
Notes on Using GCC IWMMXT Intrinsic

Notes on Using GCC IWMMXT Intrinsic

Table of Contents

Notes on Using GCC IWMMXT Intrinsic .. 1

1. Overview ... 1

2. Using GCC IWMMXT intrinsics in C sources ... 1

2.1. Include files ... 1

2.2. Data types and Alignments .. 2

2.3. Exploring SIMD Parallel Computing .. 4

3. Compiling and Debugging .. 8

3.1. Compiling Options .. 8

3.2. Debugging IWMMXT with GDB ... 9

4. Miscellaneous .. 10

References ... 11

List of Figures

Figure 1 Scalar IDCT column transformations ... 4

Figure 2 SIMD IDCT column transformations ... 5

Figure 3 Code fragments of IDCT column transformations ... 5

Figure 4 Scalar IDCT row transformations ... 6

Figure 5 Data realignment for IDCT row transformations .. 6

Figure 6 Code fragments of IDCT data realignment ... 7

List of Tables

Table 1 Data type conversion intrinsics .. 2

Table 2 AAPCS ABI’s default data type and alignment .. 3

Table 3 Data realignment intrinsics ... 7

Table 4 IWMMXT Compiling Options ... 8

Notes on Using GCC IWMMXT Intrinsic

Notes on Using GCC IWMMXT Intrinsic

1/11

1. Overview

The major benefit of using intrinsic is that you now have access to key features that are not

available using conventional coding practices. Intrinsic enable you to code with the syntax of C

function calls and variables instead of assembly language. Most Wireless MMX instructions have

a corresponding C intrinsic that implements that instruction directly. This frees you from

managing registers and enables the compiler to optimize the instruction scheduling [1].

This document is not intent to serve as the intrinsic function manual, but as a programming

reference instead. We are trying to give some notes on how to write an efficient program with

IWMMXT intrinsic. If you are looking for the full list of intrinsic functions and its usage syntax,

please refer to the manuals in [1] or [2].

In the following sections, we will use invert DCT function in jpeg decoder [3] as the example

to explain related techniques and their impact on the performance. Section 2 describes how to use

IWMMXT intrinsics in C sources; Section 3 outlines related compiling options and debugging

commands. Some other miscellaneous notes are listed in Section 4.

2. Using GCC IWMMXT intrinsics in C sources

2.1. Include files

To use Intel Wireless MMX technology intrinsics, the <mmintrin.h> file must be included.

This file contains __m64 data type definitions and ANSI C prototypes for the Intel Wireless MMX

technology intrinsic functions [2].

The syntax of Intel Wireless MMX technology intrinsic prototype is as follows:

Syntax

#include <mmintrin.h>

data_type intrinsic_name (parameters);

 data_type is the return data type, which is usually void, int, or __m64.

Intrinsics may return other data types that are described in the intrinsic syntax

definitions.

 intrinsic_name is the name of the intrinsic, which behaves like a function that

you can use in your C/C++ code instead of inlining the actual instruction.

 parameters represents the parameters required by each intrinsic.

Notes on Using GCC IWMMXT Intrinsic

2/11

2.2. Data types and Alignments

2.2.1. Data types

Marvell GCC provides two new 64-bit types for IWMMXT intrinsics; they are type defined

as below:

typedef unsigned long long __m64;

typedef long long __int64;

Attention:

Previous version of GCCs (Official versions including CodeSourcery’s) treat __int64 as

unsigned long long which is different from our definition.

The __m64 data type can hold eight 8-bit values, four 16-bit values, two 32-bit values, or one

64-bit value. But since the new data type __m64 is not one of the basic ANSI C data types, you

must observe the following usage restrictions:

 The __m64 data type can be used only on either side of an assignment, as parameters to

a function call, and as a return value from a function call. You cannot use it with other

arithmetic expressions (“+”, “-”, etc.).

