function, and then use an additional variable to indicate that the hardware
has been programmed and needs to be restored. Subsequent invocations of BoardMapAddress
can inspect the flag and not save additional copies of the registers until the flag is cleared. Then,
BoardUnMapAddress can inspect the flag to determine if the registers need to be restored or
not, and on that basis, use the values saved in the BoardData array by BoardMapAddress to
reprogram the original contents of the hardware mapping registers.

This routine is called if OPTION_SUPPORT_MCL is enabled.

Input Parameters:

None.

Output Parameters:

None.

Unpreserved Registers:

Flags.

20.4.64 BoardUnmaskInt Procedure

The BoardUnmaskInt function is called with procedure linkage to enable a specific interrupt
level in the system.

This routine will be called if OPTION_INT_BOARD is enabled. Normally, this routine calls
CpuUnmaskInt to route the request to the CPU module.

Input Parameters:

AL - interrupt vector level to initialize, as follows:

00h - IRQ0, or INT 08h.

Chapter 20 EMBEDDED BIOS Adaptation Guide 611

General Software EMBEDDED BIOS Adaptation Guide

01h - IRQ1, or INT 09h.
02h - IRQ2, or INT 0ah.
03h - IRQ3, or INT 0bh.
04h - IRQ4, or INT 0ch.
05h - IRQ5, or INT 0dh.
06h - IRQ6, or INT 0eh.
08h - IRQ7, or INT 0fh.

Output Parameters:

None.

Unpreserved Registers:

Flags.

Part III EMBEDDED BIOS Adaptation Guide 613

General Software EMBEDDED BIOS Adaptation Guide

PART III

BIOS FUNCTION REFERENCE

This part of the EMBEDDED BIOS reference documentation describes the Application
Programming Interface (API) exposed by the core BIOS to DOS, Windows and application
programs.

Chapter 21 EMBEDDED BIOS Adaptation Guide 615

General Software EMBEDDED BIOS Adaptation Guide

Chapter 21

BIOS FUNCTION REFERENCE

This chapter defines the application programming interface (API) to the BIOS services supported
by Embedded BIOS.

It is not intended to document interrupts that strictly do not provide services; consult Chapter 3
for an architectural overview of EMBEDDED BIOS including BIOS up-calls and tables pointed
to by interrupt vectors.

21.1 INT 10h, Video BIOS Services

This section explains the video BIOS application program interface (API). The video BIOS is
called through software interrupt 10H. Many services are provided to modify or inspect the
contents of the video display.

21.1.1 Set Video Mode (00h)

The Set Video Mode video BIOS function is called to set the video mode registers on the video
controller for the specified mode of operation. It then clears the screen, positions the cursor at
the upper left hand corner of the screen (0,0) and resets the color palette to known values.

Input Parameters:

AH - 00h, indicating the Set Video Mode Function.
AL - Video mode byte.

00h - Text mode, 16 colors, 40x25, 320x200.
01h - Text mode, 16 colors, 40x25, 320x200.
02h - Text mode, 16 colors, 80x25, 640x200.
03h - Text mode, 16 colors, 80x25, 640x200.
04h - Graphics, 4 colors, 40x25, 320x200.
05h - Graphics, 4 colors, 40x25, 320x200.
06h - Graphics, 2 colors, 80x25, 640x200.

616 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

07h - Text mode, monochrome, 80x25.
0dh - Graphics, 16 colors, 40x25, 320x200.
0eh - Graphics, 16 colors, 80x25, 640x200.
0fh - Graphics, monochrome, 80x25.
10h - Graphics, 4/16 colors, 80x25, 640x350.

Output Parameters:

AL - Video mode as actually set.

21.1.2 Set Cursor Size (01h)

The Set Cursor Size video BIOS function is called to set the size of the cursor in text modes.
The parameters are simply the top and bottom scan lines, in the form of bit masks.

Input Parameters:

AH - 01h, indicating the Set Cursor Size Function.
CH - Top scan line, a complex field as follows:

zz000000b - Must be zero.
00100000b - Shut cursor off.
000xxxxxb - Top scan line.

CL - Bottom scan line, a complex field as follows:

zzz00000b - Must be zero.
000xxxxxb - Bottom scan line.

Output Parameters:

none.

21.1.3 Set Cursor Position (02h)

The Set Cursor Position video BIOS function is called to set the (X,Y) coordinates of the
hardware cursor on the screen. The X coordinate is expressed as a column number, beginning
with 0 equal to the left-most column on the screen. The Y coordinate is a row number, beginning
with 0 equal to the top-most row on the screen.

Input Parameters:

AH - 02h, indicating the Set Cursor Position Function.
BH - Video page number (0 for first page).
DH - Row number (0=top-most row).
DL - Column number (0=left-most column).

Output Parameters:

Chapter 21 EMBEDDED BIOS Adaptation Guide 617

General Software EMBEDDED BIOS Adaptation Guide

AX - 0000h.

21.1.4 Read Cursor Position (03h)

The Read Cursor Position video BIOS function is called to return the (X,Y) coordinates of the
hardware cursor on the screen. The X coordinate is expressed as a column number, beginning
with 0 equal to the left-most column on the screen. The Y coordinate is a row number, beginning
with 0 equal to the top-most row on the screen.

Input Parameters:

AH - 03h, indicating the Read Cursor Position Function.
BH - Video page number (0 for first page).

Output Parameters:

AX - 0000h.
CH - Starting cursor scan line.
CL - Ending cursor scan line.
DH - Row number (0=top-most row).
DL - Column number (0=left-most column).

21.1.5 Read Light Pen Position (04h)

The Read Light Pen video BIOS function is called to return the position status of a lightpen.
EMBEDDED BIOS does nothing when this function is called.

Input Parameters:

AH - 04h, indicating the Read Light Pen Position Function.

Output Parameters:

AH - Activity flag:

00h - Light pen is not active.
01h - Coordinates returned.

BX - Pixel column (0-319).
CH - Raster line (0-199).
CL - Raster line (0-..)..
DH - Row number (0=top-most row).
DL - Column number (0=left-most column).

21.1.6 Select Video Page (05h)

618 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

The Select Video Page video BIOS function is called to change the page of the video buffer that
is displayed by the 6845 and mapped into its screen regen area (B000H for monochrome, or
B800H for color).

Input Parameters:

AH - 05h, indicating the Select Video Page Function.
AL - Page number, where 00h is the first page.

Output Parameters:

none.

21.1.7 Scroll Up Window (06h)

The Scroll Up Window video BIOS function is called to move the contents of a rectangular area
on the screen up by a specified number of lines. If the window is specified to cover the entire
screen, then the entire screen is scrolled.

Input Parameters:

AH - 06h, indicating the Scroll Up Window Function.
AL - Distance to scroll, in lines (0=blank window).
BH - Attribute byte to use on new lines.
CH - Top row of window.
CL - Left column of window.
DH - Bottom row of window.
DL - Right column of window.

Output Parameters:

none.

21.1.8 Scroll Down Window (07h)

The Scroll Down Window video BIOS function is called to move the contents of a rectangular
area on the screen down by a specified number of lines. If the window is specified to cover the
entire screen, then the entire screen is scrolled.

Input Parameters:

AH - 07h, indicating the Scroll Down Window Function.
AL - Distance to scroll, in lines (0=blank window).
BH - Attribute byte to use on new lines.
CH - Top row of window.
CL - Left column of window.
DH - Bottom row of window.
DL - Right column of window.

Output Parameters:

Chapter 21 EMBEDDED BIOS Adaptation Guide 619

General Software EMBEDDED BIOS Adaptation Guide

none.

21.1.9 Read Char/Attr From Screen (08h)

The Read Char/Attr Pair video BIOS function is called to return the character and attribute
located at the current cursor position for the specified page.

Input Parameters:

AH - 08h, indicating the Read Char/Attr Pair Function.
BH - Video page number (0=first page).

Output Parameters:

AH - Attribute byte.
AL - Character.

21.1.10 Write Char/Attr to Screen (09h)

The Write Char/Attr Pair video BIOS function is called to store a character and attribute at the
current cursor position for the specified page, without advancing the cursor. The function also
allows a repeat count to store multiple characters in sequential columns on the screen.

Input Parameters:

AH - 09h, indicating the Write Char/Attr Pair Function.
AL - Character to store.
BH - Video page number (0=first page).
BL - Attribute byte.
CX - Repeat count.

Output Parameters:

none.

21.1.11 Write Character to Screen (0ah)

The Write Character video BIOS function is called to store a character at the current cursor
position for the specified page, without advancing the cursor, using the attribute already defined
for that cursor position. The function also allows a repeat count to store multiple characters in
sequential columns on the screen.

Input Parameters:

AH - 0ah, indicating the Write Character Function.
AL - Character to store.
BH - Video page number (0=first page).
CX - Repeat count.

620 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

none.

21.1.12 Set Color Palette (0bh)

The Set Color Palette video BIOS function is called to initialize the 6845’s video palette register
for graphics modes.

Input Parameters:

AH - 0bh, indicating the Set Color Palette Function.
BH - 00h to set the background color for 320x200 graphics modes, or the border color for

320x200 text modes, or foreground color for 640x200 graphics mode. Otherwise,
01h to set the palette register for 320x200 graphics mode.

BL - Value to set.

Output Parameters:

none.

21.1.13 Write Pixel (0ch)

The Write Pixel video BIOS function is called to store a color value in a pixel addressed by a
specified row and column number in graphics mode.

Input Parameters:

AH - 0ch, indicating the Write Pixel Function.
AL - Color to set (set bit 10000000b for XOR mode).
BH - Video page number.
CX - Pixel column number.
DX - Pixel row number.

Output Parameters:

none.

21.1.14 Read Pixel (0dh)

The Read Pixel video BIOS function is called to return a color value in a pixel addressed by a
specified row and column number in graphics mode.

Input Parameters:

AH - 0dh, indicating the Read Pixel Function.
BH - Video page number.
CX - Pixel column number.

Chapter 21 EMBEDDED BIOS Adaptation Guide 621

General Software EMBEDDED BIOS Adaptation Guide

DX - Pixel row number.

Output Parameters:

AL - Color of pixel.

21.1.15 Write Teletype Mode (0eh)

The Write Teletype video BIOS function is called to write a character to the display at the current
cursor location, advancing the cursor to the next column. If the column would extend off the
right edge of the screen, the column is reset to 0, and the row is incremented. If the row would
move off the end of the screen, then the entire screen is scrolled.

The carriage-return, line-feed, and bell characters perform the same functions that they do on a
real teletype.

Input Parameters:

AH - 0eh, indicating the Write Teletype Mode Function.
AL - Character to write.
BL - Foreground color, but only for graphics modes.
BH - Video page number.

Output Parameters:

none.

21.1.16 Return Video Status (0fh)

The Return Video Status video BIOS function is called to return the number of columns on the
screen, the current video mode, and the active page number.

Input Parameters:

AH - 0fh, indicating the Return Video Status Function.

Output Parameters:

AH - Columns on the screen.
AL - Current display mode.
BH - Video page number.

21.2 INT 11h, Equipment List Service

The Equipment Status Interrupt is invoked to return the device flags as defined in the BIOS Data
Area’s DevFlags field.

Invocation:

622 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

INT 11H

Input Parameters:

none.

Output Parameters:

AX - Device flags.

21.3 INT 12h, Low Memory Size Service

The Low Memory Size Interrupt is invoked to return the size of low memory in kilobytes. This
function automatically decrements the returned size by the 1KB Extended BIOS Data Area,
located in the top 1KB of low memory.

To determine the amount of available extended memory, use INT 15h function 88h.

Invocation:

INT 12H

Input Parameters:

none.

Output Parameters:

AX - Kilobytes of low memory.

21.4 INT 13h, Disk Services

This section explains the disk BIOS application program interface (API). The disk BIOS is
called through software interrupt 13H. Services are provided to reset the disk system, read the
status of the last operation, read diskette sectors, write diskette sectors, verify diskette sectors,
format disk tracks, read drive parameters, read drive types, detect media changes, set the media
type, and set the media type for formatting.

Not all functions are available for all disk types. Note restrictions on each function that apply.
For example, the ROM disk does not support write-oriented operations such as Write Sectors,
Format Track, and so on.

The following error codes are returned by INT 13h services:

Status Description

00h No error
01h Invalid function
02h Address mark not found

Chapter 21 EMBEDDED BIOS Adaptation Guide 623

General Software EMBEDDED BIOS Adaptation Guide

03h Media write-protected
04h Sector not found
05h Reset failed
06h Media changed
07h Hard drive parameter is invalid
08h DMA overflow occurred
09h DMA operation crossed 64KB boundary
0ah Hard drive bad sector
0bh Hard drive bad track
0ch Invalid floppy disk media type
0dh Invalid number of sectors
0eh Control data address mark found
0fh DMA arbitration out of range
10h Unrecoverable read error
11h Recoverable data area (ECC corrected)
20h Floppy disk controller failure
40h Seek to invalid track
80h Timeout
aah Hard drive not ready
bbh Unknown hard disk drive error
cch Hard drive write error
e0h Hard drive status register error
ffh Hard drive sense operation failed

Most disk operations are sector, track, and head-based. When specifying these parameters in
INT 13h functions, the sector number is usually specified in the CL CPU register, and the low
eight bits of the cylinder number is specified in the CH CPU register. An additional two high
bits of cylinder number are stored in the top two bits of the CL CPU register, limiting the sector
number stored in the CL CPU register to six bits (values 0-63).

