.
AR Technologic

Getting started with TS-7KV for TS-7000

www.embeddedarm.com (480) 837-5200

Hardware Overview
The TS-7KV is a multi-function PC104 daugther board that provides Video for TS-7000 ARM and other features like:

 16-bit color/640X480 video resolution

» 8MB dedicated video memory running @ 95Mhz.

» Simple and fast video accelerator

» Accelerated Linux framebuffer driver available

- Standard DB15 VGA connector or 10 pin header

» Forward-compatible through adapter boards

« All features implemented on FPGA ensures long-term availability (no obsolete or proprietary graphics chips)
« 24 buffered, 5V tolerant GPIO lines (16 output, 8 input)

» 5 megabaud serial port

» Optional RS485, half or full, with automatic half-duplex transmitter enable/disable
+ Optional 8 channel 200ksps 16-bit ADC

» Optional SJA1000 compatible CAN controller

JRCE |
* ci4

(N
L

== R3p
a
i (T O T
RS0
L} |
o 337

]
ny
>
s
C
e
=

P17385

Table 1: Jumper settings for Base/FPGA/Video address selection

Table 2: Jumper settings for IRQ

I/O Adrress JP1 JP2 FPGA 32-bytes I/0 Video I/0 IRQ JP4 JP5
EO0-E7 OFF OFF 00-1F 000000 - OFFFFF None OFF OFF
E8 - EF ON OFF 20-3F 100000 - 1FFFFF IRQ6 ON OFF
FO-F7 OFF ON 40 - 5F 200000 - 2FFFFF IRQ7 OFF ON
F8-FF ON ON 60 - 7F 300000 - 3FFFFF ON ON

Table 3: Base Register Map: TS-7KV
I/O Address Description Data Bits and such

BASE + 0 Board identifier #1 Read only Fixed value: 0x41 hex

BASE + 1 Board identifier #2 Read only Fixed value: 0x20 hex

BASE +2 PLD version register Read only | Fixed value

BASE + 3 Reserved

BASE + 4 Control register 0 R/W Bit 7: Done bit; FPGA firmware loaded.
Bits 2-6: reserved
Bit 1: FPGA config, set at reset
Bit 0: FPGA ready, cleared at reset

BASE + 5 Control register 1 RW Bit 7: HSWAP; Control bit that drives the FPGA (1 = no PU)
(0 = pull-up resistors enabled)
Bit 6: INIT; Control bit that drives the FPGA (1 = true). INIT
is open-drain and has pull-up resistor. Reads return value at
FPGA pin.
Bit 5: RDWR; Control bit that drives the FPGA (1 = ready).
It must be either high to read back configuration or low to
write config data.
Bit 4: CS; Control bit that drives the FPGA (1 = true)
Bit 3: PROG; Control bit that drives the FPGA (1 = true)
Bit 2: M2; mode control bit that drives the FPGA
Bit 1: M1; mode control bit that drives the FPGA
Bit 0: MO; mode control bit that drives the FPGA

BASE+6 FPGA configuration write data ~ Write only Write cycles to this location writes configuration data
into the FPGA.

BASE +7 Jumpers and options Read only Bit 7: ADC option

Bit 6: CAN option

Bit 5: Jumper 5 (1=on, 0=0ff) address decode
Bit 4: Jumper 4 (1=on, 0=0ff) address decode
Bit 3: Jumper 3 (1=on, 0=0ff) reserved

Bit 2: Jumper 2 (1=on, 0=0ff) interrupt selection
Bit 1: Jumper 1 (1=on, 0=off) interrupt selection
Bit 0: reserved

USING THE WINDOW REGISTER

The communication with the TS7KV FPGA, and thus with all the sub-devices implemented on it, is provided through a
32-byte I/0 space selected as described in previous table 1. The 32-byte I/O space accesses 1 of 5 sub-devices
depending on the value loaded into the 16-bit SWIN register located at BASE+1E. The remaining 30 bytes, from
BASE+00 to BASE+1D, are a window into the register space of the selected sub-device. If the selected core on the
FPGA needs more than 30 bytes of register space, it is possible to switch the window in steps of 16-bytes by writing
to bits 3-0 of the SWIN register. The following table describes this register:

Table 4: 16-bit SWIN register at BASE+1E
I/O Address Description Data Bits and such

BASE + 1E SWIN register high R/W Bits 15-8: reserved
Bits 7-4: Slave device select:
set 0000 for 16550 RS232/RS485 serial UART;
set 0001 for SJA1000 CANbus controller.
set 0010 for LTC1867 SPI ADC.
set 0011 for digital GPIO line registers.
set 0100 for red/green on board LED control.
set 0101 for video control I/O block.
Bits 3-0: slave window offset in 16-byte units, for devices
that requires more than 30 bytes of address space.

USING THE FPGA VIDEO CORE: TS-VIDCORE

After selecting the video sub-device by writing the value 5 to bits 7-4 of the SWIN register, the video control registers
appear at the base of the 32-byte 1/0 adrres space, as described previously. All the functionality of the TS-VIDCORE
is controlled through only five 16-bit registers, thus occupying 10 bytes of the 30-byte TS-7KV address space for sub-
devices. The next table describes the video control registers.