 The __m64 data type can be used as objects in aggregates (such as unions) to access the

byte elements and structures.

Conversions between __m64 and other types are supported by following intrinsics in Table 1.

Table 1 Data type conversion intrinsics

Intrinsics prototype Note

__m64 _mm_cvtsi64_m64 (__int64 __i) Convert from __int64 to __m64

__int64 _mm_cvtm64_si64 (__m64 __i) Convert from __m64 to __int64

int _mm_cvtsi64_si32 (__int64 __i) Convert from __int64 to int

__int64 _mm_cvtsi32_si64 (int __i) Convert from int to __int64

2.2.2. Alignments

As shown in general optimization guidelines, aligned data are preferred for SIMD computing.

We can do it by specifying attributes for variables (GCC C Extensions).

For example, the following codes declare a 16-bytes aligned array:

int a[4] __attribute__((aligned(16))) = { 1, 3, 5, 7 };

You can explicitly specify the alignment (in bytes) that you wish the compiler to use for a

given variable or structure field. Alternatively, you can leave out the alignment factor and just

ask the compiler to align a variable or field to the default alignment for the target architecture

Notes on Using GCC IWMMXT Intrinsic

3/11

you are compiling for. The default alignment is sufficient for all scalar types, but may not be

enough for all vector types on a target which supports vector operations. The default alignment is

fixed for a particular target ABI. Please refer to ABIs’ documents for details.

For example, Table 2 shows the default data type and alignment for AAPCS ABI [6].

GCC also provides a target specific macro __BIGGEST_ALIGNMENT__, which is the

largest alignment ever used for any data type on the target machine you are compiling for. For

example, you could write:

short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));

This macro is also ABI dependent: for old ARM ABI (APCS and ATPCS), its value is 32,

for the others (AAPCS, IWMMXT and AAPCS_LINUX), its value is 64.

Table 2 AAPCS ABI’s default data type and alignment

Type Class Machine Type Byte

size

Byte

alignment

Note

Integral Unsigned byte 1 1 Character

Signed byte 1 1

Unsigned

half-word

2 2

Signed half-word 2 2

Unsigned word 4 4

Signed word 4 4

Unsigned

double-word

8 8

Signed

double-word

8 8

Floating Point Half precision 2 2 Half-precision Floating Point.

Single precision

(IEEE 754)

4 4 The encoding of floating point numbers

is described in [ARM ARM] chapter C2,

VFP Programmer’s Model, §2.1.1

Single-precision format, and §2.1.2

Double-precision format.

Double precision

(IEEE 754)

8 8

Containerized

vector

64-bit vector 8 8 Containerized Vectors.

128-bit vector 16 8

Pointer Data pointer 4 4 Pointer arithmetic should be unsigned.

Bit 0 of a code pointer indicates the

target instruction set type (0 ARM, 1

Thumb).

Code pointer 4 4

Notes on Using GCC IWMMXT Intrinsic

4/11

2.3. Exploring SIMD Parallel Computing

Wireless MMX instructions are designed to do parallel computing in packed data, so in order

to use IWMMXT intrinsics; we have to generate SIMD-Ready vectors first.

2.3.1. Generation of SIMD-Ready Vectors

 Loop unrolling

For some codes that apply same operations to different data (especially, within one loop), the

most common technique to generate SIMD-Ready vectors is loop unrolling.

0 1 2 3 4 5 6 7

Memory Address

… …

SrcDst

0
1

3
4

5
6

7
2

…

0

Figure 1 Scalar IDCT column transformations

For example, the invert DCT function in jpegdec (ippiDCTQuantInv_JPEG_16s_I) applies

transformations on each column. As shown in Figure 1, scalar implementations usually do the

transformations within one loop (8 times): the loop body loads eight elements from first column,

applies calculations to them, and then store them back to memory.

Considering the data access pattern in the transformation and data arrangement in the

memory, as there is not cross-referencing access to different columns’ data, we can load

contiguous data in a row together and apply the same transformations to them.