21.4.1 Reset (00h)

The Reset disk BIOS function is called to reset the disk subsystem (ROM, RAM, RFD, floppy,
and IDE). This function is used during POST and also whenever an error occurs as a result of a
disk operation.

Input Parameters:

AH - 00h, indicating the Reset Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Status code if failure (00h if success).

21.4.2 Read Status (01h)

The Read Status disk BIOS function is called to return the status of the last operation on the
specified drive. This status is invalidated when an intervening INT 13h function is invoked
(except for this function).

624 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 01h, indicating the Read Status Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - 00h.
AL - Disk status code of last operation (00h if success).

21.4.3 Read Sectors (02h)

The Read Sectors disk BIOS function is called to read a sector run from the specified drive into a
user-defined buffer. The read must not span a track or head boundary, and the buffer must not
cross a 64KB DMA boundary in the physical address space.

Input Parameters:

AH - 02h, indicating the Read Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually read.

21.4.4 Write Sectors (03h)

The Write Sectors disk BIOS function is called to write a sector run to the specified drive from a
user-defined buffer. The write must not span a track or head boundary, and the buffer must not
cross a 64KB DMA boundary in the physical address space.

This function returns an error when accessing the ROM disk.

Input Parameters:

AH - 03h, indicating the Write Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

Chapter 21 EMBEDDED BIOS Adaptation Guide 625

General Software EMBEDDED BIOS Adaptation Guide

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually written.

21.4.5 Verify Sectors (04h)

The Verify Sectors disk BIOS function is called to verify that the address marks on a specified
track can be read. It does not verify data integrity.

Input Parameters:

AH - 04h, indicating the Verify Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of buffer containing field data.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.6 Format Track (05h)

The Format Track disk BIOS function is called to format the specified track of a drive with
specific address marks.

This function returns an error when accessing the ROM disk.

Input Parameters:

AH - 05h, indicating the Format Sectors Function.
AL - Number of sectors/this track.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).

626 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

DL - Drive number.
ES:BX - Address of buffer containing field data.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.7 Read Drive Parameters (08h)

The Read Drive Parameters disk BIOS function is called to return the geometry and disk type
information for the specified drive. Additionally, the number of drives like the one specified is
returned; i.e., if a floppy drive number is supplied, then the number of floppy drives is returned
in the DL CPU register, and so on for hard drives. The ROM, RAM, and RFD drives count as
floppy drives.

Input Parameters:

AH - 08h, indicating the Read Drive Parameters Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
BH - 00h (floppy drives only).
BL - Drive type, as follows (floppy drives only):

01h - 5.25", 360KB, 40 tracks.
02h - 5.25", 1.2MB, 80 tracks.
03h - 3.5", 720KB, 80 tracks.
04h - 3.5", 1.44MB, 80 tracks.

CH - Bottom 8 bits of maximum track number.
CL - ttssssss, as follows:

tt = top two bits of 10-bit maximum track number,
ssssss = 6-bit maximum sector number.

DH - Maximum head number.
DL - Number of drives installed.
ES:DI - Pointer to the diskette parameter table entry for a floppy drive.

21.4.8 Initialize Hard Disk Controller (09h)

The Initialize Hard Disk Controller disk BIOS function is called to initialize the disk controller
with the values in the BIOS hard disk parameter tables pointed to by IVT entries 41h and 46h.
See Chapter 3 for a description of the data structures pointed to by these tables.

This function returns an error when accessing a floppy disk or its emulator.

Chapter 21 EMBEDDED BIOS Adaptation Guide 627

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 09h, indicating the Initialize Hard Disk Controller Function.
DL - Drive number (80h=C:, 81h=D:).

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.9 Read Long Sectors (0ah)

The Read Long Sectors disk BIOS function is called to read a sector run from the specified drive
into a user-defined buffer with a 4-byte error correction code (ECC) for each sector. The read
must not span a track or head boundary, and the buffer must not cross a 64KB DMA boundary in
the physical address space.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0ah, indicating the Read Long Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually read.

21.4.10 Write Long Sectors (0bh)

The Write Long Sectors disk BIOS function is called to write a sector run from the specified
drive from a user-defined buffer with a 4-byte error correction code (ECC) for each sector. The
write must not span a track or head boundary, and the buffer must not cross a 64KB DMA
boundary in the physical address space.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0bh, indicating the Write Long Sectors Function.
AL - Number of sectors.

628 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually written.

21.4.11 Seek to Cylinder (0ch)

The Seek to Cylinder disk BIOS function is called to position a read/write head on a hard drive
over a specified track. No data is transferred during this request.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0ch, indicating the Seek to Cylinder Function.
CH - Bottom 8 bits of track number (0-based).
CL - tt000000, as follows:

tt = top two bits of 10-bit track number.
DH - Head number (0-based).
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.12 Reset Hard Disk Controller (0dh)

The Reset Hard Disk Controller disk BIOS function is called to initialize the IDE controller.
While function 00h resets both the floppy and hard disk controllers, this function only resets the
hard drive controller.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0dh, indicating the Reset Hard Disk Controller Function.
DL - Drive number.

Output Parameters:

Chapter 21 EMBEDDED BIOS Adaptation Guide 629

General Software EMBEDDED BIOS Adaptation Guide

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.13 Test Drive Ready (10h)

The Test Drive Ready disk BIOS function is called to verify that the hard drive specified in the
DL CPU register is ready to perform additional functions.

This function is only valid for hard disk drives.

Input Parameters:

AH - 10h, indicating the Test Drive Ready Function.
DL - Drive number.

Output Parameters:

CY - Set if failure (not ready), else clear if success (ready).
AH - Disk status code (00h if success).

21.4.14 Recalibrate Drive (11h)

The Recalibrate Drive disk BIOS function is called to recalibrate a hard drive. Externally, this
involves restoring all of the read/write heads to the track 0 position. Internally, this also involves
rezeroing the feedback loop that determines the head position inside the drive. If read and write
requests start encountering frequent correctable errors, this function should be called to
recalibrate the heads.

This function is only valid for hard disk drives.

Input Parameters:

AH - 11h, indicating the Recalibrate Drive Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.15 Controller Diagnostic (14h)

The Controller Diagnostic disk BIOS function is called to initiate a diagnostic routine on the hard
disk controller. The outcome of this diagnostic is returned in the status code.

This function is only valid for hard disk drives.

Input Parameters:

630 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

AH - 14h, indicating the Controller Diagnostic Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.16 Read Drive Type (15h)

The Read Drive Type disk BIOS function is called to return the disk type information for a disk
unit.

Input Parameters:

AH - 15h, indicating the Read Drive Type Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Drive type, as follows:

00h - Drive number is invalid.
01h - Diskette drive with no change line.
02h - Diskette drive with a change line.
03h - Fixed disk.

CX:DX - for fixed disks, a 32-bit number of 512-byte sectors.

21.4.17 Detect Media Change (16h)

The Detect Media Change disk BIOS function is called to return the status of the disk change
line for a disk unit.

Input Parameters:

AH - 16h, indicating the Detect Media Change Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Change information, as follows:

00h - Diskette change line signal not active.
01h - Invalid drive number.
06h - Change may have occurred.
80h - Drive not ready, or invalid drive.

Chapter 21 EMBEDDED BIOS Adaptation Guide 631

General Software EMBEDDED BIOS Adaptation Guide

21.4.18 Set Diskette Type (17h)

The Set Diskette Type disk BIOS function is called to set the data transfer rate for the specified
drive.

This function returns an error when accessing a fixed disk.

Input Parameters:

AH - 17h, indicating the Set Diskette Type Function.
AL - Diskette type, as follows:

00h - Reserved.
01h - 360KB diskette in 360KB drive.
02h - 360KB diskette in 1.2MB drive.
03h - 1.2MB diskette in 1.2MB drive.
04h - 720KB diskette in 720KB drive.

DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

21.4.19 Set Media Type for Format (18h)

The Set Media Type for Format disk BIOS function is called to set the media type for the
specified drive in order for a FORMAT operation to proceed.

This function returns an error when accessing a fixed disk.

Input Parameters:

AH - 18h, indicating the Set Media Type Function.
CH - Maximum track number (0-based).
CL - Maximum sectors per track (0-based).
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Status code, as follows:

00h - Track/sector type supported.
0ch - Media type unknown.
80h - No diskette in drive.
xxh - Disk status code.

632 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

ES:DI - Address of diskette parameter table for specified track/sector combination.

21.5 INT 14h, Serial I/O Services

This section explains the serial BIOS application program interface (API). The serial BIOS is
called through software interrupt 14H. Services are provided to initialize the serial ports, send
characters, receive characters, and read the serial port status.

21.5.1 Initialize Serial Port (00h)

The Initialize Serial Port serial BIOS function is called to initialize the communications
parameters for a specific serial port. For greater control over serial port initialization, use the
extended serial port initialization function (04h).

Input Parameters:

AH - 00h, indicating the Initialize Serial Port Function.
AL - Serial port initialization parameters:

bbb00000b - Baud rate, as follows:

000b - 110 baud.
001b - 150 baud.
010b - 300 baud.
011b - 600 baud.
100b - 1200 baud.
101b - 2400 baud.
110b - 4800 baud.
111b - 9600 baud.

000pp000b - Parity, as follows:

00b - No parity.
01b - Odd parity.
10b - No parity.
11b - Even parity.

00000s00b - Stop bits, as follows:

0b - One stop bit.
1b - Two stop bits.

00000011b - Data bits, as follows:

10b - 7 data bits.
11b - 8 data bits.

DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Chapter 21 EMBEDDED BIOS Adaptation Guide 633

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Modem status register, as follows:

10000000b - Data carrier detect.
01000000b - Ring indicator.
00100000b - Data set ready.
00010000b - Clear to send.
00001000b - Delta data carrier select.
00000100b - Trailing edge ring indicator.
00000010b - Delta data set ready.
00000001b - Delta clear to send.

21.5.2 Send Character (01h)

The Send Character serial BIOS function is called to send a byte over the specified serial
communications channel.

Input Parameters:

AH - 01h, indicating the Send Character Function.
AL - Character to send.
DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Character sent.

634 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

21.5.3 Receive Character (02h)

The Receive Character serial BIOS function is called to receive a byte over the specified serial
communications channel.

Input Parameters:

AH - 02h, indicating the Receive Character Function.
DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Character received.

21.5.4 Read Serial Port Status (03h)

The Read Serial Port Status serial BIOS function is called to read the modem status register and
the line status register for the specified serial port.

Input Parameters:

AH - 03h, indicating the Read Serial Port Status Function.
DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Modem status register, as follows:

Chapter 21 EMBEDDED BIOS Adaptation Guide 635

General Software EMBEDDED BIOS Adaptation Guide

10000000b - Data carrier detect.
01000000b - Ring indicator.
00100000b - Data set ready.
00010000b - Clear to send.
00001000b - Delta data carrier select.
00000100b - Trailing edge ring indicator.
00000010b - Delta data set ready.
00000001b - Delta clear to send.

21.5.5 Extended Initialize Serial Port (04h)

The Extended Initialize Serial Port serial BIOS function is called to initialize the
communications parameters for a specific serial port, with more architectural room for handling
faster ports, up to 115 kbaud.

Note that not all serial ports can be programmed to accommodate all baud rates or protocols. See
the CPU Personality Module for your target’s CPU class to determine if there are restrictions
when initializing on-board CPU serial ports.

Input Parameters:

AH - 04h, indicating the Extended Initialize Serial Port Function.
AL - 00h if no break signal, 01h if break signal.
BH - Parity, as follows:

00h - no parity.
01h - odd parity.
02h - even parity.
03h - stick parity odd.
04h - stick parity even.

BL - Stop bits, as follows:

00h - 1 stop bit.
01h - 2 stop bits if data length is 6, 7, or 8 bits.
02h - 1.5 stop bits if data length is 5 bits.

CH - Data length, as follows:

00h - 5 bits.
01h - 6 bits.
02h - 7 bits.
03h - 8 bits.

CL - Baud rate, as follows:

00h - 110 baud.
01h - 150 baud.
02h - 300 baud.
03h - 600 baud.
04h - 1200 baud.

636 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

05h - 2400 baud.
06h - 4800 baud.
07h - 9600 baud.
08h - 19.2 kbaud.
09h - 38.4 kbaud.
0ah - 56 kbaud.
0bh - 115 kbaud.

DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Modem status register, as follows:

10000000b - Data carrier detect.
01000000b - Ring indicator.
00100000b - Data set ready.
00010000b - Clear to send.
00001000b - Delta data carrier select.
00000100b - Trailing edge ring indicator.
00000010b - Delta data set ready.
00000001b - Delta clear to send.

