
Embedded BIOS
TM
 4.1

The Full-Featured BIOS for Embedded Systems and
Consumer Electronics*

BIOS User’s Manual with BIOS Interrupt Reference

Copyright (C) 1990-1998 General Software, Inc.
All rights reserved.

General Software EMBEDDED BIOS User’s Manual

TABLE OF CONTENTS

KEY EMBEDDED BIOS CONCEPTS .. 7

1.1 ARCHITECTURAL OVERVIEW ...7
1.1.1 MEMORY MODEL...8

1.1.1.1 The Interrupt Vector Table...8
1.1.1.2 The BIOS Data Area..8
1.1.1.3 Free Low RAM..8
1.1.1.4 The Extended BIOS Data Area...9
1.1.1.5 Expanded Memory...9
1.1.1.6 Video ROM Extensions..9
1.1.1.7 Other ROM Extensions ..9
1.1.1.8 The System ROM .. 10
1.1.1.9 Extended Memory.. 10
1.1.1.10 CMOS Memory ... 10

1.1.2 INTERRUPT MODEL .. 10
1.1.2.1 BIOS Service Interrupts ... 12

1.1.2.1.1 INT 10h, Video Services.. 12
1.1.2.1.2 INT 11h, Equipment List Service... 13
1.1.2.1.3 INT 12h, Low Memory Size Service .. 13
1.1.2.1.4 INT 13h, Disk Services ... 14
1.1.2.1.5 INT 14h, Serial Port Services .. 16
1.1.2.1.6 INT 15h, General System Services... 17
1.1.2.1.7 INT 16h, Keyboard Services.. 18
1.1.2.1.8 INT 17h, Parallel Port Services.. 19
1.1.2.1.9 INT 18h, Boot Fault Routine ... 19
1.1.2.1.10 INT 19h, Bootstrap Routine... 19
1.1.2.1.11 INT 1ah, Time/Date Services... 20

1.1.2.2 Table Pointers.. 21
1.1.2.2.1 INT 1dh, Video Parameter Table (VPT)... 21
1.1.2.2.2 INT 1eh, Floppy Diskette Parameter Table (DPT).. 21
1.1.2.2.3 INT 1fh, Video Graphics Character Table (VGCT).. 22
1.1.2.2.4 INT 41h/46h, Fixed Disk Paramter Tables (FDPTs) .. 22

1.1.2.3 BIOS Upcalls... 23
1.1.2.3.1 INT 15h Device Management .. 23

1.1.2.3.1.1 INT 15h Function 4fh.. 23
1.1.2.3.1.2 INT 15h Function 90h... 24
1.1.2.3.1.3 INT 15h Function 91h... 24
1.1.2.3.1.4 INT 15h Function 85h... 24

1.1.2.3.2 INT 1bh Control-Break Signal... 25
1.1.2.3.3 INT 1ch User Timer Interrupt.. 25
1.1.2.3.4 INT 4ah Real Time Software Interrupt... 25

1.1.2.4 CPU Traps/Faults.. 26
1.1.2.5 Hardware Interrupts... 27

1.10.3 SYSTEM CONFIGURATION TABLE ... 28
1.11 CONSOLE I/O REDIRECTION .. 28

ii EMBEDDED BIOS User’s Manual Contents

General Software EMBEDDED BIOS 3.1 OEM Adaptation Guide

1.11.1 VIDEO (INT 10H) REDIRECTION ... 28
1.11.2 KEYBOARD (INT 16H) REDIRECTION.. 29

1.12 INTEGRATED BIOS DEBUGGER.. 29
1.18 PROTECTED MODE SUPPORT ... 30

THE INTEGRATED BIOS DEBUGGER.. 33

2.1 HOW TO USE THE DEBUGGER .. 33
2.2 DEBUGGER COMMAND SYNTAX... 34

2.2.1 OPERAND TYPES .. 34
2.2.2 EXPRESSIONS ... 34
2.2.3 ADDRESSES.. 35

2.3 COMMAND REFERENCE.. 36
2.3.1 ? COMMAND .. 36
2.3.2 + COMMAND.. 36
2.3.3 - COMMAND... 37
2.3.4 BC COMMAND ... 37
2.3.5 BIOSDATA COMMAND... 37
2.3.6 BL COMMAND ... 38
2.3.7 BP COMMAND ... 38
2.3.8 CIS COMMAND .. 39
2.3.9 CONSOLE COMMAND .. 39
2.3.10 CSR COMMAND... 40
2.3.11 CSW COMMAND.. 40
2.3.12 D COMMAND ... 41
2.3.13 DA20 COMMAND... 41
2.3.14 DB COMMAND... 42
2.3.15 DCACHE COMMAND .. 42
2.3.16 DD COMMAND... 42
2.3.17 DW COMMAND.. 43
2.3.18 E COMMAND.. 44
2.3.19 EA20 COMMAND ... 44
2.3.20 ECACHE COMMAND... 44
2.3.21 EFL COMMAND ... 45
2.3.22 G COMMAND ... 45
2.3.23 HELP COMMAND .. 46
2.3.24 I COMMAND... 46
2.3.25 ID COMMAND .. 46
2.3.26 IW COMMAND ... 47
2.3.27 LFL COMMAND ... 47
2.3.28 MASK COMMAND ... 48
2.3.29 MODE COMMAND... 48
2.3.30 O COMMAND ... 49
2.3.31 OD COMMAND... 49
2.3.32 OW COMMAND.. 50
2.3.33 PCIR COMMAND ... 50
2.3.34 PCIW COMMAND .. 51
2.3.35 R COMMAND ... 51

General Software EMBEDDED BIOS User’s Manual

2.3.36 R16 COMMAND.. 52
2.3.37 R32 COMMAND.. 52
2.3.38 RC COMMAND ... 52
2.3.39 RD COMMAND... 53
2.3.40 REBOOT COMMAND... 53
2.3.41 RFL COMMAND ... 54
2.3.42 SFL COMMAND ... 55
2.3.43 SO COMMAND ... 55
2.3.44 T COMMAND.. 56
2.3.45 TIME COMMAND... 56
2.3.46 TORAM COMMAND .. 57
2.3.47 U COMMAND ... 57
2.3.48 U16 COMMAND.. 58
2.3.49 U32 COMMAND.. 59
2.3.50 UFL COMMAND ... 59
2.3.51 V COMMAND ... 60
2.3.52 WATCH COMMAND .. 60
2.3.53 WC COMMAND .. 61
2.3.54 WCOMX COMMAND.. 61
2.3.55 WD COMMAND.. 62
2.3.56 WFL COMMAND .. 63
2.3.57 WP COMMAND .. 63

BIOS FUNCTION REFERENCE ... 65

3.1 INT 10H, VIDEO BIOS SERVICES .. 65
3.1.1 SET VIDEO MODE (00H) ... 65
3.1.2 SET CURSOR SIZE (01H) ... 66
3.1.3 SET CURSOR POSITION (02H).. 66
3.1.4 READ CURSOR POSITION (03H)... 67
3.1.5 READ LIGHT PEN POSITION (04H)... 67
3.1.6 SELECT VIDEO PAGE (05H)... 67
3.1.7 SCROLL UP WINDOW (06H) .. 68
3.1.8 SCROLL DOWN WINDOW (07H) .. 68
3.1.9 READ CHAR/ATTR FROM SCREEN (08H)... 69
3.1.10 WRITE CHAR/ATTR TO SCREEN (09H)... 69
3.1.11 WRITE CHARACTER TO SCREEN (0AH).. 69
3.1.12 SET COLOR PALETTE (0BH) .. 70
3.1.13 WRITE PIXEL (0CH) .. 70
3.1.14 READ PIXEL (0DH).. 70
3.1.15 WRITE TELETYPE MODE (0EH) ... 71
3.1.16 RETURN VIDEO STATUS (0FH) .. 71

3.2 INT 11H, EQUIPMENT LIST SERVICE... 71
3.3 INT 12H, LOW MEMORY SIZE SERVICE .. 72
3.4 INT 13H, DISK SERVICES ... 72

3.4.1 RESET (00H)... 73
3.4.2 READ STATUS (01H)... 73
3.4.3 READ SECTORS (02H)... 74

iv EMBEDDED BIOS User’s Manual Contents

General Software EMBEDDED BIOS 3.1 OEM Adaptation Guide

3.4.4 WRITE SECTORS (03H) ... 74
3.4.5 VERIFY SECTORS (04H) .. 75
3.4.6 FORMAT TRACK (05H) ... 75
3.4.7 READ DRIVE PARAMETERS (08H) ... 76
3.4.8 INITIALIZE HARD DISK CONTROLLER (09H) .. 76
3.4.9 READ LONG SECTORS (0AH)... 77
3.4.10 WRITE LONG SECTORS (0BH) ... 77
3.4.11 SEEK TO CYLINDER (0CH) .. 78
3.4.12 RESET HARD DISK CONTROLLER (0DH) .. 78
3.4.13 TEST DRIVE READY (10H) .. 79
3.4.14 RECALIBRATE DRIVE (11H) .. 79
3.4.15 CONTROLLER DIAGNOSTIC (14H).. 79
3.4.16 READ DRIVE TYPE (15H) .. 80
3.4.17 DETECT MEDIA CHANGE (16H)... 80
3.4.18 SET DISKETTE TYPE (17H) ... 81
3.4.19 SET MEDIA TYPE FOR FORMAT (18H) ... 81

3.5 INT 14H, SERIAL I/O SERVICES... 82
3.5.1 INITIALIZE SERIAL PORT (00H).. 82
3.5.2 SEND CHARACTER (01H) .. 83
3.5.3 RECEIVE CHARACTER (02H) ... 84
3.5.4 READ SERIAL PORT STATUS (03H).. 84
3.5.5 EXTENDED INITIALIZE SERIAL PORT (04H).. 85