Notes on Using GCC IWMMXT Intrinsic

5/11

3 1 2 3 4 5 6 7

SrcDst

0
1

3
4

5
6

7
2

…

01 20

Memory Address

… …

Figure 2 SIMD IDCT column transformations

The IWMMXT intrinsics could apply calculations on four packed bytes, so we can easily

unroll the loop four times to utilize the SIMD parallel computing features. In this case, the whole

transformation would need only twice calculation, as shown in Figure 2. Figure 3 contains some

of the related code fragments.

Figure 3 Code fragments of IDCT column transformations

Notes on Using GCC IWMMXT Intrinsic

6/11

 Data Realignment:

The loop unrolling is the most simple and common way to generate SIMD-Ready vectors,

but such regular loop is usually rare. More often than not, the SIMD-Ready vectors come from

manual data realignment.

For example, the row transformation in IDCT (Figure 4) also applies complicated calculation

to row one by one. But considering the data arrangement in memory: the data for different loops

are not contiguous; we could not unroll the loop as in column transformation.

1
2

3
4

5
6

7

SrcDst

0

dequantization

0

d1 d2 d3 d4 d5 d6 d7d0

1 2 3 4 5 6 70 c1 c2 c3 a db cc0

e1 e2 e3e0

…

1 2 3 4 5 6 70

Figure 4 Scalar IDCT row transformations

 After carefully investigation, we still can dig some SIMD computing. As shown in Figure 4,

we could find some regular patterns in the computation, e.g. calculation of e0~e3. But there is

another problem: the data path of the calculation is too complicated, there is not such IWMMXT

intrinsics to calculate them directly. To utilize the intrinsics, we need to realign the data.

The calculation of e0~e3 contains two 32-bit adds and two 32-bit subs, so one possible way

to use IWMMXT intrinsics is to do the add within one SIMD operation and sub within another.

Figure 5 presents one possible realignment solution: just exchange the position of c1 and e1, and

then we get regular pattern in data paths too.

c1 c2 c3c0

e1 e2 e3e0

c1 c2 c3c0

e1 e2 e3e0

Figure 5 Data realignment for IDCT row transformations

Notes on Using GCC IWMMXT Intrinsic

7/11

 There are a lot of different ways to realign data in IWMMXT: merge, shuffle, walign, insert,

unpack. Detail intrinsics could be found in Table 3. One possible choice for previous example is

using _mm_merge_si64, as in Figure 6.

Table 3 Data realignment intrinsics

Intrinsics prototype Note

__m64

 _mm_merge_si64 (__m64 a, __m64 b, const int n)

Take n bytes from b, the others from a

__m64

_mm_shuffle_pi16(__m64 a, int n)

Returns a combination of the four half

words of a specified by the selector n.

__m64

_mm_align_si64(__m64 m1, __m64 m2, int count)

Extracts a 64-bit value from m1, m2

with count byte offset.

__m64

_mm_insert_pi8(__m64 a, int d, int n)

Inserts byte d into one of eight bytes of

a specified by the selector n.

__m64

_mm_insert_pi16(__m64 a, int d, int n)

Inserts half word d into one of four

half words of a specified by n.

__m64

_mm_insert_pi32(__m64 a, int d, int n)

Inserts word d into one of two words

of a specified by n.

__m64

_mm_unpackhi_pi8 (__m64 m1, __m64 m2)

Interleaves the eight 8-bit values from

the upper half of m1 and m2.

__m64

_mm_unpackhi_pi16 (__m64 m1, __m64 m2)

Interleaves the four 16-bit values from

the upper half of m1 and m2.

__m64

_mm_unpackhi_pi32 (__m64 m1, __m64 m2)

Interleaves the two 32-bit values from

the upper half of m1 and m2.