21.6 INT 15h, General Services

This section explains the general services BIOS application program interface (API). The
general services BIOS is called through software interrupt 15H. Services are provided to support
multitasking for device waits, protected mode functions, access to system configuration
information, and access the Advanced Power Management services.

Additional services are supported to handle CMOS RAM reading and writing, setting the BIOS
CurrIo variable to affect console redirection, Flash programming, and returning the
EMBEDDED BIOS version number.

21.6.1 Query Port 92h A20 Gate Capability (24h)

The Query Port 92h A20 Gate Capability BIOS function provides information to the caller about
whether the application or operating system can switch the A20 gate with port 92h. This is a
legacy function used by HIMEM.SYS.

Chapter 21 EMBEDDED BIOS Adaptation Guide 637

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 24h, indicating Query Port 92h A20 Gate Capability Function.
AL - subfunction, as follows:

01h - Enable A20 gate.
02h - Disable A20 gate.
03h - Determine if port 92h support is available.

Output Parameters:

CY - set if failure (no port 92h support), else clear if success.
AH - if failure, 86h.

BX - if subfunction 03h, returns the value 2, indicating support available.

21.6.2 Keyboard Intercept Up-Call (4fh)

The Keyboard Intercept system services BIOS up-call is called by the keyboard BIOS interrupt
service routine to allow the operating system or application (client) to receive notice of incoming
scan codes (both make and break). If no client is available, then the default handler for this
routine returns with the CY flag set.

If the client desires to process the incoming scan code, then it must clear the CY flag after
processing the data passed in the AL CPU register. This causes the keyboard BIOS to abort
further processing of the scan code other than issuing an EOI to the interrupt controller.

If the client does not wish to process the incoming scan code, then it must set the CY flag before
returning. At the client’s option, it may elect to modify the scan code passed in the AL CPU
register so that the keyboard BIOS processes the input differently. The client is cautioned that
this technique can lead to keyboard BIOS failure if non-scan codes are processed; other data,
such as status codes, are also passed to this routine.

Input Parameters:

AH - 4fh, indicating the Keyboard Intercept Up-Call.
AL - scan code.

Output Parameters:

CY - set if keyboard BIOS should process scan code in AL, else clear if keyboard BIOS
should discard the scan code.

AL - scan code as updated by client.

21.6.3 APM Installation Check (5300h)

The Advanced Power Management Installation Check BIOS function is called to determine if
Advanced Power Management services are enabled, and if so, which version of the specification
it supports.

638 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 00h, indicating Installation Check Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - if failure, 86h.
AH - if success, major version number in BCD.
AL - minor version number in BCD.
BH - ASCII "P" character.
BL - ASCII "M" character.
CX - capabilities flags, as follows:

bit 0 = 1 if 16-bit protected mode interface supported.
bit 1 = 1 if 32-bit protected mode interface supported.
bit 2 = 1 if CPU Idle call slows processor clock speed.
bit 3 = 1 if BIOS Power Management is disabled.

21.6.4 APM Interface Connect (5301h)

The Advanced Power Management Interface Connect BIOS function is called to establish the
cooperative interface between the caller and the system BIOS. Before the interface is
established, the system BIOS will provide its own power management functionality as
implemented by the OEM. Once the interface is established (connected), the system BIOS and
the caller will coordinate power management activities together.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 01h, indicating Interface Connect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

02h - interface connection already in effect.
09h - unrecognized device ID.
86h - APM not supported.

21.6.5 APM Protected Mode 16-Bit Interface Connect (5302h)

The Advanced Power Management Protected Mode 16-Bit Interface Connect BIOS function is
called to initialize an optional 16-bit protected mode interface between the caller and the system
BIOS. This interface allows a protected mode caller to invoke the system BIOS functions

Chapter 21 EMBEDDED BIOS Adaptation Guide 639

General Software EMBEDDED BIOS Adaptation Guide

without the need to first switch into real or virtual-86 mode. A caller that does not operate in
protected mode may not need to use this call. This function establishes a 16-bit protected mode
interface, but this function must be invoked in either real or virtual-86 mode using the INT 15h
interface.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 02h, indicating 16-Bit P/M Interface Connect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

02h - interface connection already in effect.
05h - 16-bit protected mode interface already established.
06h - 16-bit protected mode interface not supported.
09h - unrecognized device ID.
86h - APM not supported.

AX:BX - if success, 16:16 protected mode entrypoint supporting APM requests for the
system BIOS.

CX - if success, 16-bit data selector used by APM entrypoint.

21.6.6 APM Protected Mode 32-Bit Interface Connect (5303h)

The Advanced Power Management Protected Mode 32-Bit Interface Connect BIOS function is
called to initialize an optional 32-bit protected mode interface between the caller and the system
BIOS. This interface allows a protected mode caller to invoke the system BIOS functions
without the need to first switch into real or virtual-86 mode. A caller that does not operate in
protected mode may not need to use this call. This function establishes a 32-bit protected mode
interface, but this function must be invoked in either real or virtual-86 mode using the INT 15h
interface.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 03h, indicating 32-Bit P/M Interface Connect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

02h - interface connection already in effect.
07h - 32-bit protected mode interface already established.
08h - 32-bit protected mode interface not supported.
09h - unrecognized device ID.

640 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

86h - APM not supported.

AX:EBX - if success, 16:32 protected mode entrypoint supporting APM requests for the
system BIOS.

CX - if success, 16-bit code segment selector used by APM entrypoint.
DX - if success, 16-bit data selector used by APM entrypoint.

21.6.7 APM Interface Disconnect (5304h)

The Advanced Power Management Interface Disconnect BIOS function is called to break the
cooperative interaction between the system BIOS and the caller, and in the process restores the
system BIOS default functionality. Any protected mode connection set-up by the protected
mode interface connection functions are invalidated by this call.

Even though this call returns control of power management to the system BIOS, the parameter
values (timer values, enable/disable settings, etc.) in effect at the time of the disconnect will
remain in effect.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 04h, indicating Interface Disconnect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

03h - interface not connected.
09h - unrecognized device ID.
86h - APM not supported.

21.6.8 APM CPU Idle (5305h)

The Advanced Power Management CPU Idle BIOS function is called to inform the system BIOS
that the system is currently idle, and that processing should be suspended until the next system
event (typically an interrupt) occurs. This function allows the system BIOS to take some
implementation specific power saving action, such as a CPU HLT instruction or stopping the
CPU clock.

In cases where an interrupt causes the system to leave the idle state, the interrupt may or may not
have been serviced when the BIOS returns from the CPU Idle request.

if interrupts are serviced from within the CPU Idle function, the interrupt handler must return to
the BIOS when the interrupt processing is completed. The caller cannot use its knowledge of
being in the idle state to retain control from an interrupt handler. For example, some system
implementations may slow the processor CPU clock rate before waiting on an interrupt, and
restore the normal clock rate after the interrupt is serviced but before returning from the idle call.

Chapter 21 EMBEDDED BIOS Adaptation Guide 641

General Software EMBEDDED BIOS Adaptation Guide

When the caller regains control from the system BIOS idle routine, it should determine if there is
actually any processing to be performed, and reissue the CPU idle call if not. If the caller is a
multitasking supervisor, it may be necessary for it to dispatch its applications, allowing them to
check for activity that they should then perform.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 05h, indicating CPU Idle Subfunction.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

86h - APM not supported.

21.6.9 APM CPU Busy (5306h)

The Advanced Power Management CPU Busy BIOS function is called to inform the system
BIOS that the system is now busy and processing should continue at full speed. Some system
implementations may only be able to slow the CPU clock rate and return in response to the CPU
Idle request (see function 5305h). It is expected that the system BIOS will restore the CPU clock
reate to its normal rate when it recognizes increased system activity (typically interrupt-driven),
but it may be unable to do so when interrupts are hooked by external software that does not
invoke BIOS routines.

In cases where this is possible, the caller can ensure the system is running at full speed by
invoking the CPU Busy function. Upon return from the APM Installation Check call, bit 2 of the
CX CPU register indicates that the system BIOS slows the CPU clock rate during the CPU Idle
call. The caller can use this bit to determine if it wishes to call CPU Busy before executing code
that it wants to run at full speed.

Calling CPU Busy when the systme is already operating at full speed is discouraged due to the
unnecessary call overhead, but the operation is allowed and iwll have no unexpected side effects.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 06h, indicating CPU Busy Subfunction.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

86h - APM not supported.

21.6.10 APM Set Power State (5307h)

642 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

The Advanced Power Management Set Power State BIOS function is called to place the system
in the requested state. The system BIOS only responds to power device ID = 0001h (system
BIOS).

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 07h, indicating Set Power State Subfunction.
BX - 0001h, indicating system BIOS.
CX - System State ID, as follows:

0000h - Ready (not supported for device ID 0001h).
0001h - Standby.
0002h - Suspend.
0003h - Off (not supported for device ID 0001h).

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

01h - power management functionality disabled.
09h - unrecognized device ID.
0ah - parameter valud in CX out of range.
60h - cannot enter requested state.
86h - APM not supported.

21.6.11 APM Enable/Disable APM Functionality (5308h)

The Advanced Power Management Enable/Disable APM Functionality BIOS function is called
to enable or disable all APM automatic power down functionality. When disabled, the system
BIOS will not automatically power down devices, enter the standby state, enter the suspended
state, or take power saving steps in response to CPU Idle calls. In addition, many system BIOS
functions will be disabled and will return error 01h, power management functionality disabled.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 08h, indicating Enable/Disable APM Functionality Subfunction.
BX - ffffh, "enable/disable all power management".
CX - 0 to disable, 1 to enable.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

01h - power management functionality disabled.
09h - unrecognized device ID.
0ah - parameter valud in CX out of range.
86h - APM not supported.

Chapter 21 EMBEDDED BIOS Adaptation Guide 643

General Software EMBEDDED BIOS Adaptation Guide

21.6.12 APM Restore APM Power-On Defaults (5309h)

The Advanced Power Management Restore APM Power-On Defaults BIOS function is called to
instruct the BIOS to reinitialize all of its power-on APM defaults.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 09h, indicating Restore APM Power-On Defaults Subfunction.
BX - ffffh, "all power management".

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

09h - unrecognized device ID.
86h - APM not supported.

21.6.13 APM Get Power Status (530ah)

The Advanced Power Management Get Power Status BIOS function is called to return the
system BIOS’s current power management status.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 0ah, indicating Get Power Status Subfunction.
BX - 0001h.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

09h - unrecognized device ID.
86h - APM not supported.

BH - if success, A/C line status as follows:

00h - off-line.
01h - on-line.
ffh - unknown.

BL - if success, battery status as follows:

00h - high.
01h - low.

644 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

02h - critical.
03h - charging.
ffh - unknown.

CL - if success, remaining battery life, as follows:

0 - 100% = # of full charge
ffh - unknown.

21.6.14 APM Get APM Event (530bh)

The Advanced Power Management Get APM Event BIOS function is called to return the next
pending PM event, or indicates if no PM events are pending.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 0bh, indicating Get APM Event Subfunction.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

03h - interface connection not established.
86h - APM not supported.

BX - if success, PM event code, as follows:

01h - system standby request notification
02h - system suspend request notification
03h - normal resume system notification
04h - critical resume system notification
05h - battery low notification

21.6.15 System Request Key (58h)

The System Request Key BIOS Up-Call is called by the keyboard BIOS interrupt service routine
to allow the operating system or application (client) to receive notice that the SysReq key has
been pressed or released.

If no client intercepts the up-call, then it will be handled by the default system BIOS handler,
which clears the CY flag and sets the AH CPU register to 00h.

Input Parameters:

AH - 85h, indicating a System Request Key Up-Call.
AL - 00h if key pressed, else 01h if key released.

Output Parameters:

Chapter 21 EMBEDDED BIOS Adaptation Guide 645

General Software EMBEDDED BIOS Adaptation Guide

CY - clear.
AH - 00h.

21.6.16 Wait Function (86h)

The Wait Function BIOS function is called to delay for a specified number of microseconds so
that applications can perform fine timing.

This function must be carefully tuned by the OEM during the adaptation process; it should not be
assumed to be accurate until the OEM has done this tuning. The tuning is handled in BPM
routine BoardDelayUsec.

Input Parameters:

AH - 86h, indicating the Wait Function.
CX:DX - 32-bit number of microseconds to wait.

Output Parameters:

CY - set if failure, else clear if success.

21.6.17 Move Extended Memory Block (87h)

The Move Extended Memory Block BIOS function is called to perform a memory copy using the
protected mode capabilities of targets that support protected mode operation.

The memory transfer is specified in the form of a GDT whose real-mode address is passed to the
function. Also passed to the function is a number of 16-bit words to copy (beware, this function
cannot transfer an odd number of bytes).

Input Parameters:

AH - 87h, indicating the Move Extended Memory Block Function.
CX - number of 16-bit words to copy.
ES:SI - 16:16 real-mode address of GDT describing source and destination addresses for

the copy process, formatted as follows:

GDT entry #0 - dummy entry, should be all zeroes.
GDT entry #1 - pointer to GDT.
GDT entry #2 - source buffer.
GDT entry #3 - destination buffer.
GDT entry #4 - reserved by BIOS, do not initialize.
GDT entry #5 - reserved by BIOS, do not initialize.