Table 5: 16-bit registers map for Video control

1/0 Address Description Data Bits and such
BASE + 0 BLTCTRL: Bit blit control R/W Bits 15-13: upper 3 bits of box pixel width
register Bit 12: bit blit source mode (0 - rectangle, 1 - linear)

Bits 11-6: upper 6 bits of destination address of bit blit operation
Bits 5-0: upper 6 bits of start address of bit blit operation

BASE +2 BLTSZ: Bit blit width and R/W Bits 15-9: box pixel width (lower 7 bits)
height register Bits 8-0: box pixel height (0-512)
BASE +4 SRCBLT: Bit blit source R/W Bits 15-0: lower 16 bits of source address or pixel fill color
BASE +6 DSTBLT: Bit blit destination R/W Bits 15-0: lower 16 bits of destination address
BASE +8 VIDCTRL: Video control R/W Bit 11: raster page committed (Read Only)
register Bit 10: bit blit operation in progress (Read Only)

Bit 9: horizontal sync enabled
Bit 8: vertical sync enabled
Bit 7: bit blit direction

0 - top to bottom: SRCBLT and DSTBLT are top-left comer addr

1 - bottom to top: SRCBLT and DSTBLT are bottom-left corner addr
Bit 6: pixel fill enable (SRCBLT is pixel color instead of addr)
Bits 5-3: raster page select (0-7) — selects screen being displayed
Bits 2-0: bus page select (0-7) — selects screen accessible via
PC104 memory space

NOTES ON BIT BLIT OPERATION

The bit blit operation begins on write of DSTBLT register. If the DSTBLT is written again before bit blit operation
completes, the FPGA bus (wishbone) cycle is stalled until previous operation completion. The bit blitter clones all bit
blit registers on start of bit blit operation such that new values can be loaded in preparation for next bit blit.

There is a demo application at ftp:/ftp.embeddedarm.com/ts-7kv/bitblt-demo that executes a bit blit operation using
TS-7KV video core. It moves Technologic Systems' logo arround the screen 2000 times per second.

TS-VIDCORE FRAMEBUFFER DRIVER FOR LINUX

Technologic Systems provides a framebuffer driver that manages the TS-VIDCORE. The video registers are properly
handled inside the driver so other Linux Kernel layers can interact with the TS-VIDCORE using the Framebuffer
Device API. The driver enables video interaction from user-space using the /dev/fb framebuffer entry.

The Linux Framebuffer driver is integrated in the new official kernel release for TS7200, namedts9. Default kernels
shipped with TS-7000 do not have video support, so you must update your kernel image from redboot in order to
support TS-7KV. New kernels for TS-7200/TS-7250, new kernel modules and other related and necessary files are
available in the directory ts-7kv of Technologic Systems' FTP server (itp:/ftp.embeddedarm.com/ts-7kv/).

If you do not have the ts9 kernel release, use the next sections to guide you on how to update your TS7000 system
for running all the TS-7KV functionalities.

INSTALLING THE KERNEL AND MODULES

There are many ways to get the new kernel into RedBoot. One way involves using the internet. To continue, make
sure you have configured RedBoot with a network configuration that can reach the intemet. You may use the
RedBoot "fconfig" command to set network parameters. Get to the RedBoot prompt by hitting Ctrl-C key immediately
after power-on and type the following commands:

RedBoot> load -v -r -b 0x00218000 -m http -h 67.40.67.44 /ftp/ts-7kv/vmlinux-ts7200-ts9.bin
-OR- (if you have a TS-7250):
RedBoot> load -v -r -b 0x00218000 -m http -h 67.40.67.44 /ftp/ts-7kv/vmlinux-ts7250-ts9.bin

RedBoot> fis delete vmlinux
RedBoot> fis create -b 0x00218000 - 0x160000 vmlinux

If RedBoot gives you an error about not understanding the "-m http" option, you have an older version of RedBoot
and must instead load the kernel via a local TFTP server, for example:

RedBoot> load -r -b 0x00218000 -h 192.168.0.1 /tftp/ts-7kv/vmlinux-ts7250-ts9.bin

Once the new kernel is installed and booted, you need to extract the new modules for TS-7KV framebuffer and serial
port into /lib/modules. To do this, you must upload the file linux24-ts9-modules.tar.gz to the TS-72XX using the
embedded FTP server and extract using the "tar" command into the / directory:

> tar zxvf linux24-ts9-modules.tar.gz -C /

Once the new modules are extracted, you may optionally delete the old module directory for the old kernel in /
lib/modules/ to reclaim flash space.

INSTALLING THE CONSOLE KIT

For you to see a text-mode console login prompt when you boot your TS-7200/TS-7250, you must extract the file
ts7kv-tslinux-console-kit.tar.gz also into the / directory.