__m64

_mm_unpacklo_pi8 (__m64 m1, __m64 m2)

Interleaves the eight 8-bit values from

the lower half of m1 and m2.

__m64

_mm_unpacklo_pi16 (__m64 m1, __m64 m2)

Interleaves the four 16-bit values from

the lower half of m1 and m2.

__m64

_mm_unpacklo_pi32 (__m64 m1, __m64 m2)

Interleaves the two 32-bit values from

the lower half of m1 and m2.

… …

 c0 = d0+d4;

 c1 = d0-d4;

 c2 = ((Ipp16s)((d2-d6)<<1)*_SQRT2_2_Q15)>>16;

 c3 = d2+d6+c2;

… …

 e0 = c0+c3;

 e1 = c1+c2;

 e2 = c1-c2;

 e3 = c0-c3;

 c0 = d0+d4;

 c1 = d0-d4;

 tmp1 = _mm_cvtsi64_m64(_mm_cvtsi32_si64(c0)); /* tmp1 = c0*/

 tmp2 = _mm_cvtsi64_m64(_mm_cvtsi32_si64(c1)); /* tmp2 = c1*/

 tmp2 = _mm_merge_si64(tmp1, tmp2, 4); /* tmp2 = [c1|c0]*/

 … …

 c2 = ((Ipp16s)((d2-d6)<<1)*_SQRT2_2_Q15)>>16;

 c3 = d2+d6+c2;

 tmp3 = _mm_cvtsi64_m64(_mm_cvtsi32_si64(c3)); /* tmp3 = c3*/

 tmp4 = _mm_cvtsi64_m64(_mm_cvtsi32_si64(c2)); /* tmp4 = c2*/

 tmp4 = _mm_merge_si64(tmp3, tmp4, 4); /* tmp4 = [c2|c3]*/

 tmp5 = _mm_adds_pi32(tmp2,tmp4); /* [e1|e0] = [c1|c0] + [c2|c3]*/

 tmp6 = _mm_subs_pi32(tmp2,tmp4); /* [e2|e3] = [c1|c0] - [c2|c3]*/

Figure 6 Code fragments of IDCT data realignment

Notes on Using GCC IWMMXT Intrinsic

8/11

2.3.2. Conditional Branches

With scalar operations, a conditional branch is used to alter the processing flow when a

specified condition is met. The use of branch instructions, however, affects the efficiency of SIMD

operations because it requires decomposing each vector into elements and processing them

sequentially. Some SIMD processors therefore employ another method to obtain the same result as

conditional branching [4]. But IWMMXT doesn’t provide such mechanism (there is not vector

selection instruction), so rewriting conditional branches with IWMMXT intrinsics is not

recommended. If it is inevitable, we still have to decompose vector into elements.

3. Compiling and Debugging

3.1. Compiling Options

To use IWMMXT intrinsics, some compiling options are required, while some other options

are recommended for better performance. Such options are listed in Table 4.

Table 4 IWMMXT Compiling Options

Options Notes

-mmrvl-use-iwmmxt Required Turns on IWMMXT support in Marvell GCC

-O2 Optional Recommended, it will turn on IWMMXT scheduler.

-fno-schedule-insns Optional Recommended if the calculation required a lot of temp

variables (>8) at the same time.

This will disable pre-register allocation scheduler to

lower register pressure for better performance.

-fno-schedule-insns2
1
 Optional Not recommended, it will disable after register

allocation scheduler.

1 Use this option only when you know the difference between pre-register and after-register allocation scheduler.

Notes on Using GCC IWMMXT Intrinsic

9/11

3.2. Debugging IWMMXT with GDB

3.2.1. Enable IWMMXT support in GDB

GDB 6.6 supports examining IWMMXT disassembly, but doesn’t support examine

IWMMXT registers. To enable IWMMXT support in GDB 6.6, you can do it as below:

(gdb) set arch iwmmxt2

GDB 6.8 or later supports both disassembly and registers. To enable the feature, you may

do it like this:

(gdb) set tdesc filename gdb_src_path/gdb-6.8/gdb/features/arm-with-iwmmxt.xml

The xml files are provided in gdb’s source code, in gdb-6.8/gdb/features directory.

