
TS ARM Linux Developer's Manual

Technologic Systems, Incorporated

16610 East Laser Drive, Suite 10
Fountain Hills, AZ 85268

480-837-5200
FAX 837-5300

info@embeddedArm.com

http://www.embeddedARM.com/

This revision of the manual is dated

 September 2005

All modifications from previous versions are listed in the appendix.

Copyright © 1998-2004 by Technologic Systems, Inc. All rights reserved.

Table Of Contents
 INTRODUCTION.. ..5

 STARTUP.. ..5
 Booting5
 RedBoot.. ...5
 Loading and executing Kernels from RedBoot................................. ...6

 UPDATING ROOT FILE-SYSTEMS... ...8
 Setting up the Network (Debian on CF).. ...8
 Setting up the Network (Flash File-System).. ...8
 Updating the JFFS2 Image.. ...9
 Mounting Other Devices... ...9

 DEVELOPMENT KIT.. ...10
 Compact Flash Card.. ...10
 Cross tool chains... ...11

 LINUX KERNELS... ..11
 RECOMMENDED READINGS.. ..12

 Appendix A: Cygwin Hello World walkthrough... ...13

Introduction
This manual is a brief introduction to the use of the Linux on a Technologic Systems'

ARM-based Single Board Computer (SBC). Many technical questions are answered
within this document This manual is not meant as a tutorial to Linux (or Linux
Development). Technologic Systems' ARM products offer a different set of tools when
working with them as compared to a Technologic Systems' x86 products. This manual
documents the basic knowledge needed to work with the ARM products. Currently, this
document addresses the TS-7200 ARM board.

If there is a need for a quicker time to market solution, Technologic Systems does
offer software engineering services. If one needs modified hardware, Technologic
Systems may be able to accommodate your needs. Please contact Technologic Systems
for more information.

Startup

Booting
Upon power up, the board executes proprietary Technologic Systems boot-code, then

immediately executes RedBoot. RedBoot is a feature rich boot-ROM monitor, that allows
manipulation of the on-board flash, JFFS2 images, loading and execution of a kernel or
executable from either tftp (trivial ftp) or flash, and gdb debugging stubs. From RedBoot,
one can load and execute any standalone binary. Most commonly, a Linux kernel or a
Windows CE binary is used. One can also write applications within the Ecos environment
and load them with RedBoot.

RedBoot
By default, a pre-existing RedBoot script is executed if not interrupted by the user

within one second. A Linux kernel is loaded into memory from flash, booting into the
pre-existing JFFS2 file-system. One can view the RedBoot defaults for the board, as well
as the default script, by entering at the RedBoot command prompt:

fconfig -l

The defaults can be changed by simply entering
fconfig

at the RedBoot prompt and answering the prompts. A final chance to write or discard
the changes to the board will be given by RedBoot.

The default script instructs RedBoot to load the Linux kernel from the flash, and
instruct the Linux kernel to use the JFFS2 image on the flash chip for its root file-system.
The Linux kernel must be loaded into memory address 0x00218000. Loading the
kernel from flash is done automatically by RedBoot in the default script with the
following command:

fis load zimage
After loading the kernel, the default script then executes the kernel with the following

command:

exec -c "console=ttyAM0,115200 root=/dev/mtdblock1”

Loading and executing Kernels from RedBoot
RedBoot can load a kernel or executable via the serial console, a tftp server, or

directly from flash. The default boot-script loads the kernel from flash into memory by
executing

fis load zimage -b 0x00218000
One can see where in flash the kernel is and where in memory it will be loaded to by

typing
fis list

which shows the various areas of flash RedBoot is aware of. The following is a
typical output of fis list

RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
(reserved) 0x60000000 0x60000000 0x00620000 0x00000000
RedBoot 0x60620000 0x60620000 0x00040000 0x00000000
RedBoot config 0x607C0000 0x607C0000 0x00001000 0x00000000
FIS directory 0x607E0000 0x607E0000 0x00020000 0x00000000
zimage 0x60660000 0x00218000 0x000C0000 0x00218000

From the above example, the kernel executable labeled zimage is stored at flash
address 0x60660000, and will be loaded into memory address 0x00218000.