The format of a GDT and its entries is specified in Intel documentation and is
beyond the scope of this manual.

Output Parameters:

646 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

CY - set if failure, else clear if success.
AH - status code, as follows:

00h - no error.
01h - RAM parity error occurred during copy.
02h - CPU exception occurred during copy.
03h - gate A20 operation failed.
86h - protected mode services not available.

21.6.18 Extended Memory Size (88h)

The Extended Memory Size BIOS function is called to return the amount of extended memory
(that RAM available to the application above the 1MB physical address boundary).

Input Parameters:

AH - 88h, indicating the Extended Memory Size Function.

Output Parameters:

CY - set if failure, else clear if success.
AH - status code, as follows:

86h - protected mode services not available.

AX - if success, extended memory size in 1KB units.

21.6.19 Switch To Protected Mode (89h)

The Switch To Protected Mode BIOS function is called to switch the mode of the processor and
establish a GDT for addressability for the remainder of the system’s operation.

Input Parameters:

AH - 89h, indicating the Switch To Protected Mode Function.
BH - index into the IDT specifying the base of the first 8 hardware interrupts.
BL - index into the IDT specifying the base of the second 8 hardware interrupts.
ES:SI - 16:16 real-mode address of GDT built by caller, as follows:

GDT entry #0 - dummy entry, should be all zeroes.
GDT entry #1 - pointer to GDT.
GDT entry #2 - pointer to IDT.
GDT entry #3 - pointer to data segment.
GDT entry #4 - pointer to extra segment.
GDT entry #5 - pointer to stack segment.
GDT entry #6 - pointer to code segment.
GDT entry #7 - additional descriptor for BIOS scratch.

Chapter 21 EMBEDDED BIOS Adaptation Guide 647

General Software EMBEDDED BIOS Adaptation Guide

The format of a GDT and its entries is specified in Intel documentation and is
beyond the scope of this manual.

Output Parameters:

CY - set if failure, else clear if success.
AH - status code, as follows:

00h - no error.
01h - RAM parity error occurred during copy.
02h - CPU exception occurred during copy.
03h - gate A20 operation failed.
86h - protected mode services not available.

21.6.20 Device Busy Up-Call (90h)

The Device Busy BIOS up-call is called by various device management modules within the
system BIOS to allow the operating system or application (client) to receive notice of an
impending spin-loop within the BIOS to wait for a device to perform a mechanical function. If
no client is available, then the default handler for this routine returns with the CY flag set.

If a client is available, it can decide to perform other activities and return when the Device
Interrupt up-call is received. When it takes this option, it returns from the Device Busy BIOS
up-call with the CY flag cleared. When the BIOS detects that the CY flag is cleared, it does not
enter the anticipated spinloop, but instead assumes that the operation has completed or has timed-
out.

If the client decides to ignore the Devicy Busy notification and let the BIOS enter its spin-loop,
then it returns from the Device Busy BIOS up-call with the CY flag set. This causes the BIOS to
continue as though the client had never hooked the INT 15h service in the first place.

Input Parameters:

AH - 90h, indicating a Device Busy Up-Call.
AL - Device type code, as follows:

00h - hard disk drive.
01h - floppy disk drive.
02h - keyboard.
03h - PS/2 mouse.
80h - network.
fch - hard disk reset.
fdh - floppy disk drive motor.
feh - printer.

ES:BX - if AL=80h-ffh, then this register pair points to a request block that is device-
dependent.

Output Parameters:

648 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

CY - set if caller should enter spinloop, else clear if caller should avoid spinloop and
assume device operation has completed or has timed-out.

21.6.21 Device Interrupt Up-Call (91h)

The Device Interrupt BIOS up-call is called by various device management modules within the
system BIOS to allow the operating system or application (client) to receive notice of a
peripheral device’s completion of some event, such as a seek of a disk drive. This allows the
client to return control to the BIOS if it transferred control to another task in response to the
Device Busy up-call associated with this Device Interrupt up-call. If no client is available, then
the default handler for this routine returns with the CY flag set.

If a client is available, it can decide to reschedule the task that was blocked waiting for the
completion of the device operation associated with the previous Device Busy up-call. Regardless
of the client’s decision to perform this action, the BIOS will continue execution of its code upon
return from this function without inspecting the CY flag.

Input Parameters:

AH - 91h, indicating a Device Interrupt Up-Call.
AL - Device type code, as follows:

00h - hard disk drive.
01h - floppy disk drive.
02h - keyboard.
03h - PS/2 mouse.
80h - network.
fch - hard disk reset.
fdh - floppy disk drive motor.
feh - printer.

ES:BX - if AL=80h-ffh, then this register pair points to a request block that is device-
dependent.

Output Parameters:

none.

21.6.22 Read/Write CMOS RAM Cell (A0h)

The Read/Write CMOS RAM Cell BIOS function is called by application software to access
CMOS RAM cells in a hardware-independent manner. This is useful when the application must
run on hardware that may not use the ISA-standard ports 70h and 71h for accessing this
hardware.

Input Parameters:

AH - A0h, indicating the Read/Write CMOS RAM Cell Function.
AL - 00h for a read operation, or 01h for a write operation.
BL - specifies the CMOS RAM index to read or write.

Chapter 21 EMBEDDED BIOS Adaptation Guide 649

General Software EMBEDDED BIOS Adaptation Guide

BH - for writes only, specifies the value to be written.

Output Parameters:

CY - clear if success, else set if failure.
AL - for reads only, contains the value that was read.
AH - status code, as follows:

00h - no error.
86h - not supported by BIOS configuration.

21.6.23 Set Console I/O Redirection (A1h)

The Set Console I/O Redirection BIOS function is called by application software to specify the
device that will be used by the BIOS to redirect console input (INT 16h) and console output (INT
10h). This feature is only available in BIOS adaptations that provide for console redirection.

Console I/O can be redirected to the standard keyboard and screen with the device value, 0.
Other values, such as 1, 2, 3, and so on, specify a COM port number that specifies the serial port
that will be used. For example, the value 2 specifies that output will be redirected over the serial
line attached to COM2.

Input Parameters:

AH - A1h, indicating the Set Console I/O Redirection Function.
BX - specifies the new console device. The value 0 indicates the standard keyboard and

screen, and nonzero values indicate the COM port number (starting with 1 for
COM1) to be used as a console redirection device.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - not supported by BIOS configuration.

21.6.24 Get Embedded BIOS Version (A3h)

The Get Embedded BIOS Version BIOS function is called by application software to return the
major and minor version codes of the underlying implementation of Embedded BIOS. This
allows application software to determine if it can use specific features supported by the BIOS.

Input Parameters:

AH - A3h, indicating the Get Embedded BIOS Version Function.

Output Parameters:

CY - clear if success, else set if failure.
AL - for successful returns, the minor BIOS version (i.e., 3 for version 4.3).

650 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

AH - for successful returns, the major BIOS version (i.e., 4 for version 4.3).
AH - if failure, status code, as follows:

86h - not supported by BIOS configuration.

21.6.27 Return System Configuration (C0h)

The Return System Configuration BIOS function is called to return the address of the System
Configuration Table (SCT), as defined in Chapter 3. This table reveals the BIOS’s support for
various hardware features.

Input Parameters:

AH - C0h, indicating the Return System Configuration Function.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - SCT not supported by BIOS configuration.

ES:BX - if success, 16:16 address of SCT data structure.

21.6.28 Return Extended BIOS Data Area (C1h)

The Return Extended BIOS Data Area BIOS function is called to return the 16-bit segment
address of the EMBEDDED BIOS Extended BIOS Data Area, located in the top 1KB of low
memory. The format of this area is General Software-proprietary.

Input Parameters:

AH - C1h, indicating the Return Extended BIOS Data Area Function.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - function not supported.

ES - if success, segment address of Extended BIOS Data Area.

21.6.29 PS/2 Mouse Request (C2h)

The PS/2 Mouse Request BIOS function is called to process an application or operating system
request to read the status of, or control the operation of, the PS/2 mouse.

Chapter 21 EMBEDDED BIOS Adaptation Guide 651

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - C2h, indicating the PS/2 Mouse Request Function.
AL - subfunction, as follows:

00h - Enable/Disable mouse.
01h - Reset mouse.
02h - Set sample rate.
03h - Set resolution.
04h - Get mouse type.
05h - Initialize mouse interface.
06h - Get mouse status/set scaling factor.
07h - Register callout address.

BH - sub-subfunction code or parameter for subfunction.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
01h - invalid subfunction code (code in AL).
02h - invalid input value (value in BH).
03h - I/O communications error.
04h - resend status received from mouse.
05h - no callout address registered.
86h - function not supported (if OPTION_SUPPORT_PS2MOUSE disabled).

21.6.30 Watchdog Timer Control (C3h)

The Watchdog Timer Control BIOS function is called to enable or disable the watchdog timer, if
available. When the watchdog timer is enabled by this function, the value passed in the BX CPU
register is used as a countdown value for the timer. When the timer reaches 0, it resets the
system with a warm boot.

If the timer is running and the disable subfunction is called, then the timer stops without resetting
the system.

If the timer is running and the enable subfunction is called, then the timer restarts with the
specified value without resetting the system.

If the timer is stopped and the disable function is called, no operation is performed.

If the timer is stopped and the enable function is called, then the timer restarts with the specified
value without resetting the system.

Input Parameters:

AH - C3h, indicating the Watchdog Timer Control Function.

652 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

AL - 00h to disable timer, 01h to enable timer.
BX - if enabling, fail-safe timer value (units unspecified).

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - function not supported.

21.6.31 Debugger Breakpoint (D0h)

The Debugger Breakpoint BIOS function is called to perform a breakpoint into the debugger on
systems where an operating system is loaded, and that operating system has revectored INT 3 to
its own private dummy routine, otherwise making the BIOS debugger inaccessible.

Input Parameters:

AH - D0h, indicating the Debugger Breakpoint Function.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code (if error), as follows:

86h - function not supported.

21.6.32 Flash Programming (E0h)

The Flash Programming BIOS function is called to perform any of a number of operations on the
Flash array supported by the underlying BIOS. This function is General Software-proprietary.

There are four subfunctions, all of which require that the (DI:SI) register pair contain the 32-bit
media address of Flash memory being manipulated. If the operation is lock or unlock, then
(DI:SI) can point to any byte within the block to be locked or unlocked.
If the operation is a read or write, then this register pair points to the first byte in a contiguous
area of Flash to be read or written.

For read and write operations, the (ES:BX) register pair points to a user buffer where the data
read from Flash will be stored for read operations, or that will contain data to be written to Flash
for write operations. The (CX) register is used to specify the number of bytes to transfer.

This function requires that Flash programming support (OPTION_SUPPORT_MCL) be
enabled by the OEM adaptation. If this support is not enabled, this function will return CY set
and AH=86h.

Input Parameters:

AH - E0h, indicating the Flash Programming Function.

Chapter 21 EMBEDDED BIOS Adaptation Guide 653

General Software EMBEDDED BIOS Adaptation Guide

AL - Subfunction, as follows:

00h - Lock block function.
01h - Erase block function.
02h - Read block function.
03h - Write block function.

DI:SI - 32-bit media address of Flash memory area.
CX - bytes to read or write (unused for lock or erase).

ES:BX - 16:16 real-mode address of a user buffer where information is transferred from
on a write operation, or where it is transferred to on a read operation.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - function not supported.

21.7 INT 16h, Keyboard Services

This section explains the keyboard BIOS application program interface (API). The keyboard
BIOS is called through software interrupt 16H. Services are provided to read keystrokes from
the keyboard typeahead buffer, peek at the next keystroke in the typeahead buffer, and get the
status of the shift keys on the keyboard.

Additional services are provided by the INT 16h service module to set the CPU speed and
manipulate the system’s cache. These services are historically bound to the INT 16h service
because they were first managed by the 8042 keyboard controller.

21.7.1 Read Keyboard Input (00h)

The Read Keyboard Input keyboard BIOS function is called to read a keystroke from the
keyboard device, waiting until a keystroke arrives if one is not present. The scan code of the
keystroke is returned in (AH), and the ASCII code is returned in (AL). An exception exists for
function keys and ALT keys; in this case, the ASCII code returned is zero, and the scan code in
(AH) is used to determine which function or ALT key was read from the keyboard.

Input Parameters:

AH - 00h, indicating the Read Keyboard Input Function.

Output Parameters:

AH - Scan code of the returned keystroke.
AL - ASCII code for the returned keystroke.

654 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

21.7.2 Return Keyboard Status (01h)

The Return Keyboard Status keyboard BIOS function is called to peek at the status of the
typeahead buffer, to determine if a keystroke is waiting to be read. If not, the zero flag (ZF) is
cleared, so that a JZ instruction after the INT 16H instruction would not be taken. If a keystroke
is waiting to be read, then ZF is set, so that a JZ instruction after the INT 16H instruction would
be taken. In the latter case, the scan code and character code are returned in (AH) and (AL),
respectively. If a character is found, this function returns a copy of it but does not remove it
from the typeahead buffer. The application can call function 00H to remove the character from
the typeahead buffer properly.