3.6 INT 15H, GENERAL SERVICES ... 86
3.6.1 QUERY PORT 92H A20 GATE CAPABILITY (24H)... 86
3.6.2 KEYBOARD INTERCEPT UP-CALL (4FH) .. 87
3.6.3 APM INSTALLATION CHECK (5300H) ... 87
3.6.4 APM INTERFACE CONNECT (5301H) .. 88
3.6.5 APM PROTECTED MODE 16-BIT INTERFACE CONNECT (5302H) ... 88
3.6.6 APM PROTECTED MODE 32-BIT INTERFACE CONNECT (5303H) ... 89
3.6.7 APM INTERFACE DISCONNECT (5304H) ... 90
3.6.8 APM CPU IDLE (5305H) .. 90
3.6.9 APM CPU BUSY (5306H) .. 91
3.6.10 APM SET POWER STATE (5307H)... 91
3.6.11 APM ENABLE/DISABLE APM FUNCTIONALITY (5308H) ... 92
3.6.12 APM RESTORE APM POWER-ON DEFAULTS (5309H) .. 93
3.6.13 APM GET POWER STATUS (530AH).. 93
3.6.14 APM GET APM EVENT (530BH) .. 94
3.6.15 SYSTEM REQUEST KEY (58H)... 94
3.6.16 WAIT FUNCTION (86H) ... 95
3.6.17 MOVE EXTENDED MEMORY BLOCK (87H).. 95
3.6.18 EXTENDED MEMORY SIZE (88H) .. 96
3.6.19 SWITCH TO PROTECTED MODE (89H) ... 96
3.6.20 DEVICE BUSY UP-CALL (90H) .. 97
3.6.21 DEVICE INTERRUPT UP-CALL (91H).. 98
3.6.22 READ/WRITE CMOS RAM CELL (A0H) ... 98
3.6.23 SET CONSOLE I/O REDIRECTION (A1H) .. 99
3.6.24 GET EMBEDDED BIOS VERSION (A3H) .. 99
3.6.25 GET RFD DRIVE INFORMATION (A400H).. 100
3.6.26 RFD BROADCAST (A401H)... 100

General Software EMBEDDED BIOS User’s Manual

3.6.27 RETURN SYSTEM CONFIGURATION (C0H)... 101
3.6.28 RETURN EXTENDED BIOS DATA AREA (C1H) .. 101
3.6.29 PS/2 MOUSE REQUEST (C2H)... 101
3.6.30 WATCHDOG TIMER CONTROL (C3H) .. 102
3.6.31 CHECKSUM REGION (C4H) ... 103
3.6.32 DEBUGGER BREAKPOINT (D0H).. 103
3.6.33 FLASH PROGRAMMING (E0H) ... 104

3.7 INT 16H, KEYBOARD SERVICES... 104
3.7.1 READ KEYBOARD INPUT (00H) ... 105
3.7.2 RETURN KEYBOARD STATUS (01H) .. 105
3.7.3 RETURN SHIFT FLAG STATUS (02H).. 105
3.7.4 SET TYPEMATIC RATE (03H) .. 106
3.7.5 PUSH DATA TO KEYBOARD (05H)... 107
3.7.6 ENHANCED READ KEYBOARD (10H)... 107
3.7.7 ENHANCED READ KEYBOARD STATUS (11H).. 107
3.7.8 ENHANCED READ KEYBOARD FLAGS (12H).. 108
3.7.9 SET CPU SPEED (F0H) ... 108
3.7.10 GET CPU SPEED (F1H)... 109
3.7.11 READ CACHE STATUS (F400H) ... 109
3.7.12 ENABLE CACHE (F401H) .. 110
3.7.13 DISABLE CACHE (F402H) ... 111

3.8 INT 17H, PARALLEL I/O SERVICES ... 111
3.8.1 WRITE CHARACTER (00H) .. 111
3.8.2 INITIALIZE PRINTER (01H)... 112
3.8.3 READ PRINTER STATUS (02H)... 112

3.9 INT 1AH, TIME SERVICES .. 113
3.9.1 READ SYSTEM TIMER COUNT (00H) ... 113
3.9.2 WRITE SYSTEM TIMER COUNT (01H).. 113
3.9.3 READ REAL TIME CLOCK TIME (02H)... 113
3.9.4 WRITE REAL TIME CLOCK TIME (03H) ... 114
3.9.5 READ REAL TIME CLOCK DATE (04H) .. 114
3.9.6 WRITE REAL TIME CLOCK DATE (05H)... 115
3.9.7 PCI SERVICES (B1H) .. 115

Chapter 1 EMBEDDED BIOS User’s Manual 7

General Software EMBEDDED BIOS Adaptation Guide

Chapter 1

KEY EMBEDDED BIOS CONCEPTS

This chapter presents an architectural overview of EMBEDDED BIOS. OEMs with an
understanding of these concepts generally produce BIOSes more efficiently in two ways. First, an
appreciation of all the functional issues is an important thing to have before starting a design, so
that the design can accommodate those issues. Second, with this material as background, the
OEM will have a longer view of the adaptation process. Understanding this material will make
your adaptation move more smoothy.

1.1 Architectural Overview

EMBEDDED BIOS is functionally similar to the BIOS in a PC, in many ways. First, the BIOS
tests and initializes all of the equipment on the system when power is applied. Once the system
has been initialized, it transfers control to an operating system or application. Finally, it provides
software services through architected mechanisms that allow the operating system and application
to manipulate the hardware; for example, to perform floppy disk I/O, read keystrokes from the
keyboard, and display characters on a video display.

Because the BIOS is ultimately responsible for managing the hardware, it must implement policies
for initialization and management of the devices. For example, the BIOS's memory model
determines how much memory will be available to operating systems and applications, and where
the memory will be located in the address space.

Similarly, its interrupt model determines the policy used to make interrupt assignments of external
hardware devices, establish their priorities, and define how operating system and application
software will request services from the BIOS.

The BIOS Power-On Self-Test (commonly, POST) is responsible for testing and initializing the
hardware components in the target such as the DMA controllers, interrupt controllers,
programmable timers, and other components so that they work together to provide a viable
environment. For example, if dynamic RAM (DRAM) is used in a design, it must be periodically
refreshed; this is the responsibility of the BIOS. Using configuration options, the developer
directs POST to provide refresh through on-board CPU functions, through chipset functionality,
or using more elaborate techniques such as tying an 8254 programmable interval timer to an 8237

8 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

DMA controller to cause DMA cycles to perform the refreshing. POST sets up the policies to be
used for performing DRAM refresh and many other tasks so that operating systems and
applications don't have to do these tasks by themselves.

These and many other architectural issues are described in detail in this chapter.

1.1.1 Memory Model

EMBEDDED BIOS employs a memory model that is compatible with desktop PC standards.
Because the BIOS is used primarily in a real-mode environment, it does not define any standards
for the use of extended memory beyond 1MB. Instead it is concerned with the layout and usage
of memory below 1MB in the address space.

Because Intel-architecture processors can be programmed to respond to a variety of different
kinds of addresses (physical, linear, virtual, and real-mode addresses), we will refer to 32-bit
physical addresses whenever describing where some object is located in the target machine. When
referring to how the object is referenced with actual machine instructions, we will use what is
called 16:16 notation for addresses. In this format, addresses contain two parts, each 16 bits in
width. The first 16-bit entity is a segment address, and the second 16-bit entity is a byte offset
relative to the specified segment. A segment address can be transformed into a physical address
by multiplying it by 16 (10h in hexadecimal).

1.1.1.1 The Interrupt Vector Table

At physical location 00000000h in the address space is the real-mode Interrupt Vector Table, or
IVT. This table is defined by Intel 80x86 architecture and by other PC standards to be an array of
far (16:16) pointers to objects, some being Interrupt Service Routines (ISRs), while other
elements are pointers to data structures. This table contains 256 elements and each element is
four bytes long, so the table is exactly 1KB in size.

1.1.1.2 The BIOS Data Area

The first address immediately following the IVT is 00000400h. Addressed with the equivalent
real-mode segment 0040h, the space following the IVT is called the BIOS Data Area, or BDA.
The BDA is used by the BIOS to keep track of how the system is configured; i.e., how many
serial and parallel ports exist. It is also used to keep track of the state of the running BIOS, such
as the track number over which a floppy disk recording head is positioned. The BDA extends up
to but not including physical address 00000500h, so that the first free address to be used by
operating systems and application program is 00000500h.

A complete map of the BIOS Data Area is presented in Appendix B, in the actual assembly
language source code found in EMBEDDED BIOS. All the fields in the BDA are architected by
IBM. Slight modifications to this area have been made by other desktop BIOS vendors since PC
clones have matured, to accommodate new BIOS functionality. When these modifications
become industry-standard on the desktop, they are incorporated into the EMBEDDED BIOS
BDA.

1.1.1.3 Free Low RAM

Chapter 1 EMBEDDED BIOS User’s Manual 9

General Software EMBEDDED BIOS Adaptation Guide

Starting at physical address 00000500h, or segment 0050h, operating systems and user programs
use memory as they see fit. The amount of memory, or size of free low RAM (including the IVT
and BDA), is kept in the BIOS Data Area by the BIOS itself, and can be retrieved with a BIOS
software service (INT 12h.)

1.1.1.4 The Extended BIOS Data Area

The last 1KB of low memory is reserved by the BIOS for extending the BIOS Data Area without
interfering with the well-established user address, 00000500h. During POST, the BIOS
determines the amount of low RAM, and reserves the top 1KB of this RAM for itself. When the
operating system or user application use the INT 12h BIOS service to determine the amount of
low memory, the BIOS actually returns 1KB less than is actually present. In a desktop PC
environment, the Extended BIOS Data Area usually ends at physical address 000A0000h to make
room for video adapter hardware such as the VGA screen regeneration memory). In designs that
do not have VGA hardware at segment A000h, additional memory can be mapped to this address
space by the hardware (or possibly by the chipset), so that the BIOS can provide access to a
larger amount of low memory.