To load a kernel from a tftp server, the following command is needed
load -r -b 0x00218000 -h <tftp server IP> <kernel

name>

At this point, it is possible to write the kernel now in memory to flash, thereby
overwriting the pre-existing kernel stored in flash. First, one must delete the existing
zImage file from flash, then write the new one to disk. The following commands
accomplish this:

fis delete zimage
fis create zimage

Note that the delete command specified “zimage”, which refers to the name of the fis
entry to delete. The create command specified “zimage”, which is the name of the
executable loaded into memory. If the name of the downloaded executable is different,
please specify that name when doing a create command.

Now that a kernel has been loaded into memory, it can be executed. This is
accomplished with the following command:

exec -c “console=ttyAM0,115200 ip=dhcp
root=/dev/mtdblock1”

the exec command executes the loaded kernel image, passing to the kernel the
arguments specified via the -c switch. In the previous example, kernel messages are sent
out on the first serial port (note that ttyAM0 is used instead of the familiar ttyS0) at
115200 baud and the root file-system is on the first mtdblock of the flash chip.

If one was to load the root-filesystem from an nfs server, the following command
would suffice:

exec -c “console=ttyAM0,115200 ip=dhcp nfsroot=<ip of
nfs server>:/path/to/nfsroot

To load the root file-system from the Compact Flash card, the following command
should be used instead:

exec -c “console=ttyAM0,115200 ip=dhcp root=/dev/hda1”

Updating Root File-Systems

It may please you to know that updating the Compact Flash file-system is Debian.
Adding new packages, removing undesired ones, is done all through Debian's package
management. apt, dpkg, all behave as expected. A full in-depth discussion on Debian is
outside the scope of this document. Please visit Debian's web-site
(http://www.debian.org) for more documentation on using apt, dpkg, or other debian
related questions not answered in this document.

The on-board flash contains a custom-made JFFS2 image. JFFS2 is a compressed,
Journaling Flash File System.

Setting up the Network (Debian on CF)
To configure the network interfaces when booting into Debian on the Compact Flash

card, edit the file /etc/network/interfaces. A typical interfaces file would contain the
following:

/etc/network/interfaces -- configuration file for ifup(8),
ifdown(8)

The loopback interface
auto lo eth0
iface lo inet loopback

The first network card
auto eth0
#iface eth0 inet dhcp
iface eth0 inet static
address 192.168.1.1
netmask 255.255.255.0
gateway 192.168.1.2

Those lines starting with a # symbol are comments. The line auto lo eth0 means both
the loopback interface and the first ethernet interface will be started automatically by the
Debian networking scripts. The above example shows that eth0 would be assigned the
static address of 192.168.1, using 192.168.1.2 as the default gateway. If one was to
comment out those lines, and then uncomment the line iface eth0 inet dhcp, then eth0
would use a dhcp client to obtain it's IP and other relevant network information.

Setting up the Network (Flash File-System)
To configure the network when booting to the JFFS2 image on the flash chip, the files

in /etc/sysconfig/ must be edited. Network interfaces are configured on a file per interface
basis. The first Ethernet device, eth0, is controlled by the file /etc/sysconfig/ifcfg-eth0.
An example of ifcfg-eth0 is shown below

$ cat ifcfg-eth0
DEVICE=eth0
IPADDR=192.168.0.50

NETMASK=255.255.255.0
NETWORK=192.168.0.0
BROADCAST=192.168.0.255
#BOOTPROTO=dhcp
BOOTPROTO=static
ENABLE=yes

Those lines starting with a # symbol are comments. As the above example shows,
eth0 is given the static address of 192.168.0.50. If one wishes eth0 to obtain its IP from a
DHCP server, then change the line