Input Parameters:

AH - 01h, indicating the Return Keyboard Status Function.

Output Parameters:

ZF - Clear if character ready, else set if not.
AH - Scan code of the returned keystroke.
AL - ASCII code for the returned keystroke.

21.7.3 Return Shift Flag Status (02h)

The Return Shift Flag Status keyboard BIOS function is called to return the status of the shift
keys, including the INS key, CAPS LOCK key, NUM LOCK key, SCROLL LOCK key, ALT
key, CTRL key, and LEFT and RIGHT SHIFT keys.

Input Parameters:

AH - 02h, indicating the Return Shift Flag Status.

Output Parameters:

AL - Current shift status, in the form of a bit mask, one bit per shift key.

10000000b - INS key is active.
01000000b - CAPS LOCK key is active.
00100000b - NUM LOCK key is active.
00010000b - SCROLL LOCK key is active.
00001000b - ALT key is pressed down.
00000100b - CTRL key is pressed down.
00000010b - LEFT SHIFT key is pressed down.
00000001b - RIGHT SHIFT key is pressed down.

21.7.4 Set Typematic Rate (03h)

Chapter 21 EMBEDDED BIOS Adaptation Guide 655

General Software EMBEDDED BIOS Adaptation Guide

The Set Typematic Rate keyboard BIOS function is called to program the typematic delay and
rate associated with holding down a key on the keyboard. This keyboard service is not
redirectable over serial links.

Input Parameters:

AH - 03h, indicating the Set Typematic Rate Function.
AL - 05h
BH - typematic delay before repeat starts, as follows:

00h - 250 milliseconds.
01h - 500 milliseconds.
02h - 750 milliseconds.
03h - 1,000 milliseconds (1 second).

BL - typematic rate in characters per second, as follows:

00h - 30.0 CPS. 01h - 26.7 CPS.
02h - 24.0 CPS. 03h - 21.8 CPS.
04h - 20.0 CPS. 05h - 18.5 CPS.
06h - 17.1 CPS. 07h - 16.0 CPS.
08h - 23.1 CPS. 09h - 13.3 CPS.
0ah - 12.0 CPS. 0bh - 10.9 CPS.
0ch - 10.0 CPS. 0dh - 9.2 CPS.
0eh - 8.6 CPS. 0fh - 8.0 CPS.
10h - 7.5 CPS. 11h - 6.7 CPS.
12h - 6.0 CPS. 13h - 5.5 CPS.
14h - 5.0 CPS. 15h - 4.6 CPS.
16h - 4.3 CPS. 17h - 4.0 CPS.
18h - 3.7 CPS. 19h - 3.3 CPS.
1ah - 3.1 CPS. 1bh - 2.7 CPS.
1ch - 2.5 CPS. 1dh - 2.3 CPS.
1eh - 2.1 CPS. 1fh - 2.0 CPS.

Output Parameters:

none.

21.7.5 Push Data to Keyboard (05h)

The Push Data to Keyboard keyboard BIOS function is called to push data (a character and a
scan code) into the keyboard typeahead buffer.

Input Parameters:

AH - 05h, indicating the Push Data to Keyboard Function.
CH - scan code to be pushed.
CL - character to be pushed.

Output Parameters:

656 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

CY - set if failure, else clear if success.
AL - error code, as follows:

00h - no error.
01h - keyboard buffer full.

21.7.6 Enhanced Read Keyboard (10h)

The Enhanced Read Keyboard keyboard BIOS function is called to read a character and scan
code from the keyboard buffer when the BIOS supports an enhanced (101-key) keyboard. There
is no advantage to calling this routine over the standard read function; it is provided for
compatibility with some versions of DOS that call it.

Input Parameters:

AH - 10h, indicating the Enhanced Read Keyboard Function.

Output Parameters:

AH - 00h scan code or character ID if special character.
AL - ASCII code.

21.7.7 Enhanced Read Keyboard Status (11h)

The Enhanced Read Keyboard Status keyboard BIOS function is called to determine if an
enhanced keyboard has a character waiting in its buffer. There is no advantage to calling this
routine over the standard read function; it is provided for compatibility with some versions of
DOS that call it. This routine does not remove the data from the keyboard buffer; it is a "peek"
operation.

Input Parameters:

AH - 11h, indicating the Enhanced Read Keyboard Status Function.

Output Parameters:

ZF - set if no character, else clear if character waiting.

Then, if a character is waiting:

AH - 00h scan code or character ID if special character.
AL - ASCII code.

21.7.8 Enhanced Read Keyboard Flags (12h)

The Enhanced Read Keyboard Flags keyboard BIOS function is called to return the state of the
enhanced shift flags maintained by 101-key keyboards. There is limited advantage to calling this
routine over the standard read function; it is provided for compatibility with some versions of
DOS that call it.

Chapter 21 EMBEDDED BIOS Adaptation Guide 657

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 12h, indicating the Enhanced Read Keyboard Flags Function.

Output Parameters:

AX - 16-bit bitmask containing keyboard flags, as follows:

00000000.00000001 - right shift key pressed.
00000000.00000010 - left shift key pressed.
00000000.00000100 - ctrl key pressed.
00000000.00001000 - alt key pressed.
00000000.00010000 - scroll lock is on.
00000000.00100000 - num lock is on.
00000000.01000000 - caps lock is on.
00000000.10000000 - insert mode is on.
00000001.00000000 - left ctrl key is pressed.
00000010.00000000 - left alt key is pressed.
00000100.00000000 - right ctrl key is pressed.
00001000.00000000 - right alt key is pressed.
00010000.00000000 - scroll lock key is pressed.
00100000.00000000 - num lock key is pressed.
01000000.00000000 - caps lock key is pressed.
10000000.00000000 - sysreq key is pressed.

21.7.9 Set CPU Speed (F0h)

The Set CPU Speed BIOS function is called to change the CPU’s clocking to either the low or
high states.

Not all BIOS adaptations can switch speeds; this is largely a function of the BPM, CPM, and
CSPM implementations.

Input Parameters:

AH - F0h, indicating the Set CPU Speed Function.
AL - speed to set, as follows:

00h - slow.
01h - medium.
02h - fast.

Output Parameters:

none.

21.7.10 Get CPU Speed (F1h)

658 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

The Get CPU Speed BIOS function is called to read the CPU’s speed as set with the Set CPU
Speed function.

Not all BIOS adaptations can switch speeds; this is largely a function of the BPM, CPM, and
CSPM implementations.

Input Parameters:

AH - F1h, indicating the Get CPU Speed Function.

Output Parameters:

AL - current CPU speed, as follows:

00h - slow.
01h - medium.
02h - fast.

21.7.11 Read Cache Status (F400h)

The Read Cache Status BIOS function is called to request the status of the external cache as
supported by the BIOS.

Not all BIOS adaptations can manipulate the cache; this is largely a function of the BPM, CPM,
and CSPM implementations.

Input Parameters:

AH - F4h, indicating the Cache Control Function.
AL - 00h, indicating the Read Cache Status Subfunction.

Output Parameters:

AH - cache status, as follows:

not modified - no cache status is available.
E2h - successful, information returned.

AL - cache controller status, as follows:

00h - cache controller not present.
01h - cache memory enabled.
02h - cache memory disabled.

CX - cache memory size, as follows:

Bit 15 - 1 if information invalid, else 0 if valid.
Bits 14 through 0 - cache memory size in KB.

DH - cache write strategy, as follows:

Chapter 21 EMBEDDED BIOS Adaptation Guide 659

General Software EMBEDDED BIOS Adaptation Guide

Bit 7 - 1 if information invalid, else 0 if valid.
Bits 6 through 1 - set to 0’s.
Bit 0 - 0 if write-through, else 1 if write-back.

DL - cache type, as follows:

Bit 7 - 1 if information invalid, else 0 if valid.
Bits 6 through 1 - set to 0’s.
Bit 0 - 0 if direct-mapped else 1 if two-way set associative.

21.7.12 Enable Cache (F401h)

The Enable Cache BIOS function is called to enable the external cache controller as supported by
the BIOS.

Not all BIOS adaptations can manipulate the cache; this is largely a function of the BPM, CPM,
and CSPM implementations.

Input Parameters:

AH - F4h, indicating the Cache Control Function.
AL - 01h, indicating the Enable Cache Subfunction.

Output Parameters:

AH - cache status, as follows:

not modified - no cache status is available.
E2h - successful, operation performed.

21.7.13 Disable Cache (F402h)

The Disable Cache BIOS function is called to disable the external cache controller as supported
by the BIOS.

Not all BIOS adaptations can manipulate the cache; this is largely a function of the BPM, CPM,
and CSPM implementations.

Input Parameters:

AH - F4h, indicating the Cache Control Function.
AL - 02h, indicating the Disable Cache Subfunction.

Output Parameters:

AH - cache status, as follows:

not modified - no cache status is available.

660 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

E2h - successful, operation performed.

21.8 INT 17h, Parallel I/O Services

This section explains the parallel BIOS application program interface (API). The parallel BIOS
is called through software interrupt 17H. Services are provided to write a character to the
parallel port, initialize the printer attached to a parallel port, and read the status of a printer
attached to a parallel port.

21.8.1 Write Character (00h)

The Write Character parallel BIOS function is called to write a character over the parallel port to
a printer or other parallel device.

Input Parameters:

AH - 00h, indicating the Write Character Function.
AL - Character to print.
DX - Parallel port number (0=LPT1, 1=LPT2, 2=LPT3).

Output Parameters:

AH - Printer status, as follows:

10000000b - Printer not busy.
01000000b - Acknowledgement.
00100000b - Out of paper.
00010000b - Printer selected.
00001000b - I/O error occurred.
00000100b - Reserved.
00000010b - Reserved.
00000001b - Timeout error occurred.

21.8.2 Initialize Printer (01h)

The Initialize Printer parallel BIOS function is called to initialize an attached print device. It
does this by pulsing the reset line on the parallel interface.

Input Parameters:

AH - 01h, indicating the Initialize Printer Function.
DX - Parallel port number (0=LPT1, 1=LPT2, 2=LPT3).

Output Parameters:

AH - Printer status, as follows:

10000000b - Printer not busy.
01000000b - Acknowledgement.

Chapter 21 EMBEDDED BIOS Adaptation Guide 661

General Software EMBEDDED BIOS Adaptation Guide

00100000b - Out of paper.
00010000b - Printer selected.
00001000b - I/O error occurred.
00000100b - Reserved.
00000010b - Reserved.
00000001b - Timeout error occurred.

21.8.3 Read Printer Status (02h)

The Read Printer Status parallel BIOS function is called to read the status lines attached driven
by a parallel-mode printer attached to the parallel port.

Input Parameters:

AH - 02h, indicating the Read Printer Status Function.
DX - Parallel port number (0=LPT1, 1=LPT2, 2=LPT3).

Output Parameters:

AH - Printer status, as follows:

10000000b - Printer not busy.
01000000b - Acknowledgement.
00100000b - Out of paper.
00010000b - Printer selected.
00001000b - I/O error occurred.
00000100b - Reserved.
00000010b - Reserved.
00000001b - Timeout error occurred.

21.9 INT 1ah, Time Services

This section explains the date/time BIOS application program interface (API). The date/time
BIOS is called through software interrupt 1aH. Services are provided to read the system time
counter, write the system time counter, read the real time clock, write the read time clock, read
the real time clock date, and write the real time clock date.

21.9.1 Read System Timer Count (00h)

The Read System Timer Count date/time BIOS function is called to return the 32-bit number of
ticks since last midnight as stored in the BIOS data area.

Input Parameters:

AH - 00h, indicating the Read System Timer Count Function.

Output Parameters:

CY - set if failure, else clear if success.

662 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

AH - 00h.
AL - Timer overflow flag:

00h - Time has not overflowed the field.
01h - Time has overflowed the field.

CX:DX - 32-bit number of ticks elapsed since midnight.

21.9.2 Write System Timer Count (01h)

The Write System Timer Count date/time BIOS function is called to store the 32-bit number of
ticks since last midnight into the BIOS data area.

Input Parameters:

AH - 01h, indicating the Write System Timer Count Function.
CX:DX - 32-bit number of ticks elapsed since midnight.

Output Parameters:

CY - set if failure, else clear if success.
AH - 00h.

21.9.3 Read Real Time Clock Time (02h)

The Read Real Time Clock Time date/time BIOS function is called to return the time
information from the battery-backed real time clock.

Input Parameters:

AH - 02h, indicating the Read RTC Time Function.

Output Parameters:

AH - 00h.
CY - set if RTC update in progress, else clear if success.
CH - Hours in BCD.
CL - Minutes in BCD.
DH - Seconds in BCD.
DL - Daylight savings option:

00h - No daylight savings supported.
01h - Daylight savings supported.

21.9.4 Write Real Time Clock Time (03h)

The Write Real Time Clock Time date/time BIOS function is called to store the time information
into the battery-backed real time clock.