1.1.1.5 Expanded Memory

In the 1980's a standard emerged for add-on memory cards that provided 64KB pages of memory
within the memory range 000A0000h - 000E0000h called expanded memory. Several application
programs, such as Lotus 1-2-3 and Windows for example, took advantage of this memory to
store program data while they were running. This standard was primarily for application
programs, but operating systems evolved to manage this memory. The BIOS, however, never
manages this memory by itself (EMBEDDED BIOS does not provide any support for EMS by
itself).

1.1.1.6 Video ROM Extensions

Physical address 000C0000h or 000E0000h is inspected by the BIOS during POST for the
presence of a possible EGA or VGA ROM BIOS Extension. By checking for a special signature
and checksumming the ROM, the BIOS determines if the ROM exists, and if so, it is invoked by
the BIOS POST to initialize any video hardware that the core system BIOS is not aware of. For
example, the common VGA screens used in desktop PCs are actually not directly supported by
the video BIOS on the PC motherboard; instead, the video ROM BIOS Extension on the VGA
controller card hooks the BIOS service (INT 10h) so that it can handle video requests instead of
the system BIOS.

If a video ROM is not detected by the BIOS, and video services are enabled by the adaptation
engineer, then the default video routines in the video module of the BIOS are used to provide
video service for monochrome and color graphics adapters.

1.1.1.7 Other ROM Extensions

Additional ROM extensions are detected by POST during system initialization within a special
address range of 000C8000h - 000EE000h at 2KB intervals using a special signature pattern and
checksum technique. When valid ROM extensions are found, they are called just as video ROM
extensions are called, and they perform operations as necessary to support their function. For
example, SCSI disk controllers may have ROM BIOS extensions to provide basic disk services

10 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

(INT 13h) so that the bootstrap process can actually boot from a SCSI device. Similarly, network
interface cards (NICs) may have a remote boot ROM that gets control as a ROM extension so
that it can initialize the NIC and request a download of the operating system over a network.

1.1.1.8 The System ROM

The BIOS itself is stored in ROM so that it fits neatly at the end of the 1MB address space.
Typically, a 64KB ROM such as a 27C512, or a bulk Flash part such as a 28F010, is used to hold
the system BIOS code itself. This code receives control at power-on reset time at physical
address 000FFFF0h; this address is equivalent to the 16:16 address F000:FFF0.

On 80386 and above CPUs, the high bits of the physical address are all set, requiring the glue
hardware surrounding the CPU to either double-map the 64KB ROM BIOS segment into the top
of extended memory, or to disable the high bits so that the CPU really boots from the top of the
lower 1MB address space.

Regardless of how the CPU gets control, the system ROM usually occupies 64KB, although the
BIOS may be configured to use from 1KB to 64KB of that total file’s size with a build option.
Naturally, features must be removed from a full-featured 64KB BIOS to allow its size to be
reduced.

1.1.1.9 Extended Memory

Just as the BIOS sizes low memory below 1MB during POST, it also determines the amount of
RAM above the 1MB address line and keeps this size in CMOS, if available. The amount of
usable extended memory is returned through a BIOS software service (INT 15h, function 88h),
although the BIOS does not provide any other services for managing this memory beyond simple
data copying functionality (INT 15h, function 87h). The management of extended memory is the
function of operating system software such as HIMEM.SYS. This driver is available in the
Embedded DOS-ROM source tree.

1.1.1.10 CMOS Memory

Actually separate from the memory address space of the processor, an amount of battery-backed
CMOS RAM is usually available in AT-compatible systems. In such a compatible configuration,
this memory is accessed by reading and writing to I/O ports 70h and 71h.

The BIOS uses this memory to store the equipment configuration and user options associated
with the operation of the BIOS, and the integrated BIOS Setup screen system is used to edit the
CMOS memory in a running system.

1.1.2 Interrupt Model

In addition to defining the way memory is used in a system, EMBEDDED BIOS has an interrupt
model for receiving BIOS service requests via software interrupts, handling CPU traps and faults,
processing device hardware interrupts, and managing points in the IVT that point to data
structures used by BIOS service modules.

Chapter 1 EMBEDDED BIOS User’s Manual 11

General Software EMBEDDED BIOS Adaptation Guide

The following table shows the IVT entries used by EMBEDDED BIOS. Note that some
interrupts (notably, vectors 08h through 12h) are used by the BIOS although they also be be
generated by the CPU in protected mode circumstances.

Vector Type Function or Service

00h CPU Divide by zero trap
01h CPU Single-step trap
02h CPU NMI interrupt
03h CPU Breakpoint trap (INT 3)
04h CPU Arithmetic overflow trap
05h CPU Array bounds exception
06h CPU Invalid Opcode Trap
07h CPU Device Not Available Trap
08h IRQ0 18.2 Hz Timer Tick
09h IRQ1 Keyboard
0ah IRQ2 Cascaded to PIC 2
0bh IRQ3 COM2 Serial Port
0ch IRQ4 COM1 Serial Port
0dh IRQ5 LPT2 Parallel Port
0eh IRQ6 Floppy Disk Controller
0fh IRQ7 LPT1 Parallel Port
10h Service Video Services
11h Service Equipment List Service
12h Service Low Memory Size Service
13h Service Floppy/IDE/ROM/Remote Disk Services
14h Service Serial Port Services
15h Service General Services, Up-Calls
16h Service Keyboard Services
17h Service Parallel Port Services
18h Up-Call Boot Fault Up-Call
19h Up-Call Bootstrap Up-Call
1ah Service Date/Time Services
1bh Up-Call Control-Break Up-Call
1ch Up-Call 18.2 Hz Application Timer Up-Call
1dh Table Pointer to Video Control Param Table
1eh Table Pointer to Diskette Parameter Table
1fh Table Pointer to Video Graphics Table
20h-3fh DOS -- reserved by DOS --
40h Redirector Floppy disk services redirected by IDE
41h Table Fixed Disk Parameter Table (Drive 80h)
42h Extension EGA Default Video Driver
43h Extension Video Graphics Characters
44h-45h N/A -- not used --
46h Table Fixed Disk Parameter Table (Drive 81h)
47h-49h N/A -- open --
4ah Up-Call User Alarm
4bh-6fh N/A -- open --
70h IRQ8 Real-Time Clock Interrupt (1 Khz)
71h IRQ9 -- open --
72h IRQ10 -- open --
73h IRQ11 -- open --
74h IRQ12 PS/2 Mouse

12 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

75h IRQ13 Math Coprocessor
76h IRQ14 IDE Drive Controller
77h IRQ15 APM Suspend Request
78h-ffhN/A -- open --

1.1.2.1 BIOS Service Interrupts

The BIOS receives requests to perform functions through software interrupts. Software
interrupts, generated by the operating system or by a user application, are generated with INT nnh
instructions, where nnh is a number that is assigned to a specific type of service, such as 16h for
keyboard input, 10h for video output, or 13h for disk I/O.

In most cases, a BIOS service has multiple functions. For example, the disk BIOS service
interrupt supports resetting the device, reading data from the media, writing data to the media,
and checking the type of media inserted into the drive. For multifunction BIOS services, the
requesting application places a function code in the AH CPU register, fills other registers as
necessary with operands, and executes the appropriate software interrupt for the service. When
the service completes, it returns to the caller to execute the instruction following the software
interrupt.

Upon return, the BIOS services return status or other information in CPU registers, many times
including the CPU flags register. For example, when an INT 13h disk read function is requested
to read from a disk that has been removed from the drive itself, the disk BIOS returns with the
carry flag set (CY) and a disk subsystem error code in the AH register. If the function were to
complete successfully, then the carry flag would not be set (NC). Remember that not all BIOS
services use the same return status conventions; therefore, you should consult the service
reference in Chapter 22 for complete details.

1.1.2.1.1 INT 10h, Video Services

All video functions are provided through the INT 10h software interrupt mechanism. The caller
provides a function code in the AH CPU register and specifies operands as appropriate for the
given function in other CPU registers before issuing the INT 10h instruction.

EMBEDDED BIOS actually begins handling an INT 10h request in its CONIO module, which
determines whether the video should be redirected over a serial link. This console redirection
enables embedded systems that don't have a real MDA, CGA, EGA, or VGA video system to
display their output via more inexpensive means. Console redirection may play a part in the final
shipped embedded product, or it may simply be used during development and test in liu of an
actual PC keyboard and screen.

If CONIO determines that the INT 10h service should not be redirected to a serial device, then it
passes control to one of the modules that handle video controllers, such as module VIDEO, which
manipulates the 6845 CRT controller registers directly to manage the display. Actual writing of
data to the video screen and reading characters from the screen is accomplished by memory reads
and writes to video regeneration memory, mapped into the memory address space at physical
address 000b0000h for monochrome output, or 000b8000h for color output. Both monochrome
and color adapters may be present in a system, in which case using the INT 10h set mode function
can be used to switch between the displays.

Chapter 1 EMBEDDED BIOS User’s Manual 13

General Software EMBEDDED BIOS Adaptation Guide

If CONIO determines that INT 10h services should be redirected, then it calls the SERIAL
module to perform the work of transmitting characters to the remote terminal equipment. In
addition to writing characters to the display, the BIOS also supports the set cursor address
function, and several other functions that manipulate the video display in some manner. These
functions are translated to ANSI escape sequences that are transmitted to the remote terminal
equipment just as other data characters via the SERIAL module's services through INT 14h.

The basic functions provided by the INT 10h BIOS are given below:

Function Video Service

00h Set Video Mode
01h Set Cursor Type
02h Set Cursor Position
03h Return Cursor Position
04h Return Light Pen Condition (not in core BIOS)
05h Set Current Video Page
06h Scroll Up Region
07h Scroll Down Region
08h Return Character and Attribute
09h Write Character and Attribute
0ah Write Character
0bh Set Color Palette
0ch Write Graphic Pixel (not in core BIOS)
0dh Read Graphic Pixel (not in core BIOS)
0eh Write Character Only
0fh Return Video Display Mode

1.1.2.1.2 INT 11h, Equipment List Service

The BIOS provides a way for the application to determine what equipment is available through
the INT 11h software interrupt mechanism. Unlike many of the other BIOS software interrupts,
INT 11h does not require a function code or any operands. Instead, it returns a bit mask in its
AX CPU register that can be inspected to determine what equipment is supported by BIOS
services. For a complete description of this function, see Chapter 22.