> tar zxvf ts7kv-tslinux-console-kit.tar.gz -C /

This file contains an init.d startup script that detects the TS-7KV, loads the FPGA firmware, loads the TS-7KV
modules (and USB keyboard and mouse modules also for convenience), and starts a login prompt (getty) on the
newly formed Linux text console. Note that this tarfile is only good for the onboard flash mini-Linux installation. To
use the TS-7KV on a 256Mb CF development kit Debian version, you will need, instead, to do:

> tar zxvf ts7kv-debian-console-kit.tar.gz -C/

After installing kernel, module and console kit for TS-7KV, you should be able to use a Linux terminal after conecting
a display on TS-7KV's video output, conecting USB mouse and keyboard, and rebooting the system.

INSTALLING THE QT/EMBEDDED GRAPHICAL LIBRARY

It is possible to builld advanced graphical user interface applications on top of TS-7KV for ARM-Linux embedded
systems by using the QT/Embedded libraries. The development using Q/Embedded is based on C/C++ Linux tools.
Technologic Systems does provide, at the same ftp directory, a compiled package of the free and open source
version of Q/Embedded 3.3.4. The ts-7kv-gtembedded-full.tar.gz contains the entire Q/Embedded compiled library
as well as examples. There is also a small footprint Q/Embedded version named ts-7kv-qtembedded-
compact.tar.gz, in order to save flash space. To install the graphical library, extract the file into the / directory:

> tar zxvf ts-7kv-qtembedded-compact.tar.gz-C /

It will create and fill the /ust/local/gt-embedded-free-3.3.4/ directory. The Qt/Embedded examples are located into
directory /usr/local/qt-embedded-free-3.3.4/examples/. To run the hello world example you can execute the hello.run
script. It defines the Qt/Embeded environment variables; creates symbolic links to the framebuffer, mouse and

keyboard devices into the /dev directory; and calls the hello application as a server.

> cd usr/local/qt-embedded-free-3.3.4/examples/
> ./hello.run

To learn how to program GUI application using the Q/Embedded API, please refer to the specific documentation:

« http://doc.trolltech.com/3.3/index.html

ADDITIONAL FEATURE: USING THE TS-7KV CAN CONTROLLER

The CAN controller implemented inside TS-7KV FPGA is Philips SJIA1000 compatible. To make the SJA1000 128-
byte address space appears on base address, you need to write the value 1 to bits 7-4 of the SWIN register, and then
select the wanted register page using bits 3-0 of the SWIN register.

The linux driver for TS-CAN1, another PC/104 daughter board using SJA1000 provided by Technologic System, also
supports the TS-7KV. All the information provided by TS-CAN1 documentation also applys for TS-7KV boards.

For further information on how to install and use the CAN driver for Linux, find the Getting Started with TS-CAN1
manual at http://www.embeddedarm.com/Manuals/gs can1.pdf

ADDITIONAL FEATURE: USING THE TS-7KV SERIAL PORT

The TS-7KV implements a 16550 RS232/RS485 serial UART module. To use this subdevice it is necessary to write
the value 0x00 to the SWIN register at adrress BASE+1E. This will make the serial registers appear at the 30-byte
window adress space for subdevices, starting at BASE+00, where BASE is configured as shown in table 1.

You may research the internet for further information about the very common 16550 UART specification, such as
registers map. For example:

» http://www.freebsd.org/doc/en US.ISO8859-1/articles/serial-uart/

If you have properly installed the console kit, the TS-7KV serial port will be detected during boot time, and then the
Linux driver, named ts7kvserial, will be loaded by default, enabling you to use the /dev file system entry with Linux
systen calls (open, read, write, close) from user space.

ADDITIONAL FEATURE: USING THE TS-7KV GPIO

The TS-7KV implements a digital General Purpose 1/0 module. To use this subdevice it is necessary to write the
value 0x30 to the SWIN register at adrress BASE+1E. This will make the GPIO registers appear at the 30-byte
window adress space for subdevices, starting at BASE+00, where BASE is configured as shown in table 1.

There are two 16-bit registers for handling the GPIO lines. The first, at BASE+00, controls the 16 output lines, while
the 8 lower bits of the second register, at BASE+02, control the 8 input lines. Outputs are 3.3V and can sink/source
24mA. Inputs are 5V tolerant, 3.3V w/CMOS thresholds.

ADDITIONAL FEATURE: USING THE TS-7KV ADC

The TS-7KV implements a LTC1867 SPI ADC module. To use this subdevice it is necessary to write the value 0x20
to the SWIN register at adrress BASE+1E. This will make the ADC registers appear at the 30-byte window adress
space for subdevices, starting at BASE+00, where BASE is configured as shown in table 1.

The ADC sub-device is implemented using one single 16-bit register at BASE+00. Writes to this registers send the 7-
bit command word. Conversions are always taking place at 190 kbps and reads give back the last data converted by
the ADC. For further information, refer to the LTC1867 documentation:

« http://www.linear.com/pc/productDetail.do?navid=H0.C1,C1155.C1001.C1158.P2497&action=viewall

SUPPORT

Email: support@embeddedarm.com

DOCUMENT HISTORY

10.26.2005 - Created