Input Parameters:

Chapter 21 EMBEDDED BIOS Adaptation Guide 663

General Software EMBEDDED BIOS Adaptation Guide

AH - 03h, indicating the Write RTC Time Function.
CH - Hours in BCD.
CL - Minutes in BCD.
DH - Seconds in BCD.
DL - Daylight savings option:

00h - No daylight savings supported.
01h - Daylight savings supported.

Output Parameters:

AH - 00h.
AL - Value written to CMOS 0bh register.
CY - set if RTC update in progress, else clear if success.

21.9.5 Read Real Time Clock Date (04h)

The Read Real Time Clock Date date/time BIOS function is called to return the date information
from the battery-backed real time clock.

Input Parameters:

AH - 04h, indicating the Read RTC Date Function.

Output Parameters:

AH - 00h.
CY - set if RTC update in progress, else clear if success.
CH - Century in BCD (19h or 20h).
CL - Year in BCD.
DH - Month in BCD.
DL - Day in BCD.

21.9.6 Write Real Time Clock Date (05h)

The Write Real Time Clock Date date/time BIOS function is called to store the date information
into the battery-backed real time clock.

Input Parameters:

AH - 05h, indicating the Write RTC Date Function.
CH - Century in BCD (19h or 20h).
CL - Year in BCD.
DH - Month in BCD.
DL - Day in BCD.

Output Parameters:

AH - 00h.
AL - Value written to CMOS 0bh register.

664 EMBEDDED BIOS Adaptation Guide Chapter 21

General Software EMBEDDED BIOS Adaptation Guide

CY - set if RTC update in progress, else clear if success.

21.9.7 PCI Services (B1h)

The PCI Services BIOS function is called to make a PCI function request. The PCI API is well-
documented by the PCI Consortium and its operation is beyond the scope of this section.

Input Parameters:

AH - b1h, indicating the PCI Services function.
Others - as defined by PCI Specification.

Output Parameters:

All - as defined by PCI Specification.

Part IV EMBEDDED BIOS Adaptation Guide 665

General Software EMBEDDED BIOS Adaptation Guide

PART IV

TROUBLESHOOTING

This part of the EMBEDDED BIOS reference documentation provides guidance on the most
frequently-asked technical support problems. You can save lots of time by scanning this section
before the adaptation process begins, so that you can steer the adaptation process away from
problems to begin with. You can also save time by getting quick solutions to basic problems by
looking up the symptoms here.

Chapter 22 EMBEDDED BIOS Adaptation Guide 667

General Software EMBEDDED BIOS Adaptation Guide

Chapter 22

TROUBLESHOOTING

This Chapter can be used to find guidance to help you get through problem areas if they occur.

General Software can only help you if you do not modify core EMBEDDED BIOS files.
Technical support for OEMs who have modified any of the core files is strictly at General
Software’s option, and is provided only on a fee basis. If you feel a need to modify core BIOS
files, contact your General Software representative to learn about solutions you may not be aware
of for handling your specific situation, before you do this. Any warranties, express or implied,
associated with the BIOS Adaptation Kit and licensed software are voided by modification of the
core files.

If you're having trouble getting the EMBEDDED BIOS system or auxilliary components to build
properly, consult the section on "Compiling, Assembling, & Linking" in this chapter.

If you need help deciphering a run-time error message printed by EMBEDDED BIOS, see the
"Error Messages" section in this chapter.

For information on how to call EMBEDDED BIOS functions, consult Chapter 21 for technical
programming information.

For information on how to diagnose hardware that won't boot, see the "Diagnosing POST"
section in this chapter. You'll need to have used procedures similar to these first before
contacting General Software for assistance, since our technical support people will be asking you
to do these things anyway to get the information necessary to find out why your target doesn't
boot. You'll find that, once you have started the diagnosis process yourself, you won't need to
make the call.

For 3rd party BIOS specifications, such as Plug-n-Play, El Torito, and so on, search the web. Due
to copyright restrictions, General Software cannot supply copies of 3rd party BIOS specifications,
even if they are rightfully defacto industry standards.

For information on the PCI portion of your EMBEDDED BIOS adaptation, consult Chapter 12.
There are adaptation issues that arise in the project file as well as the Board Personality Module.
Also, it is recommended that you have a copy of the PCI Specification 2.1.

668 EMBEDDED BIOS Adaptation Guide Chapter 22

General Software EMBEDDED BIOS Adaptation Guide

For information about how to build graphical images for display in the EMBEDDED BIOS
graphical POST system, consult Chapter 11. General Software does not have graphical design
services, but does provide some suggestions for obtaining best results when producing graphics
for use with this system.

For other problems, we have maintained a list of technical support problems and their solutions,
and have listed them under "Advanced Troubleshooting" in this chapter. Be sure to review this
section before calling General Software, since you’ll likely be referred to this text for those
common situations.

If you are able to identify a specific problem setup and behavior that cannot be diagnosed either
from the Adaptation Kit materials or by your tool vendor (Borland, Microsoft, or PharLap, for
example), call General Software Technical Support. See the section on "Technical Support From
General Software" in this chapter for details. Please remember that we are not able to provide
technical support for Borland or Microsoft on the installation or use of their tools.

22.1 Compiling, Assembling, & Linking

If you get errors during a build of EMBEDDED BIOS, this section has a checklist to make sure
you have the right tools set-up.

If you have MASM 5.x or lower, MSC 7.0 or lower, or BCC 4.0 or lower, you need to upgrade
your tools. General Software does not support these early versions of the Borland or Microsoft
tools. BCC 3.1’s assembler works but the C compiler incorrectly manages loading of DS in
some cases. BCC 4.0’s assembler and C compiler work, but the linker has a problem linking the
BIOS due to its complexity; this is why Borland issued BCC 4.02, containing the linker fix.

If you're using Borland tools such as BCC 4.5, 5.0, etc., including BCC.EXE, TASM.EXE, TASMX.EXE,
and TLINK.EXE, you will need to set BORLAND=YES in your environment. Beware, setting
BORLAND=NO or BORLAND=MICROSOFT has the same effect. If this variable is defined in your
environment, the MAKEFILEs used in the EMBEDDED BIOS build will use Borland tools. If it
is not present, you get Microsoft compilations.

Don't mix Borland and Microsoft OBJ files; they are incompatible. For example, it is not okay
to build part-way with the Borland assembler, and the rest of the way with Microsoft's MASM,
because the object file formats are incompatible. Stick with one tool set or the other.

Make sure that you are using the correct tools, and not pieces of one with pieces of another. If
you have both Borland and Microsoft tools, make sure that you aren't using Borland libraries
with Microsoft compilers or linkers, for example.

The best route to use when building the BIOS is to use BIOStart under Windows. It works under
Windows 3.1, Windows 95, and Windows-NT. It should work with future versions of Windows
to the extent that those versions are upward compatible with these operating systems.

If you are building EMBEDDED BIOS in a DOS box in Windows, or under real DOS, you must
use the General Software GSMAKE utility with the MAKEFILEs in the EMBEDDED BIOS
builds; make sure that EBIOS43\TOOLS is the first directory in your path, or at least that it comes
before another directory with GSMAKE in it. You may use General Software's GSMAKE utility

Chapter 22 EMBEDDED BIOS Adaptation Guide 669

General Software EMBEDDED BIOS Adaptation Guide

to read Microsoft MAKEFILEs, and basic Borland MAKEFILEs, although both Borland and
Microsoft have various dialects that are not supported by General Software’s GSMAKE utility.

If you encounter an "out of compiler space" or "out of heap space" during compilation or
assembly, you have just encountered an architectural limitation of your DOS compiler or
assembler. This is a common thing to happen when running Microsoft tools with TSRs and
network software loaded, because the compiler and assembler need quite a bit of memory to
build the EMBEDDED BIOS components.

If you have MASM 6.1 or better (including MASM 6.1, 6.11c, 6.11d, and 6.14), you should set
MASM61=YES in your environment. If you don’t have MASM 6.1x, make sure that the keyword
MASM61 is not defined at all in your environment. The MASM61 keyword, when defined,
instructs General Software’s MAKEFILEs to use special syntax for invoking the assembler that
can eliminate some of the out-of-memory problems that MASM encounters when assembling
this large code base.

If you have MASM 5.x, you need to upgrade to at least MASM 6.0 or 6.1, which will solve the
problem. If you have MSC 5.1 or C 6.0, you need to move to at least MSVC (Microsoft Visual
C++), commonly called C 8.0.

MASM 6.10 does not operate properly in the Windows NT 4.0 environment, and may not
operate in future versions of Windows. Users experiencing problems with MASM 6.10 are
encouraged to use MASM 6.11c, 6.11d, 6.14, or a later version when it becomes available.

If MASM starts emitting errors that seem to cascade upon one another, you have encountered a
bug in MASM that causes it to not recognize that it is out of memory, so that it trashes its own
tables. You need to reduce the number of FILES or BUFFERS in CONFIG.SYS, remove TSRs,
upgrade your DOS and use HIDOS=YES, or upgrade your MASM to at least 6.0 or 6.1.

If MSC 5.x-7.x runs out of memory during compilation, you can replace C1.EXE with C1L.EXE,
by renaming C1.EXE to C1SAVE.EXE, then renaming C1L.EXE to C1.EXE. The C1L.EXE file is actually
a large model compiler front-end module that is a fully-plug-and-play replacement for C1.EXE,
except that it handles larger programs. See your Cxxx\BIN directory for the various EXE files that
come with MSC.

If you encounter "jump out of range" errors in MASM, you need to upgrade to a later (supported)
version of MASM, or modify the source code line that causes the error. MASM does not
properly generate the jump-around-jump sequence to handle conditional jumps that can’t span
more than 128 bytes. As EMBEDDED BIOS configurations in OPTIONS.INC and
CONFIG.INC can cause these spans to exceed 128 bytes, these errors may occur. If you are
unable to upgrade MASM, you can note the line number on which the error occurs in a specific
module, and then edit that line in the file by up-casing the jump instruction, and prefixing it with
a capital ’L’. Thus:

je becomes LJE

jne becomes LJNE

ja becomes LJA

jb becomes JB

jae becomes JAE

jbe becomes JBE

22.2 3rd-Party Technical Support

670 EMBEDDED BIOS Adaptation Guide Chapter 22

General Software EMBEDDED BIOS Adaptation Guide

If you need assistance using 3rd-party development tools or libraries, please call the tool vendor
before calling General Software. You are apt to receive more current and accurate information
about tools directly from the vendors that make them.

For your convenience, we have supplied the most current contact information at the time this
manual was printed.

Calling Intel Corporation

Call Intel Corporation if you need documentation for Intel components. General Software does
not have copies of Intel literature for redistribution.

PHONES: (800) 548-4725 (USA & Canada)
61-2-975-3300 (Sydney, Australia)
55-11-287-5899 (Sao Paulo, Brazil)
1-500-4850 (Beijing, PRC)
(852) 844-4555 (Hong Kong, China)
91-812-215773 (Bangalore, India)
0426-48-8770 (Tokyo, Japan)
(2) 784-8186 (Seoul, Korea)
(65) 250-7811 (Singapore)
886-2-5144202 (Taipei, Taiwan)

Calling Microsoft Corporation

For support of Microsoft tools such as MSC, MSVC, MASM, LINK, NMAKE, or Codeview; for
technical support associated with Windows NT, Windows CE, or Windows NT Embedded; or
for help in determining which library functions are reentrant or which have stack probes, contact
Microsoft. The products change enough from release to release that it is not possible for General
Software to be aware of the internals of every version of the compiler and C libraries, or the build
or installation procedures or device drivers associated with Microsoft’s operating systems.

PHONE: (425) 882-8089

COMPUSERVE: GO MICROSOFT

Calling Paradigm Systems

If you need assistance with Paradigm Debug or other Paradigm products, would like to learn
about Paradigm's debuggers, or need help in getting Paradigm products to work in the
EMBEDDED BIOS environment, call Paradigm for support. Paradigm may be able to help with
Borland products, but they are not obliged to offer help for them.

PHONE: (607) 748-5966

EMAIL: support@devtools.com

WEB: http://www.devtools.com

Chapter 22 EMBEDDED BIOS Adaptation Guide 671

General Software EMBEDDED BIOS Adaptation Guide

Calling PharLap Software

If you need assistance with the design, development, or debugging of protected mode
applications using the PharLap 286|DOS Extender or 386|DOS Extender products, or need
assistance using Phar-ASM or LinkLoc, then call PharLap directly for technical assistance.

PHONE: (617) 661-1510

EMAIL: tech-support@pharlap.com

22.3 Technical Support From General Software

If you have purchased your EMBEDDED BIOS Adaptation Kit from an Authorized General
Software Distributor, they are responsible for providing first-level support of the product,
including installation and general high-level operation such as using BIOStart. A second, more
in-depth level of support is obtainable from General Software’s Support Centers. These
organizations are trained to solve in-depth technical problems with EMBEDDED BIOS, enabing
you to receive the fastest response. Your distributor will be able to provide you with contact
information for the Support Center in your area. In cases where there is none, 2nd level support is
provided directly by General Software in the USA.

The support center for all General Software Embedded BIOS customers in Europe and the
Middle East should be contacted via email at eurosupport@gensw.com. This support center does not
provide support for products other than General Software Embedded BIOS.