The equipment list is stored in the BIOS Data Area (BDA) by POST during system initialization
in a 16-bit field called DevFlags. ROM Extensions that extend BIOS services to support
additional equipment must edit this field if the equipment is to be made available to the operating
system or application.

1.1.2.1.3 INT 12h, Low Memory Size Service

The BIOS returns the amount of physical memory below the 1MB boundary (exclusive of the
1KB Extended BIOS Data Segment) in response to the INT 12h software interrupt. Like INT
11h (Equipment List), this software interrupt returns its information in the AX CPU register and
does not accept function codes or operands. See Chapter 22 for full details.

The low memory size is stored in the BIOS Data Area (BDA) by POST during system
initialization in a 16-bit field called LowMemorySize. ROM Extensions or other software that
uses memory from the end of available low memory must reduce this field by the amount of

14 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

memory reserved so that the operating system and applications will not overwrite the reserved
memory. This technique is used by the BIOS itself during POST to establish the Extended BIOS
Data Area (EBDA), a 1KB region located at the top of physical low memory.

1.1.2.1.4 INT 13h, Disk Services

All mass-storage devices, including floppy disk, hard disk, ROM disks, RAM disks, RFD disks,
and OEM-defined disks, are accessed through the INT 13h software interrupt. As with the video
services, INT 13h services accept a function code in the AH CPU register, with operands
appropriate to a given function placed in the other CPU registers before executing the INT 13h
instruction.

The following functions are supported by the FLOPPY disk driver (note that gaps in the function
numbers indicate unassigned functions for floppy I/O):

Function Floppy Disk Service

00h Reset Floppy Controller
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
05h Format Track
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
17h Set Disk Type
18h Set Media Type for Format

The following functions are supported by the IDE disk driver (note that gaps in the function
numbers indicate unassigned functions for hard drive I/O):

Function IDE Disk Service

00h Reset IDE Controller
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
05h Format Track
08h Read Drive Parameters
09h Initialize Parameters
0ah Read Long Sectors
0bh Write Long Sectors
0ch Seek to Cylinder
0dh Alternate Reset
10h Test Drive Ready
14h Run Controller Diagnostic
15h Read Disk Type

Chapter 1 EMBEDDED BIOS User’s Manual 15

General Software EMBEDDED BIOS Adaptation Guide

The following functions are supported by the ROM disk driver (note that write-oriented functions
return a write-protected status for the ROM disk):

Function ROM Disk Service
00h Reset ROM Disk
01h Read Last Status
02h Read Sectors
04h Verify Sectors
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
18h Set Media Type for Format

The following functions are supported by the RAM disk driver:

Function RAM Disk Service
00h Reset RAM Disk
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
18h Set Media Type for Format

The following functions are supported by the Resident Flash Disk (RFD) driver:

Function RFD Disk Service
00h Reset Flash Disk
01h Read Last Status
02h Read Sectors
03h Write Sectors
04h Verify Sectors
08h Read Drive Parameters
15h Read Drive Type
16h Determine Media Change
18h Set Media Type for Format

Disk I/O is handled by different code modules in the BIOS, depending on whether a specific
request is directed at a floppy device, an IDE hard drive, a ROM disk, a RAM disk, or a Resident
Flash disk. During POST, the FLOPPY1/2/3, IDE1/2, ROMDISK, RAMDISK, and RFD1/2
modules are initialized if enabled through CMOS. POST maps these servers to specific drives
when CMOS is scanned.

Disk I/O is logically divided into two types: floppy-compatible and hard drive-compatible.
Traditionally, DOS requires floppy-compatible drives to have a FAT file system layout with a
Partition Boot Record (PBR) in the first sector, two File Allocation Tables (FATs) following the
PBR, and a root directory following the FATs. Hard drives are expected to be partitioned, and
have a different logical layout. Starting with a Master Boot Record (MBR) in the first sector that
contains a Partition Table, the remainder of the hard disk is divided into partitions that each have

16 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

their own format logically similar to floppy disks. Each partition starts with a PBR, two FATs,
and a root directory.

Because floppy disks and hard drives have different information organizations, the BIOS
separates them into two sets of devices. Disks numbered 00h, 01h, 02h, and so on, are floppy
drives, and DOS can expect floppy-style file systems on them. Disks numbered 80h, 81h, 82h,
and so on, are hard drives, and DOS expects them to have an MBR, not a PBR, in the first sector.

The EMBEDDED BIOS ROM drive simulates one or more disks by treating the INT 13h read
sectors function as simply a memory copy from OEM-specified areas of ROM to the application's
data buffer. The memory image for each disk is created by the adaptation engineer using the
DISKIMAG utility (provided with the EMBEDDED BIOS Adaptation Kit). ROM disks can be
either soft (formatted like a floppy disk) or hard (formattted like a hard drive). The
FILE_SYSTEM table entry in the project file that defines a ROM disk has a parameter that
specifies whether the image is formatted as a floppy or a hard disk.

The EMBEDDED BIOS RAM drive is similar to the ROM drive, except that it supports both
reading and writing. Build options specify the location of the RAM in the address space, and if
automatic formatting is to be used by the BIOS during POST, in the event the RAM disk contents
are not properly initialized.

The EMBEDDED BIOS Resident Flash Disk (RFD) operates only on Flash media, and can
simulate both floppy disks and hard drives up to 32MB in size with a special wear-leveling
algorithm that is built right into the core BIOS. Support for Flash media is provided through a
Media Control Layer (MCL), which in turn calls Media Technology Drivers (MTDs) to perform
the low-level I/O to the Flash. The FILE_SYSTEM table entry in the project file that defines a
RFD has a parameter that specifies whether the image is formatted as a floppy or a hard disk.

The OEM can also implement special file system drivers and integrate them into the BIOS disk
system without modifying the core BIOS source code. This is done by adding code to the board
module, and then adding a special FILE_SYSTEM table entry in the project file that refers to the
new file system's entrypoint.

1.1.2.1.5 INT 14h, Serial Port Services

All serial I/O functions are provided by the BIOS through the INT 14h software interrupt
mechanism. As with disk drives, serial ports are numbered; the logical port numbers are 00h for
COM1, 01h for COM2, 02h for COM3, and 03h for COM4.

The serial I/O service accepts a function code in the AH CPU register and operands in other
registers. The logical port number is normally passed in the DX CPU register, so that the serial
service can operate on a specific serial port. The following table shows a summary of the serial
port services:

Function Serial Port Service

00h Initialize Serial Port
01h Send Character
02h Receive Character
03h Read Port Status
04h Extended Initialize
05h Manipulate Modem Control Register

Chapter 1 EMBEDDED BIOS User’s Manual 17

General Software EMBEDDED BIOS Adaptation Guide

Upon return from the INT 14h instruction, status is returned in a complex way, with the AX CPU
register containing both a Line Status Register and a Modem Status Register. Because this
service exposes actual bit patterns used in the 8250, serial ports tied to incompatible UARTs
(such as those on the 80C186-EC CPU) are supported by translating the status returned by such a
UART into the the most-equivalent bitmask that would correspond to the 8250's status registers.

The BIOS handles INT 14h requests in the SERIAL module. This module translates logical port
numbers into physical port numbers by indexing into the ComPorts array in the BIOS Data Area.
Physical port numbers above 10h are assumed to be handled by the 8250 UART module, whereas
port numbers 00h-10h are assumed to be handled by the CPU personality module. Thus, serial
I/O requests are distributed on-the-fly to the appropriate hardware handler based on the
configuration data in the BIOS Data Area.

The original IBM BIOS supported serial port data transfer rates through 9600 baud. The baud
rate, as well as other communications parameters associated with a serial port, are configured
using an INT 14h Initialize Serial Port function. EMBEDDED BIOS supports this standard as
well as the Extended Initialize INT 14h function supported by modern desktop PC BIOS
implementations, allowing higher baud rates through 115K baud.

1.1.2.1.6 INT 15h, General System Services

Often called a catch-all general service, the INT 15h software interrupt is actually used two ways:
one where the application requests services, and another where the BIOS notifies the application
that it is about to enter or leave a spin-loop in order to wait for a device to complete a task that
will take some amount of real time. These "up-calls" or "call-outs" as they are sometimes called,
interrupt the user application, which may choose to "hook" INT 15h to receive the notification, or
not hook INT 15h, and therefore not be informed about the spin-loops. See the section on "BIOS
Up-Calls" later in this chapter for further details.

The INT 15h services used by the application are implemented by the BIOS. These services are
diverse; from returning the amount of available extended memory above 1MB, moving memory
from one physical address to another, and switching into protected mode, to returning the address
of the Extended BIOS Data Segment, returning the System Configuration Table (SCT) address,
and manipulating the watchdog timer (see Chapter 22 for programming details). These services
are all requested by placing a function code in the AH CPU register, setting other CPU registers
to operand values, and executing an INT 15h instruction. Upon return, status is returned in
several different ways; consult Chapter 21 for details. A summary of INT 15h services is shown
in the following table.

Function General Service

24h Query A20 Port 92h Support
4fh Scancode Translate Up-Call
53h Advanced Power Management
85h System Request Key Up-Call
86h Wait Micro Interval
87h Protected Mode Memory Block Move
88h Return Extended Memory Size in KB
89h Switch to Protected Mode
90h Device Busy Up-Call
91h Device Interrupt Up-Call

18 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

A0h Read/Write CMOS Cell
A1h Set Current I/O Redirection
A3h Get Embedded BIOS Version
A4h Query Embedded DOS-ROM file system
C0h Return System Configuration
C1h Return Extended BIOS Data Area
C2h PS/2 Mouse
C3h Enable/Disable Watchdog Timer
C4h Checksum Memory Region
D0h Breakpoint into BIOS Debugger
D8h EISA Slot Configuration
E0h Resident Flash Array Functions
FFh Print Character for Embedded DOS-ROM Debug I/O

All INT 15h requests are dispatched by module MISC. Of course, if the operating system or
application "hooks" IVT entry 15h so that it can receive up-calls, then it will also receive other
function requests as well, and should pass them on to the BIOS in a "chained" approach.