BOOTPROTO=static
to

 BOOTPROTO=dhcp

Updating the JFFS2 Image
The JFFS2 image can be created on your host computer, with binaries created via a

cross compiler, then placed in a directory structure on the host computer. A new JFFS2
image can be constructed from that directory structure with the following command:

mkfs.jffs2 -p6291456 -e131072 -o /tmp/my_jff2.img

Pre-made JFFS2 images can be found in the Developer's CD or on Technologic
Systems' web-site

The JFFS2 image file can then be copied over to the Single Board Computer and then
written to the flash chip by using the following command:

dd if=my_jffs2.img of=/dev/mtdblock/1

Mounting Other Devices
Occasionally, one may wish to boot into one device and access the other. This

requires knowing where those other devices are. The JFFS image on the flash is stored on
/dev/mtdblock/1. To mount it, the following will suffice:

mount /dev/mtdblock/1 /mnt

The Compact Flash card is seen as the Primary Master IDE device, otherwise known
as /dev/hda. The following command demonstrates mounting the Compact Flash card to
the currently running system:

mount /dedv/hda1 /mnt

Mounting nfs roots requires that the portmap daemon is running, before executing the
mount command. The following example demonstrates mounting an NFS file-system
hosted on a server at 192.168.1.3

portmap &
mount -t nfs 192.168.1.3:/path/to/nfsroot /mnt

Development Kit
The standard developer's kit includes a CD with a patched Linux source tree,

documentation, and cross tool-chains. The developer's kit also includes a Compact Flash
card pre-installed with Debian stable.

Compact Flash Card
 The developer's kit comes with a CF card pre-installed with Debian. Installed on the

Debian CF card are common utilities such as Samba, apache, perl, open-ssh, and native
arm compiler tools, such as gcc.

With Debian, one can easily install and remove software packages. It is recommended
that one visits the Debian home-page at http://www.debian.org for further information.
For a quick demonstration of how easy it is to remove and install programs with Debian,
try the following commands:

apt-get install hexedit
hexedit /etc/passwd
^C (hit CTRL+C to safely exit)
apt-get remove hexedit

apt-get install installs a package name, while apt-get remove removes the named
package. For further support on Debian, please visit the Debian home-page.

To create a CF card from scratch, one must format the entire CF card as ext2, then
unpack the Development file system for NFS root or Compact Flash. Latest versions of
our pre-made Debian install can be found on our website at
http://www.embeddedx86.com/linux/ARM.htm. This should all be done from the host
PC running Linux. The walk-through below assumes the CF card is plugged into the
USB dongle and the CF card has been assigned to /dev/sda:

fdisk /dev/ide/host0/bus0/target0/lun0/disc
1. d (to delete existing partitions. Repeat for all partitions)
2. n (for new partition)
3. p (for Primary partition)
4. 1 (make the new partition primary number 1)
5. hit the enter key for the default starting cylinder
6. hit the enter key again for the default last cylinder
7. p (to print out the partition table)
8. If the first partiton does not have a star in the boot field, then enter 'a' at the

prompt and then '1' to make the first partition bootable.
9. To commit these changes to the disk, enter 'w' to write out the new partition table

to the disk.

Now that the CF card has been partitioned, it must be formatted. The following
command will format the first partition on the CF card as an ext2 file-system.

mkfs.ext2 /dev/sda1
All that is left is to mount the CF card and unpack the tar file of the Development

Debian File System.

mount /dev/sda1 /mnt/misc
tar -C /mt/misc -xvjf debian256-8-25-2004.tar.bz2

The filename may change as updates are made and posted on the CD or on the web-
site.