If you purchased the Adaptation Kit directly from General Software, or if your area is not
serviced by a General Software Support Center, follow the procedures below.

If you have technical questions concerning the installation or building processes for
EMBEDDED BIOS, contact us after you have verified that your environment is set-up properly,
and that you have reviewed the "Compiling, Assembling, & Linking" tips in this chapter. If you
are not able to resolve the problem, then contact General Software.

If you have technical questions about how to use any of the EMBEDDED BIOS APIs, you can
refer to Chapter 21 of this manual. If the chapter contains an error that you can't see how to
correct, contact General Software by FAX, jotting down the exact details you need so that it can
be properly addressed by an engineer.

If you have a compatibility problem with a desktop program, you should contact General
Software by FAX, giving as much detail as possible about the run-time environment (hardware
and software) and the program you are running, including if possible, any interaction with the
integrated debugger. If you are able to narrow-down an incompatibility to a specific system call
or programming method, then we will be able to review the BIOS code to see if the program can
be accommodated. We cannot review code without looking for a specific system-oriented
problem. We cannot accept third-party software for compatiblity studies as it violates your
license with the third-party software vendor.

If you need help getting your embedded application to work with EMBEDDED BIOS, please E-
mail, FAX or call General Software directly. Faxed inquiries have been shown to be resolved
sooner on the average than telephone inquiries. Premium technical support customers receive

672 EMBEDDED BIOS Adaptation Guide Chapter 22

General Software EMBEDDED BIOS Adaptation Guide

priority over other technical support, and non-premium technical support is processed on a first-
come, first-served basis. Keep in mind that many OEMs are producing hardware in the same
cycle that you may be; therefore, at the times when you desire the fastest response, others may be
requesting the same service. Use premium support to gain access to specific response times.

22.3.1 Support by EMAIL

For technical support inquiries, you may send Email technical support inquiries to the following
address:

EUROPEAN CUSTOMER SUPPORT: eurosupport@gensw.com
ALL OTHER CUSTOMER SERVICE EMAIL: support@gensw.com

Email inquiries are generally resolved sooner than FAXed or voice inquiries, because they are
the most efficient. By stating the system behavior in writing, these inquiries are concise and are
quick to process.

22.3.2 Support by FAX

For technical support inquiries, you may send a FAX, 24 hours/day, 365 days/year (subject to
periodic maintenance and FAX repairs) to our customer service FAX line:

CUSTOMER SERVICE FAX: (425) 454-5744

Faxed inquiries are generally resolved sooner than voice inquiries, because they are more
efficient. By stating the system behavior in writing, these inquiries are concise and are quick to
process.

22.3.3 Support by Phone

For technical support inquiries involving programming to the EMBEDDED BIOS APIs or
configuring EMBEDDED BIOS to a specific platform, or for information on General Software’s
Technical Seminars or BIOS Customization and Support services, contact General Software by
phone.

GENERAL SOFTWARE
TECH SUPPORT PHONE: (425) 454-5755

If you have questions about how to use third-party products with EMBEDDED BIOS, consult
the third-party vendor first (see the phone numbers earlier in this chapter), and then call General
Software after you have talked with them. The third-party vendor will be able to offer more
current information on their product than General Software.

22.3.4 Reproducing the Problem

Supporting operating system products is a difficult task that requires more data than application
programs. Because we support APIs and not application program features, it is important to
provide General Software with a distilled version of a problem at the API level, together with
good behavioral data.

Chapter 22 EMBEDDED BIOS Adaptation Guide 673

General Software EMBEDDED BIOS Adaptation Guide

For example, if running your program causes the system to "hang", you will need to provide
information about what you mean by the system being hung, and what the program does in
concise detail. A hung system can mean that no expected output is displayed, or that it cannot be
rebooted, etc. You will need to reduce the problem to a statement such as:

"My Borland C++ program calls fwrite on a handle I opened with fopen, and the
fopen call never returns. Instead, I see the hard disk light remain on, and when I
break into the debugger, I see the following display (go ahead and copy the
display, including register contents and current instruction being executed)."

When calling General Software, be prepared to provide more details about your problem,
including possibly using debugger commands to aid the technician in learning more about the
circumstances of the problem.

As another example, if you were expecting a message to be printed with a printf call, but garbage
resulted, then it is important to know what the call looked like, what libraries you were using,
whether stack probes are enabled, what compilation model you are using, etc.

22.3.5 Using Tech Support Requests (TSRs)

A Technical Support Request is provided in your Adaptation Kit as an 8 1/2 by 11 inch form that
can be photocopied for multiple requests. Please fill-out the form in concise detail and FAX the
form to General Software for FAX requests.

If you are an international customer, please set your fax to "fine" resolution before sending, as it
is difficult to read many of the faxes we receive from overseas.

22.4 Advanced Troubleshooting

This section covers problems by application category. For example, all common RS-232-related
problems have been grouped together so that you can make sure that you have addressed a set of
potential hazards in your application.

22.4.1 Diagnosing POST

There are hundreds of reasons that could potentially account for a piece of hardware to not run
through POST. If the target does not proceed all the way to its first attempt to boot the operating
system, or to enter the SETUP system, then you need to diagnose the POST process. DO NOT
CALL GENERAL SOFTWARE FIRST. Instead, use the techniques outlined here, or use
similar techniques as the situation requires, to determine the reason why POST does not
complete to the point where you can receive a message from the BIOS.

When building a new BIOS for new hardware for the first time, there are bound to be
mismatches between the hardware and the software, and it is actually likely that, after applying
power to your first BIOS, absolutely nothing will seem to happen.

If we were to provide an exhaustive list of the possible reasons, we could include all the
combinations of 400+ configuration options that don’t match the hardware. This is simply too
large a task.

674 EMBEDDED BIOS Adaptation Guide Chapter 22

General Software EMBEDDED BIOS Adaptation Guide

To bring-up new hardware, it is a far better approach to build a very minimal system BIOS that
has almost no features enabled. Ignoring for the moment that there will be no DOS prompt, no
video, no keyboard, or even a serial port in such a minimal system configuration, there are ways
of isolating the cause of a hang on power-on.

In most cases, power-on hangs are the result of inappropriate selections for the reboot, toreal, or
A20 gating functions. The actual source of the latter two functions can be removed by disabling
OPTION_SUPPORT_PROTECT_MODE; this avoids the complicated code path involved in
switching to protected mode during memory sizing, and switching back. It also avoids touching
memory above 1MB, which is a likely problem if the chipset hasn’t been correctly programmed
to accommodate the types of SIMMs being used in the system.

By disabling nearly everything, and enabling something simple, such as video boards, you can
try plugging a VGA card into your ISA system and try booting it. If the VGA BIOS gets control,
chances are good it will write a message to the display.

If using a VGA BIOS extension to issue a message doesn’t work, then it’s time to take a look at
the simpler types of indicators that can be used to debug the early POST process. Keeping in
mind that no stack or RAM can be used during this time, it is still possible to send signals to the
outside world via a parallel port, turning on a 7-segment LED, or even turning on the floppy
drive motor (which incidently also turns on the LED on the floppy). Even the speaker can be a
good binary indicator of progress during early POST.

If you have a POST code monitor board that can monitor I/O port 80h, then enable
OPTION_SUPPORT_POSTCODES and set CONFIG_PROGRESS_PORT to 80h and
watch the POST process proceed. When it stops, obtain the last POST code from the read-out on
the I/O board, and look it up in the INC\POST.INC file. Search the files POST*.ASM for the
associated symbol, and you’ll know how far POST got. This is an excellent starting point to
determining what has already transpired, and what piece of code is not returning to its caller.

If you have an 8250-compatible serial port (not necessarily one of the standard ports at 3f8h or
2f8h), then enable OPTION_SUPPORT_POSTCODES_COM and set
CONFIG_PROGRESS_COM to the I/O address of the COM port (i.e., 3f8h). ASCII
characters will be output to the COM port, which can be monitored with a terminal program on
another computer to watch the entire POST process history. This is another excellent way to see
what POST functions have been completed, and what function is stalled. These codes are only
generated in module POST.ASM, so compare the POSTCODECOM macro calls in that file with
your output to see where POST stalls.

If no POST code port 80h monitor or serial port is available, you should use one of the binary
indicators previously described, such as an LED, speaker, or even floppy disk motor. Then, step
through POST.ASM, in routine POST, and start at the beginning. Place your signal-producing code
directly in-line in the POST code at the very top, and begin moving it down until it is no longer
reached. The routine that was just skipped is the source of the problem.

By then inspecting the top-level routine called by POST, you’ll be able to place the same types of
signal-producing code in-line in the called function. This technique should be able to isolate a
difficult problem in about an hour.

The speaker can actually work immediately in most systems. Just place the following instruction
in-line in the POST routine, using the technique described above:

Chapter 22 EMBEDDED BIOS Adaptation Guide 675

General Software EMBEDDED BIOS Adaptation Guide

Rcall Beep ; beep the speaker.

You can also use the "Bop" function in the same manner; it produces a longer tone. Finally,
there is a routine called "Click" that just makes a soft click using the speaker.

To use a parallel port for communication, you may wish to locate an oscilloscope or voltage
meter, and connect it to one of the output pins on a parallel port in your system. Then, after
determining the I/O port location of the parallel port hardware, use OUT instructions to
alternately set and clear the pin. This mechanism can be used to determine if a code path has
been reached in early POST.

If POST messages are starting to print, then you can add your own PRINTF statements in POST
or other modules (after the point where there is a stack and INT 10h services) to show the
contents of registers and memory. Consult Chapter 12, "Using the BIOS Debugger", for a
detailed explanation of how to use the PRINTF macro, actually considered part of the debugger.

The integrated BIOS debugger is actually enormously helpful if your system is at the point where
it can display messages on the screen. Simply press ALT and the left SHIFT key to enter the
debugger. If no keyboard is available, then insert an INT 3 instruction in the code where you
want the debugger to breakpoint. Do not be afraid to use the debugger. Most OEMs use it to
solve at least one technical problem in an adaptation. It is indispensible.

Following the instructions in Chapter 9 on how to use the debugger, you can dump memory,
show the vector table elements, disassemble instructions, and even use the E (enter bytes)
command to hand-assemble simple INT requests. For example, to code an INT 13h instruction,
followed by an INT 3 instruction, you could use the following set of debugger commands:

DEBUG: R CS 4000
DEBUG: R IP 0
DEBUG: E CS:IP CD 13 CC
DEBUG: R
<register display verifies next instruction is INT 13h>

Once a simple instruction sequence such as this is set-up in the middle of RAM, it becomes easy
to load values in the general registers and see what happens when a sample function is executed,
such as a read sector function from the boot record of the boot device.

22.4.2 PCI Issues

If you are having trouble with interrupts in a PCI system, consider the possibility that the chipset
may be incorrectly programmed to edge-sensitivity instead of level-sensitivity for the PCI bus.

If your PCI devices are not being detected properly, your PciIrqTbl table in the Board Personality
Module may be defined incorrectly. Specifically, the bus, device, and function numbers in the
BPM’s tables may be specified incorrectly. Compare the tabular values with those on your
schematics.

If you have a VGA or SCSI option ROM for an embedded PCI device, make sure it isn’t just
visible in the ISA region of the address space. PCI option ROMs for embedded devices must be
specified with the PCI_ROM statement in the project file, and the binary copy of their option
ROM must be visible somewhere in the physical address space of the target without being
scannable by the ISA ROM scan, or it will be detected as an ISA ROM and will not be passed
the correct information about the device it controls as it should be.

676 EMBEDDED BIOS Adaptation Guide Chapter 22

General Software EMBEDDED BIOS Adaptation Guide

Multiple PCI VGA devices are supported. See the documentation in Chapter 7 about
BoardPciControl for managing the policy for which devices are selected as the primary VGA
device.

22.4.3 Booting Issues

There are several reasons why the BIOS may not boot DOS or the application. If your operating
system (DOS) and applications are stored on a ROM disk, and you have trouble getting DOS to
initialize, look for the following things:

If you are using a ROM disk image of a floppy, or a floppy disk to boot with, then it is important
that the ROM disk software (the ROM extension code itself) reports the same geometry through
the INT 13h interface as that of the actual floppy disk used to create the image. If the INT 13h
function 08h geometry information does not match the image’s actual geometry, then DOS has
no way of knowing how to properly read file system data through the INT 13h service. The INT
13h function 08h service is handled automatically in the core EMBEDDED BIOS’s ROM disk
module, as this information is dynamically retrieved from the boot record in the floppy image.

The third-party ROM BIOS extensions must support INT 13h, function 08h. If it does not, then
some versions of DOS cannot boot from the device as-is. Either INT 13h function 08h must be
provided (it can be added to the BIOS extension or core BIOS), or the internal DOS device
drivers would need to be modified to not use this function, and instead read the information from
the BPB. This method does not work in cases where floppy disks do not have BPBs (there are
such floppies). General Software’s Embedded DOS product allows these modifications as it
comes with source code.