Some functions are routed by MISC to the PROTMODE module, which handles steady-state
protected mode processing in the BIOS. PROTMODE is complex because it must deal with
several different mode switching techniques, and must also save the state of the CPU cache across
mode switches. For details about what methods are available, consult Chapter 7.

1.1.2.1.7 INT 16h, Keyboard Services

All keyboard I/O functions are provided through the INT 16h software interrupt mechanism.
Before executing an INT 16h instruction, the application places a function code in the AH CPU
register, and other operands as appropriate in other CPU registers. Upon return from the INT
16h software interrupt, the status is returned in special ways, including through the Zero flag in
the CPU. See Chapter 21 for programming details. A summary of INT 16h services is shown in
the following table.

Function Keyboard Service

00h Read Character
01h Return Keyboard Status
02h Return Keyboard Flags
03h Set Keyboard Typematic Rate
05h Push Character/Scancode to Buffer
10h Enhanced Read Character
11h Enhanced Write Character
12h Enhanced Return Keyboard Flags
f0h Set CPU Speed
f1h Get CPU Speed
f4h Cache Control

As the table indicates, several keyboard functions in fact don't manipulate the keyboard. Instead,
they manipulate other system components, such as the CPU's clocking and the system's cache.
Because these features were commonly implemented in the 8042 keyboard controller of many
desktop PC systems, their controlling BIOS functions were added to the INT 16h services. The
CPU speed functions are routed to the HELPER module, and the cache control function is routed
to the CACHE module.

Chapter 1 EMBEDDED BIOS User’s Manual 19

General Software EMBEDDED BIOS Adaptation Guide

As with video output through INT 10h, EMBEDDED BIOS is able to support a real PC or AT
keyboard, or it can redirect INT 16h services over a serial port. Module CONIO receives the
application INT 16h requests and determines how keyboard requests are to be serviced. If
redirection to a serial port is enabled, then it calls the SERIAL module to read a character from a
serial port or determine the serial port's status.

1.1.2.1.8 INT 17h, Parallel Port Services

All parallel port I/O services are provided through the INT 17h software interrupt mechanism. A
function code is passed by the application in the AH CPU register, with additional operands as
required in other CPU registers. In particular, the DX register is programmed with a logical
printer port number, where 0=LPT1, 1=LPT2, and 2=LPT3. The following table shows the
functions available in the INT 17h service family:

Function Parallel Port Service

00h Write Character
01h Initialize Parallel Port
02h Return Parallel Port Status

INT 17h requests are handled by the BIOS through module PARALLEL. This module translates
the logical parallel port number into a physical port I/O address, and then manipulates that port
directly to perform the function. Parallel port hardware is expected to be compatible with the
IBM hardware.

1.1.2.1.9 INT 18h, Boot Fault Routine

After POST initializes the system, it calls INT 19h to boot the operating system from the
appropriate device. If the INT 19h service fails to load the operating system, then the BIOS (or
the operating system boot record) executes an INT 18h instruction, so that the ROM BIOS can
regain control and perform an alternate function.

By default, EMBEDDED BIOS initializes the INT 18h function to a routine that prints "No boot
device available.", and prompts to enter the debugger or SETUP system, or reboot the system.

At any point prior to the boot process, user-written code, such as code in ROM BIOS Extensions,
can "hook" the INT 18h interrupt vector and gain control in this situation, thereby replacing the
default handler in the BIOS. In the original PC, INT 18h jumped to a separate ROM that
contained ROM BASIC. The embedded system developer might use this mechanism to execute
application code from ROM in the event of a boot device failure.

1.1.2.1.10 INT 19h, Bootstrap Routine

After POST initializes the system, it calls module BOOTOS, which executes an INT 19h
instruction to load the operating system or start the embedded application.

By default, EMBEDDED BIOS initializes the INT 19h function to a routine in module BOOTOS
that cycles through six boot actions defined in CMOS cells. The six boot actions are attempted in
order until one is successful. Keep in mind that, if ROM extensions such as DOS hook INT 19h

20 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

so that they can get control when the system boots, then BOOTOS will not receive control to
cycle through all of the boot actions, and the boot action sequence will be defeated.

Boot actions are Boot from any drive (A: through K:), Boot Windows CE in ROM, Boot
Embedded DOS-ROM out of ROM, Enter Manufacturing Mode, Enter Debugger, and No
Action.

The boot actions for drives A: through K: read one sector from the drive at sector 1, head 0, track
0 into physical memory location 00007C00h. If the read is successful and if the boot record
contains the byte sequence 55h, aah, as the last two bytes in the 512-byte sector, then control is
transferred to the boot record at 16:16 address 07C0:0000, and the BIOS plays no further role in
the bootstrap process.

There are two ways to boot Windows CE with EMBEDDED BIOS. The first way is selected as
a boot action "Boot Windows CE." The second way is by enabling a feature in SETUP that
instructs EMBEDDED BIOS to attempt to find the Windows CE system file (NK.BIN) on disks
that BOOTOS is told to boot from. If NK.BIN can be found during POST, it will be loaded into
memory and booted. Otherwise, the boot record for that drive will be loaded and booted. This
makes it possible to load Windows CE without loading DOS to run LOADCEPC. This feature of
EMBEDDED BIOS is called "CE Ready."

As with the INT 18h interrupt vector, user-written code, such as code in a ROM BIOS Extension,
can "hook" the INT 19h interrupt vector and gain control when it is time to load the operating
system or start an embedded application. For systems with application code located and burned
into ROM, the INT 19h vector can be hooked during POST and then be used as a way to receive
control after the system has been initialized. This is how Embedded DOS-ROM receives control
when it is configured to boot out of ROM.

1.1.2.1.11 INT 1ah, Time/Date Services

All time and date services are provided through the INT 1ah software interrupt mechanism. The
application places a function code in the AH CPU register, and places any appropriate operands in
other CPU registers, before executing an INT 1ah instruction. Upon return, INT 1ah services
return their status in a complex way. The following table summarizes the available date/time
services. Refer to Chapter 21 for complete programming details.

Function Date/Time Service

00h Return Ticks Since Midnight
01h Set Ticks Since Midnight
02h Return Time
03h Set Time
04h Return Date
05h Set Date
b1h PCI Services (architected by Intel)

The INT 1ah service manages the time and date as separate pieces of information, and in two
ways. In systems with a PC-compatible Real Time Clock (RTC) component, the BIOS is capable
of reading the contents of the RTC and updating it under program control. Both the date, and the
time, can be stored in this device.

Chapter 1 EMBEDDED BIOS User’s Manual 21

General Software EMBEDDED BIOS Adaptation Guide

In systems that do not have a RTC component (and in those that do), the system time is
maintained in a different way as a 32-bit number that represents "the number of ticks since
midnight", in a location in the BIOS Data Area. It is common for DOS to detect whether the
RTC services are available, and then use the ticks since midnight value as a system time when the
real time clock is not present. When available, the RTC is normally the preferred method of
obtaining the time, and is the only way of obtaining the date, since the RTC part is usually kept
running with a battery when the system is turned off.

As can be seen from the table, INT 1ah is also the access point for PCI services, available on
some targets. Consult Chapter 21 for details.

1.1.2.2 Table Pointers

Not all IVT entries point to a BIOS service routine. Several BIOS-managed interrupt vectors
actually point to data structures maintained by the BIOS. These data structures are the Video
Parameter Table (VPT), the Diskette Parameter Table (DPT), Video Graphics Character Table
(VGCT) and the Fixed Disk Parameter Tables (VDPTs).

1.1.2.2.1 INT 1dh, Video Parameter Table (VPT)

The Video Parameter Table (VPT) is used by the VIDEO module to program the 6845 CRT
controller's internal registers according to the specific mode requested by the application. The
VPT is pointed to by IVT entry 1dh, and may be changed by software such as a VGA ROM
Extension that supports additional modes.

The default VPT used by the integrated VIDEO module is shown below (this table is found in
module BIOS in the source code):

; The following table contains parameters (indexed by the user mode)
; to load into the 6845's 16 operating registers. Vector 1dh points
; to this table, and the user software may replace it.

 PUBLIC VideoTbl
VideoTbl label byte
 db 38h, 40, 2dh, 10, 1fh, 6, 19h, 1ch, 2, 7, 6, 7, 0, 0, 0, 0
 db 71h, 80, 5ah, 10, 1fh, 6, 19h, 1ch, 2, 7, 6, 7, 0, 0, 0, 0
 db 38h, 40, 2dh, 10, 7fh, 6, 64h, 70h, 2, 1, 6, 7, 0, 0, 0, 0
 db 61h, 80, 52h, 15, 19h, 6, 19h, 19h, 2, 13, 11, 12, 0, 0, 0, 0

1.1.2.2.2 INT 1eh, Floppy Diskette Parameter Table (DPT)

IVT entry 1eh points to the current Diskette Parameter Table, or DPT, being used by the floppy
disk BIOS. Because there are potentially several floppy drives in a system, the DPT defines the
operational characteristics of the floppy currently being accessed.

The DPT pointer in the IVT is used by more than just the FLOPPY module. During the
initialization of DOS, it copies the ROM-based DPT established by the BIOS into its own RAM
buffer, and re-points the 1eh vector to the RAM location. This allows it to modify the default
DPT before performing diskette operations so that they can be optimized.

22 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

Reestablishing the DPT in RAM serves another purpose as well. Softguard copy-protection relies
on the fact that the DPT is copied into RAM by DOS, and edits the DPT pointed to by the 1eh
vector to tell the BIOS that it will be reading 128-byte sectors during its check for a special, 128-
byte sector on a certain track of a release diskette. When it is done calling INT 13h services to
verify that this sector exists, then it restores the DPT to its original state.