3.2.2. Examine IWMMXT registers

After enabling IWMMXT support, you can view registers separately or with

all-registers.

(gdb) info registers wR0

 wR0 {u8 = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0},

u16 = {0x0,0x0, 0x0, 0x0},

u32 = {0x0, 0x0},

u64 = 0x0}

(gdb) info all-registers

3.2.3. Examine IWMMXT disassembly

If you have done Step 3.2.1, you should be able to see them correctly.

(gdb) x /20i 0xf600

 0xf600 <test+596>: wldrd wr0, [r11, #-108]

 0xf604 <test+600>: wmiattn wr0, wr2, wr1

 0xf608 <test+604>: wstrd wr0, [r11, #-108]

 0xf60c <test+608>: ldrd r2, [r11, #-108]

 0xf610 <test+612>: ldr r1, [pc, #1880] ; 0xfd70 <test+2500>

Notes on Using GCC IWMMXT Intrinsic

10/11

3.2.4. Enable IWMMXT support in gdbserver

Gdbserver in GDB 6.8 or later support IWMMXT registers too. To enable it, we have to

export definition of __IWMMXT__ before configure.

A simple script to compile it maybe as below:

#!/usr/bin/env bash

echo "Setting environments.."

export CC=arm-marvell-linux-gnueabi-gcc

export CFLAGS=" -D __IWMMXT__ "

echo "Configuring"

./configure --host=arm-marvell-linux-gnueabi \

--target=arm-marvell-linux-gnueabi

echo "Make"

make

4. Miscellaneous

 SIMD flags intrinsics

Though IWMMXT provides intrinsics to access SIMD flags (_mm_getwcx,

_mm_tandcx, _mm_torcx, _mm_textrcx, _mm_torvscx et al), they are intent to be used only

with _mm_setwcx. They still can’t be used to access SIMD flags set by other intrinsics.

Attention:

Use those intrinsics to access SIMD flags set by other intrinsics may produce

unpredictable results.

 Fighting with register pressures

Intensive computation may require a lot of temp variables which may increase register

pressure in GCC. This will cause GCC to spill instructions to memory, which will decrease

application performance.

One recommended solution is to disable pre register allocation scheduler while

compiling. See Section 3.1 for option details.

Another solution is to interleave ordinary computing with SIMD computing. Some times

the SIMD computing itself may require more instructions or latency, but interleave them may

lower the register pressure, prevent spilling memory access instructions, and hence increase

performance. Code translation in Figure 6 is one of such examples.

 Use of inline asm

For some special patterns that are still not supported in GCC, inline asm could still be

used. But the IWMMXT scheduler could not get enough information for instructions in inline

asm, so usage of IWMMXT instructions in inline asm may affect the effect of instruction

scheduling, it is not recommended.

Notes on Using GCC IWMMXT Intrinsic

11/11

References

[1] Intel Wireless MMX Technology Developer Guide (Order Number: 251793-001), Intel,

August, 2002

[2] Intel Wireless MMX Technology Intrinsic Support (Chapter 20 of Marvell C++ Compiler

Users’ Manual), Marvell, December, 2008

[3] Jpegdec in IPP Codecs with Manchac, Marvell, 2009

[4] Basics of SIMD Programming (Chapter 2 of Cell Programming Primer), Geoff Levand, Sony,

2008

[5] Using the GNU Compiler Collection (GCC) (http://gcc.gnu.org/onlinedocs/gcc/), 2009

[6] Procedure Call Standard for the ARM Architecture (ARM IHI 0042C, ABI 2.07), Oct 10
th
,

2008.

http://gcc.gnu.org/onlinedocs/gcc/