Third-party utilities to create BPBs on media may not create them properly. For example, a
media descriptor byte in the BPB may not match the first byte of each FAT (the first FAT starts
at logical sector 1, whereas the boot record containing the BPB starts at sector 0). The geometry
given in the BPB must match the media descriptor byte, and the descriptor byte must be valid.

When making boot disks for input to a ROM disk transfer utility (a program that copies the raw
sectors of the boot disk into a file suitable for burning into ROM), it is important that the files on
the disk be moved to the beginning of the floppy disk. Because DOS optimizes the storage of
files by sweeping forward on the disk, you will leave allocation holes on the disk if you delete a
file and replace it with another COPY command. Thus, it is important to freshly-format a floppy
disk, then issue a sequence of COPY commands that copy the files you need to the disk without re-
copying the same files or using intervening deletes. This forces all of the information to be
stored to the front of the disk, so that 256KB of information stored on a 720KB or 1.44MB
floppy disk would fit in a 256KB ROM.

22.4.4 RS-232 Communications Issues

Most versions of DOS initialize the serial ports in their AUX device driver (see AUXDEV.ASM).
You may wish to disable this if you have special initialization requirements; i.e., you have
Remote disk going or you are communicating with the debugger over an RS-232 link. The AUX
device driver makes BIOS calls (through INT 14h) to program the serial ports.

If you are polling for RS-232 activities, you may wish to avoid calling the kbhit C library
function directly. Some versions of this function as provided by C compiler vendors block-out

Chapter 22 EMBEDDED BIOS Adaptation Guide 677

General Software EMBEDDED BIOS Adaptation Guide

interrupts for extended periods, causing RS-232 interrupts to be missed. Use _intdos instead to
make an INT 21h call directly to have the same effect without the overhead. If needed, you can
further reduce latency by turning BREAK OFF with an INT 21h function, reducing calls to the CON
device driver on every INT 21h call to check for ^C.

22.4.5 Console I/O Issues

If while running Microsoft Windows you encounter slow updating of the screen or slow response
to the keyboard (seconds for a typed character to appear on the screen), then you need to adjust
the 8042 delay parameters in INC\CONFIG.INC. Reduce these delays to increase rapid response.

If you are having trouble getting HyperTerminal to operate with Console Redirection, there are
two common problems. First, the properties of the current session must be configured, saved,
and then HyperTerminal restarted and the session reloaded, before those properties actually take
effect. Second, the flow control mechanism being used may be wrong. Embedded BIOS can
support hardware flow control or no flow control. If one isn’t working, switch to the other
method.

If you are seeing the POSTCODECOM strings disappear shortly after the cache is enabled, or
part way through POST, then there are two probable causes. The first cause is that the
POSTCODECOM feature has a delay feature enabled (CONFIG_WAIT_POSTCODE_COM
set to a nonzero value). When the cache is enabled, or shadowing is enabled, the delay becomes
much shorter and is not significant enough to pace the characters. This can be switched by
setting the parameter to 0, to enable hardware flow control. The second cause is that the UART
may be reprogrammed in a Board or Chipset module routine called by POST, such as
BoardInit1, BoardInit4, BoardInit6, or BoardInit8. It is easy for these routines to reprogram
a chipset or Super I/O part and accidently reassign the UART’s I/O address or disable it, even
though the POSTCODECOM feature thinks it is still there.

22.4.6 Hard Disk Issues

If you have a hard disk formatted under another BIOS, and then are having trouble using the hard
disk on a target running EMBEDDED BIOS, be aware that other BIOSes may not support or be
properly configured to support the same industry standard cylinder/head/sector to 32-bit block
number transfer function that EMBEDDED BIOS supports. Actually, EMBEDDED BIOS
supports three standards: Raw physical, Phoenix CHS, and LBA. Raw physical means that the
cylinders, sectors, and heads are sent to the drive AS-IS, without any conversion to the ATA 32-
bit block number protocol. Drives up to 528MB are supported with the raw physical transfer
function. The Phoenix CHS function is not industry standard (not accepted by other desktop
BIOS vendors) but is accepted by EMBEDDED BIOS by setting the hard drive type in the Setup
screen. The details of this transfer function are beyond the scope of this section. The LBA
function is industry standard, and EMBEDDED BIOS follows the industry guidelines for
converting the INT 13h heads, cylinders, and tracks into 32-bit LBA values which are then
passed to the drive in ATAPI protocol. Thus, you may need to configure your hard drive in the
EMBEDDED BIOS Setup screen to match the type under which it was formatted in the foreign
BIOS. Also, you may need to reformat it for use with EMBEDDED BIOS if the BIOS under
which it was formatted was not using an industry standard at the time the disk was formatted.

If you are trying to boot an operating system from a second hard drive, be aware that the Master
Boot Record (MBR, the very first sector on the hard disk) contains a partition table, which
contains an “Active” flag for the one entry in the partition table that is bootable. This active flag
is according to definition 80h to mean “active” and 00h to mean “nonactive”. By industry

678 EMBEDDED BIOS Adaptation Guide Chapter 22

General Software EMBEDDED BIOS Adaptation Guide

convention, the MBR must use this as a BIOS unit number when reading in the Partition Boot
Record (PBR, the 1st sector within the partition to be booted). If the disk was FDISKed using a
tool that recorded the unit number instead of just 80h for the active flag, and if the drive was
attached to the system as a second drive when the FDISK was done, then it is conceivable that
this active flag is set to 81h and not 80h. This would cause the MBR to read the PBR off of the
wrong disk device! To check this, use the EMBEDDED BIOS debugger to read the MBR into
memory, and visually inspect the partition table to verify that the active flag is set to 80h and not
81h.

If you are trying to boot an operating system from a hard drive that was formatted as a secondary
drive, but is now your primary drive in the target, it is possible that the Partition Boot Record
(PBR) contains references to drive unit 81h instead of 80h, since the FORMAT utility may have
picked up the unit number at the time when it was formatted. If this happened, then your hard
drive’s PBR is trying to load its operating system from the wrong disk device! You could patch
your PBR with a debugger, or choose a different FORMAT program that doesn’t have this
problem. This is not a BIOS issue, but comes up often in embedded system development
because it is common to load-up a drive’s contents from a workstation and then use it as a
primary device on an embedded evaluation platform.

22.4.7 V20, V25, V30, and 80186 Issues

These processors do not have standard I/O devices. In particular, there is no 8250 UART for
serial I/O, no 8259 interrupt controller, no 8237A DMA controller, and no 8254 programmable
interrupt timer.

If you are using a high-integration CPU, make sure you have a properly-configured CPU
Personality Module (CPM) for the target.

These processors may not have the same set of hardware interrupts normally used on a PC/AT;
i.e., your keyboard may not be mapped to IRQ 1, and your timer may not be mapped to IRQ 0 (it
most likely is not). Therefore, you will need to modify the operating system running on top of
the BIOS to remap these interrupts.

Appendix A EMBEDDED BIOS Adaptation Guide 679

General Software EMBEDDED BIOS Adaptation Guide

Appendix A

PRODUCT CHANGE NOTES

The following is a list of changes to the documentation by release level for the EMBEDDED
BIOS Adaptation Kit components.

EMBEDDED BIOS Documentation

1.0 Initial version; basic configuration of EMBEDDED BIOS and licensing (first
release and 17 upgrades).

2.0/2.1 Revised to cover new architecture, Borland/MS tool sets, automated build
procedures, new configuration, supporting the hardware, bringing up new
hardware, using ROM/Flash disks, using the remote disk, using the BIOS
debugger, using CPU personality modules, using chipset personality modules,
using advanced power management, expanded BIOS services, troubleshooting,
this change notes section (first release).

2.2 Minor typographic corrections and clarifications.

3.0 Major reorganization of topic presentation; revised to cover AMD Elan, NEC
V41/51, Flash devices, Resident Flash Disk, RAM disk, Embedded DOS-ROM,
SETUP screens, manufacturing mode, PCMCIA socket services,
internationalization, and more how-to descriptions of the BIOS adaptation
process.

3.1 Support for IDE autodetection, LBA and CHS geometry translation,
Manufacturing Mode INT 13h redirection, new INT 15h services.

3.2 Support for bulk erase Flash devices, revised CPM DMA services, miscellaneous
typographic corrections, renamed Mini-DOS to Embedded DOS-ROM.

4.0 Reorganized chapters, documented new MCL, revised configuration options and
parameters, new BPM, revised CPM and CSPM functions, documented new build

680 EMBEDDED BIOS Adaptation Guide Appendix A

General Software EMBEDDED BIOS Adaptation Guide

procedure, documented Project files, documented new BIOStart utility, revised
BIOS service reference chapter to include new functions.

4.1 Separated DOS section into its own book; documented PCI table macros for
project file; documented new options; documented expanded INT 13h architecture
to support multiple ROM, RAM, Flash, and OEM-defined file systems;
documented Windows CE bootstrap option (CE Ready); documented Atmel Flash
MTD; documented consolidation of Basic and Advanced Setup screens into one
screen and added drive mapping; documented support for four real IDE drives and
four real floppy drives; and documented simplified procedures for formatting
RAM and RFD disks supported by the BIOS.

4.2 Documented Pentium II, Pentium III, Celeron, MediaGXm, STPC, and K6
support; added additional callouts for Board and Chipset Personality Modules;
added footprint scalability documentation; documented new Flash drivers; revised
setup screen description.

4.3 Added PCI chapter; added POST user interface chapter; documented 32-bit BIOS
Directory Services, 32-bit PCI services, 32-bit BIOS build, GSMERGE; updated
Board, Chipset, and CPU Personality Modules to add new entrypoints and update
others; documented NAND Flash file system and Toshiba NAND MTD; removed
obsolete parameter documentation; documented new parameters.

EMBEDDED BIOS Software

1.0 MASM/MSC 5.1-compatible BIOS, full source, IDE extra, SCSI extra. (first
release and 17 field support upgrades).

2.0 New modular architecture, improved build automation, Borland toolset support,
support for MS Visual C 8.0, new GSMAKE utility, file system performance
analyzer, CPU personality modules, chipset personality modules, desktop PC-
compatible API and data structure compatiblity (first release).

2.1 Changes to support Intel 80386-EX, minor bug fixes.

2.2 Support for 80386-EX CPU Personality Module.

3.1 Support for AMD Elan CPU, V41/V51 CPU, raw Flash I/O, Flash file system,
RAM disk, Embedded DOS-ROM, SETUP diagnostics, manufacturing mode,
PCMCIA socket services; software changes to support extended memory in a
wide variety of targets with nonstandard 8042s and port 92h implementations,
enhancements to CPU Personality Module and Chipset Personality Module
interface.

3.2 Renamed Mini-DOS to Embedded DOS-ROM, added automatic ROM disk
detection and improved compatibility in Embedded DOS-ROM, added bulk erase
Flash support for AMD and Intel 28F series parts, corrected LBA/CHS IDE
translations, supported DMA-based floppy I/O for 386-EX, added PicoPower and
486 SX/GX support, added AMD Elan PCMCIA ATA autodetection, added
PCODE interpreter to reduce size of BIOS and Embedded DOS-ROM.

Appendix A EMBEDDED BIOS Adaptation Guide 681

General Software EMBEDDED BIOS Adaptation Guide

4.0 Added Board Personality Module (BPM); redefined BPM/CPM/CSPM
architecture; reworked configuration parameters to support BPM; combined basic
and advanced SETUP screens; replaced old Flash drivers with MCL/MTD
system; added Project files and new build procedure; added BIOStart expert
configuration system; added special INT 15h functions for use by Embedded
DOS-ROM’s file system for RFD optimizations; strengthened RFD data integrity
checks; added CHKRFD utility; removed obsolete remote disk and PCMCIA
socket services; added PCI bus services.

4.1 Expanded INT 13h architecture to support multiple ROM, RAM, Flash, and
OEM-defined file systems; added Windows CE bootstrap option (CE Ready);
added 430HX/TX PCI adaptations; added Atmel Flash MTD; consolidated Basic
and Advanced Setup screens into one screen and added drive mapping; supported
four real IDE drives and four real floppy drives; and simplified procedures for
formatting RAM and RFD disks supported by the BIOS.

4.2 Added Pentium II, Pentium III, Celeron, MediaGXm, STPC, and K6 support;
added additional callouts for Board and Chipset Personality Modules; added
16KB-256KB footprint scalability; new Flash drivers; and PCI bridging.

4.3 Added 32-bit BIOS Directory Services, 32-bit PCI services, and capability of
supporting other 32-bit BIOS components with a 32-bit build; added graphical
POST with spash screens, POST progress icons, and animation sequences; added
CDROM disk emulation (and boot); reorganized PCI support to be split into 16-
bit and 32-bit components; added BoardPciControl callout for PCI; updated
Board, Chipset, and CPU Personality Module APIs to support additional callouts;
removed obsolete PCI Board Personality Module callouts; added SDRAM and
SPD support; added STPC Industrial support; added GSMERGE build tool; added
more configuration options for finer build control; added FAT snooping to RFD
for hard disk emulation; added NAND Flash file system and Toshiba NAND
Media Technology Driver; and improved host-side Manufacturing Mode utilities,
including HOST.EXE and MFGDRV.SYS to run at 115kbaud with minimized
timeouts.