Clearly, the DPT is not an architecturally sound way of providing more control over floppy disk
services provided by the BIOS. Unfortunately, this architectural relic was firmly established with
the first IBM PC BIOS and must be provided in other BIOS products.

The format of the DPT is shown below in an assembly language structure. This structure can be
found in your INC directory in the STRUC.INC header file.

; Diskette parameter table structure format.

DPT struc
dpt_specify1 db ? ; specify command 1.
dpt_specify2 db ? ; specify command 2.
dpt_motoroff db ? ; motor off time.
dpt_bps db ? ; bytes per sector (coded, above).
dpt_spt db ? ; sectors per track.
dpt_gap db ? ; gap length between sectors.
dpt_dtl db ? ; data length (always ffh).
dpt_gap3 db ? ; gap length for FORMAT.
dpt_fill db ? ; fill byte for FORMAT.
dpt_headsettle db ? ; head settle time.
dpt_motoron db ? ; motor-on start time.
dpt_maxtrack db ? ; max track number for this drive.
dpt_drr db ? ; data transfer rate.
dpt_unused1 db ? ; unused byte.
dpt_unused2 db ? ; unused byte.
DPT ends

The fields in the DPT are actually used as operand bytes when the FLOPPY1, FLOPPY2, and
FLOPPY3 modules send commands to the Intel 82077A or 82078-compatible floppy disk
controller. The specific values for each field are governed by the established standards for
recording information on DOS-compatible floppy disks for the various drive types and media
types. By manipulating these fields, the application program can cause the BIOS to read, write,
format, and verify nonstandard media. For exact specifications on the values to be stored in the
DPT, consult the Intel documentation on the 82077A or 82078 floppy disk controllers.

1.1.2.2.3 INT 1fh, Video Graphics Character Table (VGCT)

The Video Graphics Character Table (VGCT) is pointed to by IVT entry 1fh, and is used by VGA
ROM BIOS Extensions to define the shape of the IBM-compatible character set when in graphics
modes. When in character modes, the built-in VIDEO module in the BIOS does not use this
entry. If you are internationalizing your adaptation of EMBEDDED BIOS to foreign character
sets, this is the table to change the fonts for standard BIOS resolutions.

1.1.2.2.4 INT 41h/46h, Fixed Disk Paramter Tables (FDPTs)

Chapter 1 EMBEDDED BIOS User’s Manual 23

General Software EMBEDDED BIOS Adaptation Guide

IVT entries 41h and 46h are used in versions of the BIOS that support IDE drives, so that
operating system software can determine the fixed disk drive types. Introduced by IBM with the
IBM PC/AT Personal Computer, IVT entry 41h points to a data structure that describes the
primary hard drive (drive 80h) and IVT entry 46h points to a data structure that describes the
secondary hard drive (drive 81h). These structures should not be used by application software,
and are rarely used by operating system software, since INT 13h function 08h can provide
substantially the same information about both floppies and fixed disks in the system.

To maintain compatibility with the IBM PC/AT BIOS, EMBEDDED BIOS establishes these
vectors to point to structures with the following format (see module IDE1 for how they are
created):

FDPT STRUC
fdpt_cyl dw ? ; maximum number of cylinders.
fdpt_hd db ? ; maximum number of heads.
 dw ? ; reserved, MBZ (not used, see PC/XT).
fdpt_wp dw ? ; starting cyl for write precompensation.
 db ? ; reserved, MB. (max ECC data burst length).
 db ? ; DTE_CONTROL.
 db ? ; reserved, MBZ.
fdpt_cap dw ? ; disk capacity in megabytes.
fdpt_lz dw ? ; landing zone cylinder.
fdpt_spt db ? ; sectors per track.
 db ? ; reserved.
FDPT ENDS

1.1.2.3 BIOS Upcalls

While nearly all of the software interrupts associated with the BIOS are invoked by the operating
system or application and serviced by the BIOS itself, there are a few software interrupts that are
actually generated by the BIOS, and may be "hooked" by the operating system or the application.
These software interrupts, called "up-calls" or "call-outs", are used to notify application software
that events in the BIOS have occurred.

1.1.2.3.1 INT 15h Device Management

The INT 15h software interrupt is a two-way interrupt service. Functions such as 87h, 88h, and
89h are made by the application and serviced by the BIOS to provide protected mode support.
Other functions, such as 90h and 91h, are invoked by the BIOS, and "hooked" by DOS or by
application software to be notified when events inside the BIOS occur. These invocations of INT
15h functions by the BIOS are called "up-calls", or simply, "call-outs".

INT 15h up-calls are generated by various modules within the BIOS. The floppy and hard disk
modules are the most important ones, as they involve comparatively large intervals of time during
head seeks and waiting for rotational latency of the media. During seeks and disk rotations, an
operating system can use INT 15h to gain control and perform other tasks until notified that the
operation has completed. Just as with the other INT 15h services, the BIOS places a function
code in the AH CPU register, with a device code in other registers, before executing its INT 15h
instruction.

1.1.2.3.1.1 INT 15h Function 4fh

24 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

Function code 4fh is used to indicate that the keyboard has received a keypress or key release
interrupt, with a scancode in the AL CPU register from the keyboard controller. The
KEYBOARD module issues the INT 15h function to give the application a chance to interpret the
scancode and modify it if required.

Upon return from the INT 15h function 4fh call, the keyboard BIOS checks the state of the carry
flag. If the carry flag is cleared by the application, then the BIOS performs no more processing
on the scan code and assumes that the application handled it. If the carry flag was set by the
application, then the BIOS handles the scan code as returned by the application in the AL CPU
register. The latter case allows the application to modify the scan code in the AL register without
handling it directly. Because the BIOS sets the carry flag before issuing the INT 15h instruction,
the BIOS will handle the scan code by default if the application does not modify the carry flag.

1.1.2.3.1.2 INT 15h Function 90h

Function code 90h is used to indicate that a spin-loop is about to be executed by a BIOS
component. When the BIOS invokes INT 15h function 90h, it passes a device code in the AL
CPU register that indicates what device is causing the wait. The following device codes are
architected by IBM:

Code Device Name

00h IDE Hard Drive
01h Floppy Disk Drive
02h Keyboard
03h PS/2 Mouse
80h Network
FCh Hard Disk Reset Operation
FDh Floppy Disk Drive Motor Control Operation
FEh Printer

Upon return, the application software that hooks the INT 15h function 90h service should set the
CY flag if it did not wait for the device to complete its operation, or clear the CY flag if a wait or
timeout occurred in the application code. The state of the CY flag is tested by the BIOS when the
INT 15h function 90h routine returns to determine whether to actually perform or skip the spin-
loop.

1.1.2.3.1.3 INT 15h Function 91h

Function code 91h is used to indicate that a device interrupt has just been received that would
complete the spin-loop. As with function 90h, a device code is passed in the AL CPU register to
indicate which device has just completed an operation. The device codes for functions 90h and
91h are identical.

Upon return, the application software that hooks the INT 15h function 91h service should set the
AH CPU register to 00h and clear the CY flag.

1.1.2.3.1.4 INT 15h Function 85h

Chapter 1 EMBEDDED BIOS User’s Manual 25

General Software EMBEDDED BIOS Adaptation Guide

Another INT 15h up-call provides notification that the user has pressed or released the SysReq
key on an AT-class (101-key) keyboard. When the KEYBOARD.ASM module detects that this key is
pressed, it issues an INT 15h with AH=85h, and sets the AL CPU register to 00h, indicating that
they key was depressed. When the key is released, it issues an INT 15h with AH=85h, and sets
the AL CPU register to 01h.

1.1.2.3.2 INT 1bh Control-Break Signal

The KEYBOARD.ASM module executes an INT 1bh software interrupt if it detects that the user
pressed the Control and Break keys simultaneously. This allows the application to gain control
when this happens. Upon return from the INT 1bh instruction, the BIOS stores a 00h scan code
and 00h character code in the keyboard's typeahead buffer.

DOS normally hooks the INT 1bh Interrupt Vector Table entry so that it can terminate a program
prematurely. The mechanisms used by DOS to make this happen are proprietary to the specific
version of DOS and are beyond the scope of this manual.

1.1.2.3.3 INT 1ch User Timer Interrupt

The BIOS provides a regular 18.2Hz heartbeat for operating systems and applications by
executing an INT 1ch instruction every 55 milliseconds. By default, the BIOS has its own INT
1ch handler that does nothing, so that the application software is not required to provide a handler
unless one is needed.

In strictly ISA systems, INT 1ch is executed inside the IRQ0 Interrupt Service Routine of the
BIOS after the 8254 Programmable Interval Timer's T0 timer expires, and after the End-Of-
Interrupt (EOI) has been issued to the primary Programmable Interrupt Controller (PIC). Thus,
suspension inside the INT 1ch handler by the application does not degrade system performance
the way it would be if the application suspended operations inside the INT 08h handler.

In non-ISA systems, such as those designed around the NEC V-Series (i.e., V25) processors,
EMBEDDED BIOS cannot program the on-board timers to generate an interrupt on INT 08h.
Instead, the timer is actually hard-wired to interrupt vector 1ch. The BIOS accounts for this and
calls INT 08h inside the INT 1ch handler. Application software should be aware of this possibility
and not block inside the INT 1ch handler. Instead, they should chain the INT 1ch handler, call the
lower layer first, and then perform any work as required. This technique gives the BIOS a chance
to issue an EOI before any application code runs.

1.1.2.3.4 INT 4ah Real Time Software Interrupt

Just as the ISA IRQ0 hardware timer interrupt routed to INT 08h causes the INT 1ch user timer
software interrupt to be generated every 55ms, ISA IRQ8 is tied to a 1Khz timer routed to INT
70h, which in turn causes an INT 4ah instruction to be generated every 1ms (at a 1Khz rate).

Commonly called the real-time clock interrupt, INT 4ah can be "hooked" by real-time kernels to
gain control for rescheduling purposes on ISA platforms. Warning: Nonstandard platforms may
not provide this support, as it is provided by the Dallas Real-Time Clock (RTC) chip in PC/AT-
compatible targets.