A simple fsck will ensure file-system integrity.
fsck /dev/sda1

Cross tool chains
While the Debian Compact Flash card includes a suite of compiler tools, including a

native arm gcc c compiler, one may wish to use their desktop PC for compiling and
development. The recommended cross-compiler is Dan Kegel's CrossTool
(http://kegel.com/crosstool/). Simply download the latest version, and run the demo-
arm.sh script for an arm cross compiler that is suitable for your system. CrossTool 0.28 or
greater now supports cygwin. Technologic Systems does provide pre-made versions of
crosstool for both Linux and cygwin. They can be found on the Arm Development CD or
on the Technologic Systems' web-site. To install the Linux binaries, unpack the tar file at
the root of your system as the root user. To install the Cygwin binaries, unpack the tar file
at the root of your Cygwin environment. Be sure to include in the PATH environment
variable the path of the crosstool binaries. For example, the pre-made Linux crosstool
binaries are located at /usr/local/opt/crosstool/arm-linux/gcc-3.3.2-glibc-2.3.2/bin/

Linux Kernels
Technologic Systems offers kernel patches for those kernels that are shipped with the

board. Please visit our website (http://www.embeddedarm.com) to download the
appropriate patch.

Once downloaded, the patch can then be applied to a matching, unpacked Linux
kernel. In order to compile the kernel from a non ARM host machine, a cross compiler is
needed. Technologic Systems offers some pre-compiled cross compilers, such as Dan
Keegel's CrossTool.

To compile the kernel, simply edit the top level Makefile and ensure that the
CROSS_COMPILER variable is equal to your system's cross compiler prefix to gcc.
Then type

make ts7200_config
make oldconfig
make dep
make vmlinux
make modules

in order to build a kernel as shipped by Technologic Systems. The resulting vmlinux
file can be placed onto the flash chip as described before.

Recommended Readings

For those who are new to Linux, it will be beneficial to own and work within a full-
features desktop Linux OS. Commonly, those new to Linux tend to use distributions such
as Redhat's Fedora, Mandrake Linux, or Suse. For those who are unwilling to install a
Linux OS onto their system, Knoppix is recommended. Knoppix
(www.knoppix.org) is a live-cd that boots into Linux, and while offering a feature rich
Linux OS, it won't touch the hard-drive unless told to.

For those with are familiar with Linux but not familiar with programming in Linux,
the following web-sites and books are excellent resources

www.ibm.com/developerworks
full of tutorials and articles for Linux programming. For example, they have an

excellent set of tutorials on programming threads in Linux

www.kernelnewbies.org
Good starting point for those who are new to Linux kernel development.

www.montavista.com
Monta Vista is a global leader in embedded Linux development. They offer their

own Operating System, as well as their set universal development tools (including IDEs).
Monta Vista tools are platform independent, and work well for a Windows only
environment.

Linux Device Drivers, 2nd Edition
By Alessandro Rubini & Jonathan Corbet

Highly recommended book for those who wish to learn the fundamentals to device
driver development in Linux

Appendix A: Cygwin Hello World walkthrough
This is a quick demonstration on using Windows and Cygwin to create your own

hello world application using Linux tools. It is assumed that either the Cygwin crosstool
tar file has been unpacked to the root of the Cygwin environment or has been built from
scratch. Naturally, it is assumed that Cygwin has been installed on your Windows PC.

1) Create hello-world.c
This can be done with any editor, either using Vim from within Cygwin, or using
notepad from within Windows

include <stdio.h>
int main (void)
{

printf (“Hello World!\n”);
return 0;

}

2) Ensure that the CrossTool binaries are in your systems path
export PATH=$PATH:/opt/crosstool/arm-unknown-
linux-gnu/gcc-3.3.2-glibc-2.3.2/bin

3) Create the hello executable
arm-unknown-linux-gcc -Wall -o hello helloworld.c

4) Verify that the resulting hello binary is an ARM binary file.
file hello

5) Run inetd on the SBC
inetd

6) Copy over the hello binary to the SBC via ftp. Log in with user root with no
password

ftp 192.168.0.50 (be sure to use the IP that matches your setup)
Login
enter “binary” to ensure binary transfers
enter “put hello”

7) On the SBC, change the permissions of the hello binary to become executable
cd /root
chmod +x ./hello

8) Run the binary
./hello