26 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

To enable the 1Khz INT 4ah interrupt heartbeat, the operating system or application must
manipulate the CMOS RTC registers. The BIOS automatically routes the hardware interrupt
(IRQ8) to interrupt vector 70h. The BIOS-supplied ISR for INT 70h then calls INT 4ah after
issuing an EOI to both Programmable Interrupt Controllers (PICs).

1.1.2.4 CPU Traps/Faults

Intel 8086-family processors and their architectural equivalents all provide a way for the operating
system or application program to gain control when an instruction cannot be executed for some
reason. When the CPU encounters a problem with executing an instruction, it generates an
exception.

When EMBEDDED BIOS is built with the option to enable the integrated BIOS debugger, the
BIOS routes all the CPU-generated exceptions to the debugger itself, so that the adaptation
engineer can determine why the exception occurred and then debug the problem. Without the
debugger enabled, the operating system or application program is responsible for catching
exceptions and handling them in an appropriate manner.

There are two types of exceptions; namely, traps and faults. Traps are generated when something
happens that makes it impossible for the instruction to be restarted. When an invalid instruction is
detected, for example, an "Invalid Instruction Trap" occurs.

Faults are different from traps in that a fault handler can perform some sort of work that would
potentially allow the problem instruction to be able to re-execute correctly. A good example of
such a fault is the "Page Fault" mechanism commonly used in virtual memory management
systems in protected-mode operating systems. Because an instruction may execute from a page
that is not present in memory, or perhaps because its operands in memory are located in pages of
memory that are not present, the page fault mechanism gives the operating system control so that
the necessary pages of virtual memory can be mapped to real physical memory. Once the
mapping is completed, the fault routine returns to the interrupted context, and the instruction
proceeds as though the fault never happened.

In Intel CPUs, the following exceptions can be generated by the CPU. Note that some are
marked as traps, and some are faults. Also note that the interrupt vector numbers assigned to the
exceptions conflict with the BIOS service interrupt numbers. This is not a misprint; it is an
historical part of the BIOS architecture first defined by IBM.

Vector Processors Exception Type

00h 8086 Divide Error Trap
01h 8086 Instruction Trace Trap
02h 8086 NMI Interrupt (Trap)
03h 8086 Breakpoint Trap
04h 8086 Arithmetic Overflow Trap (INTO Instructions)
05h 80286 Array Bounds Trap
06h 8086 Invalid Opcode Trap
07h 8086 Device Not Available Trap
08h 80286 Double Fault
09h N/A -- Reserved for Future Use --
0ah 80286 Invalid Task State Segment Fault
0bh 80286 Segment Not Present Fault
0ch 80286 Stack Exception Fault

Chapter 1 EMBEDDED BIOS User’s Manual 27

General Software EMBEDDED BIOS Adaptation Guide

0dh 80286 General Protection Fault
0eh 80386 Page Fault
0fh N/A -- Reserved for Future Use --
10h 80386 Floating Point Fault
11h 80486 Alignment Fault
12h 80486 Machine Check Fault

1.1.2.5 Hardware Interrupts

EMBEDDED BIOS is configurable to support a wide variety of processors that provide at least
the functionality of the Intel 8088 CPU. Processors in the Intel 8086 family include the 80286,
the 80386, the i486, Pentium, and Pentium-Pro CPUs, and these CPUs are generally deployed in
ISA, PCI, or local bus-type system architectures.

Intel's 80C186-EA/EB/EC family of processors provide a superset of the instruction set, but in
addition have on-board peripherals that are not like those in an ISA-class machine. Instead, the
on-board timers, serial ports, and so on, are internally wired to different interrupt request lines,
which in turn translate to different interrupt vectors that must be serviced by the BIOS.

Similarly, the NEC V-Series processors execute supersets of the Intel 8086 CPU's instruction set;
however, their on-board peripherals are also proprietary and are internally-wired to different
interrupt request lines. These different IRQs are necessarily routed through different interrupt
vectors.

ISA-class systems all have a similar interrupt model for hardware interrupts. The ISA interrupt
assignments are as follows:

IRQ Vector Device

IRQ0 08h 8254 Programmable Interval Timer
IRQ1 09h Keyboard Controller
IRQ2 0ah Cascade Interrupt to PIC2
IRQ3 0bh COM2 Serial Port (8250)
IRQ4 0ch COM1 Serial Port (8250)
IRQ5 0dh LPT2 Parallel Port
IRQ6 0eh Floppy Disk Controller
IRQ7 0fh LPT1 Parallel Port
IRQ8 70h Real-Time Clock Interrupt (1Khz)
IRQ9 71h -- open --
IRQ10 72h -- open --
IRQ11 73h -- open --
IRQ12 74h PS/2 Mouse
IRQ13 75h Math Coprocessor
IRQ14 76h IDE Drive Controller
IRQ15 77h -- open* --

* Caution: Some BIOS implementations may use INT 77h as a software suspend request in their
Power Management module. Operating systems or applications execute the INT 77h, which is
received by the BIOS as a request to power-down the system.

28 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

1.10.3 System Configuration Table

BIOS service INT 15h function C0h returns a pointer to a data structure called the System
Configuration Table (SCT), an area inspected by DOS and applications to determine which
features are supported by the underlying BIOS. The SCT is defined in module BIOS and may be
modified by the adaptation engineer.

The contents of the standard SCT are given below:

 PUBLIC SCT
SCT:
 dw SCT_End - SCT - 2
 db BIOS_HDWR ; hardware ID byte.
 db BIOS_MAJOR_VERSION
 db BIOS_MINOR_VERSION

; The next byte contains bitflags as follows, indicating what
; features the BIOS supports.
;
; bit 7 - BIOS using DMA ch3
; bit 6 - cascaded IRQ2
; bit 5 - real-time clock present
; bit 4 - int 1Ah is keyboard scan

SCTFLAGS = 00000000B ; start out with nothing.

 IF OPTION_SUPPORT_8259_2
SCTFLAGS = SCTFLAGS OR 01000000B ; bit 6 - cascaded IRQ2.
 ENDIF ; (OPTION_SUPPORT_8259_2

 IF OPTION_SUPPORT_CMOS
SCTFLAGS = SCTFLAGS OR 00100000B ; bit 5 - real-time clock present.
 ENDIF ; (OPTION_SUPPORT_8259_2)

SCTFLAGS = SCTFLAGS OR 00010000B ; bit 4 - INT 1Ah is keyboard scan.

 db SCTFLAGS ; define flag byte with above bitflags.

 db 4 dup(0) ; reserved
SCT_End EQU $

1.11 Console I/O Redirection

Both INT 10h (video) and INT 16h (keyboard) services may be redirected by EMBEDDED
BIOS to any serial port, so that the application, Setup screen, and integrated BIOS debugger can
all communicate over an RS-232 link to a remote host running a terminal program. These three
classes of I/O can be redirected independently, to any valid serial port in the system supported by
the SERIAL.ASM module.

1.11.1 Video (INT 10h) Redirection

Chapter 1 EMBEDDED BIOS User’s Manual 29

General Software EMBEDDED BIOS Adaptation Guide

Redirection of INT 10h (video) requests happens in CONIO by looking at the CurrIo field in the
Extended BIOS Data Area (EBDA). If this field is set to IO_CONSOLE (0), then video is
routed to the VIDEO module, which programs the 6845 CRT controller. If this field is set to
IO_COM1 (1), IO_COM2 (2), IO_COM3 (3), or IO_COM4 (4), then the I/O is redirected to
the specified port. IO_NONE is a value the system uses to disable INT 10h output altogether.

Other fields in the EBDA take part in redirection. Consider the fact that application INT 10h
services are separated from debugger INT 10h services and Setup screen INT 10h services. This
is handled by the Setup and Debugger modules by setting the CurrIo field to the values in
SetupIo or DebugIo, respectively, before those modules do any output. Then, when the modules
are finished with their processing, they restore the CurrIo field to its former value. The save
areas for this restoration are SetupIox and DebugIox, respectively. An INT 15h function is
available for handling these details; it is callable from the application program, or from the Board,
CPU, or Chipset Personality Modules if a stack is available.

1.11.2 Keyboard (INT 16h) Redirection

Redirection of INT 16h requests to the SERIAL.ASM module happens in module CONIO.ASM by
looking at the CurrIo field in the Extended BIOS Data Area (EBDA). If this field is set to
IO_CONSOLE (0), then keyboard requests are passed to module KEYBOARD.ASM, which
programs the 8042 keyboard controller on an AT, or the 8255 peripheral interface on a PC/XT
compatible machine. If this field is set to IO_COM1 (1), IO_COM2 (2), IO_COM3 (3), or
IO_COM4 (4), then the I/O is redirected to the specified port. IO_NONE is a value the system
uses to disable INT 16h output altogether.

Just as with INT 10h services, other fields in the EBDA take part in input redirection. Because
application INT 16h services are separated from debugger INT 16h services and Setup screen
INT 16h services, the Setup and Debugger modules set the CurrIo field to the values in SetupIo
or DebugIo, respectively, before those modules request any input. Then, when the modules are
finished with their processing, they restore the CurrIo field to its former value. The save areas
for this restoration are SetupIox and DebugIox, respectively.

Module SERIAL.ASM doesn't actually do the I/O directly for the I/O redirection. Instead, it
translates the logical serial port number associated with the console redirection into a physical
port number, and then calls the 8250 driver module, or the CPU personality module, depending
on where the physical UART is located.

1.12 Integrated BIOS Debugger

When bringing-up new hardware, it is essential to have a debugging tool that can disassemble
code, display and alter the contents of memory, write to I/O ports, breakpoint code, and test the
operation of the A20 line and CMOS storage. These functions are all features of the integrated
BIOS debugger that is provided with EMBEDDED BIOS.

By enabling the OPTION_SUPPORT_DEBUGGER configuration option in CONFIG.INC, the
debugger code will be automatically assembled into the BIOS. Then, when the system boots, the
debugger can be started in several ways.

First, on machines with a PC or PC/AT-compatible keyboard, the debugger can be entered
through a special key chord. Just depress both the left ALT key and the left SHIFT key to break
into the debugger.

30 EMBEDDED BIOS User’s Manual Chapter 3

General Software EMBEDDED BIOS Adaptation Guide

Second, the debugger hooks the CPU exception vectors in case a divide by zero occurs, an invalid
opcode is executed, or an INT 3 instruction is executed, for example. By placing an INT 3 in the
POST mainline code (or anywhere else in the BIOS source code) after INT 10h and INT 16h
services are available, the debugger will automatically be invoked. To resume, type the 'G'
command to "GO", or continue on with the rest of initialization.

Third, the debugger can be entered from the Setup main menu, if the debugger Setup screen
option is enabled. This allows an end-user to access the integrated BIOS debugger from within
the full-screen menuing system.

Fourth, the debugger is a selectable boot action, allowing it to gain control if any of the other
bootable drives are not available or are not formatted. This is controlled via the Basic SETUP
screen.

Finally, the debugger can be entered if no operating system can be loaded. The system displays a
message that indicates that a boot device cannot be found, and then prompts the user to press the
ESC key to enter the debugger.

The debugger can be used over a serial port, in the event that the target system has no keyboard
or monitor, or if those devices are being used by the application. For example, if a graphics
application has drawn on the screen, the integrated BIOS debugger's output would disrupt the
video display if it were not redirected. Redirection of debugger output is controlled via the
OPTION_CONIO_DEBUG configuration option in the project file.

Use of the integrated BIOS debugger is outside the scope of this section; consult Chapter 9 for
complete details.

1.18 Protected Mode Support

On 80386 and above processors, EMBEDDED BIOS uses the protected mode of the CPU to
access extended memory. To configure EMBEDDED BIOS to support protected mode, the
OPTION_SUPPORT_PROTMODE option must be enabled. Support for the 80286 CPU has
been discontinued due to the CPU's architectural limitations and end-of-life.

When configured, protected mode is used during POST and during steady-state operation of the
system. During POST, the BIOS determines the amount of extended memory available by
performing memory tests in protected mode. During steady-state, the operating system or
application program can request that the BIOS switch to protected mode with INT 15h function
89h, and move memory while in protected mode with INT 15h function 87h.

Protected mode support is complicated by the various ways in which the processor can be
instructed to resume execution in real mode after a protected mode operation. In 80286-based
systems, there was no "switch to real mode" CPU instruction. Therefore, these systems had an
outboard hardware solution that involves any of several components: the 8042 keyboard
controller, I/O port 92h, or the chipset. These methods are supported by EMBEDDED BIOS in
the event that systems continue to use them even though they are not 80286-based.

On 80386 and above systems, the CPU contains a "MOV CR0, EAX" instruction that allows the
BIOS to return to real mode without the use of external hardware. The adaptation engineer can

Chapter 1 EMBEDDED BIOS User’s Manual 31

General Software EMBEDDED BIOS Adaptation Guide

select that this option be used when it is known that the target will be using an 80386 or better
CPU.

It remains common for the outboard hardware reset techniques to be used in designs that use
80386 or better CPUs, simply because these features have been added to chipsets for full
compatibility with the IBM PC/AT standard machine. Thus, the adaptation engineer should
review the methods by which the target hardware can be switched back into real mode, and select
the one with the lowest overhead.

Chapter 2 EMBEDDED BIOS User’s Manual 33

General Software EMBEDDED BIOS Adaptation Guide

Chapter 2

THE INTEGRATED BIOS DEBUGGER

This chapter describes the operation of the integrated BIOS debugger. The purpose of the
debugger is to provide BIOS-level debugging facilities to the BIOS customization and hardware
development team and to the operating system and application engineers involved in bringing up
the operating system or application software on the target. It is not intended for use as the only
debugging tool for application programmers; it is mainly used for ensuring that the application
software or source-level debugger is loaded properly in the system, and that all the BIOS services
are available to the higher layer software.

2.1 How to Use the Debugger

The debugger can be activated in four ways.

1. On a PC-compatible platform, the BIOS debugger can be invoked through the console by
pressing the keyboard's CTRL and LEFT-SHIFT keys simultaneously. Breaking into the
debugger in this way suspends the execution stream in the system until it is resumed with the "G"
(go) command. As part of the standard configuration options, the OEM can configure the
debugger to communicate through a serial port rather than the console, if desired.

2. The debugger can also receive programmed control from an "INT 3" instruction in the
DOS code, application code, or BIOS code. This can be useful in debugging EMBEDDED BIOS
adaptations running on new hardware that aren't yet booting the operating system. It can also be
used to check-out new hardware by manipulating I/O ports with debugger commands.

3. From the SETUP main menu, the ENTER SYSTEM BIOS DEBUGGER selection will
enter the debugger. After use, typing the "G" (go) command will return to the SETUP screens.

4. As a boot action, as a last-ditch effort if the operating system cannot be booted from the
appropriate drives or out of ROM, and the Manufacturing Mode link cannot be established.

To enable the debugger in your EMBEDDED BIOS adaptation, set
OPTION_SUPPORT_DEBUGGER to 1. The debugger contains quite a few commands and
also contains a disassembler, which includes a full opcode table (see related options of the form,

34 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

OPTION_DEBUG_xxx.) This can take up quite a bit of space, and it may require that you
increase the size of the BIOS itself by increasing OPTION_BIOS_KBSIZE to 64.

To enable access to the debugger through the SETUP screen system, enable
OPTION_SETUP_DEBUGGER.

As with the SETUP system, the debugger can be configured to redirect its input and output over
an OEM-defined serial port. To redirect debugger I/O over an RS232 serial line, enable
OPTION_SUPPORT_CON_REDIRECTOR, and set CONFIG_CON_REDIR_DEBUG to
the serial port number (1=COM1, 2=COM2, etc.) to use for remote debugging.

2.2 Debugger Command Syntax

Nearly all debugger commands are specified as a single abbreviated word such as "BIOSDATA",
"REBOOT", or "G", followed possibly by expressions separated by tabs, spaces, or commas.
Depending on the command's function, the address operand may default to the "next approriate
address" or it may be required in the event that there is no "next appropriate address". Command
names are case-insensitive, as are the names of registers in operands.

2.2.1 Operand Types

Commands all take different operand types, depending on their function. For example, the
command that outputs a 32-bit double word to a 32-bit I/O port requires a 32-bit datum, whereas
the command that dumps memory uses an address of the memory area to dump.

The debugger accepts 8-bit, 16-bit, and 32-bit operands, as needed for a given command. In
addition, real-mode (segment:offset) addresses, and 32-bit physical addresses, are often given.
The Flash programming commands require a 32-bit address formed by an xxxx:yyyy syntax that
looks like it should be a real-mode address, but is in fact a special way to enter a 32-bit physical
Flash media address in two components, separated by a semicolon.

The 8-bit, 16-bit, and 32-bit operands are built from expressions.

Real-mode addresses (often called 16:16 addresses) are composed of two 16-bit expressions
separated by a colon, where the 16-bit expression on the left hand side of the colon represents the
segment, and the 16-bit expression on the right hand side represents the offset.

Physical addresses are indicated by a percent sign (%) followed by a 32-bit expression.

2.2.2 Expressions

The basic components of expressions are simple values, such as hexadecimal constants, or register
names. For example, the constants 0, 1234, 17, DEADBEEF (an interesting-looking 32-bit
hexadecimal number), and register names AX, BX, CX, DX, SI, DI, SP, BP, FL, CS, DS, ES, SS,
FS, and GS are all simple values. The 8-bit register names are not valid simple values. The 32-bit
register names EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP, are also valid when the
CONFIG_CPU_TYPE parameter has been set to CPU_386 or above. Whenever an expression
is called for, these values can be used alone.

In addition, parentheses may be used (without any intermixed white space) to specify a simple
expression consisting of an operation to be performed on two values. For example, it is possible

Chapter 2 EMBEDDED BIOS User’s Manual 35

General Software EMBEDDED BIOS Adaptation Guide

to take the sum, difference, logical AND, or logical OR of two values, or shift one value by the
number of bits specified by the second value. Finally, anywhere a value may be specified, a simple
expression may be specified.

This recursive definition leads to the following examples of 16-bit expressions that might be used
in debugger operands:

1234 (constant value)
BX (contents of BX general register)
(BX+1234) (contents of BX plus 1234h)
(AX-2345) (contents of AX minus 2345h)
(CX&55AA) (contents of CX ANDed with 55aah)
(BP|2) (contents of BP ORed with 0002h)
(FL>1) (contents of FL shifted right one bit)
(ES<AX) (contents of ES shifted left AX bits)

Here are some more complex 16-bit expressions:

(BX+(SI-23)) (add BX to the difference of SI and 23h)
((AX&7FFF)|(BX&8000)) (bottom 15 bits of AX ORed with top bit of BX)

Here is a more formal definition, using a modified BNF, of expression syntax:

<hex value> ::= <hex digit> | <hex digit> <hex value>

<reg16> ::= AX | BX | CX | DX | SI | DI | SP |
BP | DS | ES | CS | SS | FS | GS | FL

<reg32> ::= EAX | EBX | ECX | EDX |
ESI | EDI | ESP | EBP | EFL

<register> ::= <reg32> | <reg16>

<value> ::= <hex value> | <register>

<operator> ::= '+' | '-' | '&' | '|' | '>' | '<'

<expr> ::= <value> | (<expr> <operator> <expr>)

2.2.3 Addresses

Some debugger commands, such as U[nassemble] and D[ump bytes], allow an address to be
specified. When this is the case, the address can be a real-mode address or a physical address.

Real-mode addresses consist of two 16-bit expressions separated by a colon without intervening
whitespace. For example, F000:1234 specifies offset 1234h with respect to real mode segment
F000h. Register names, and expressions involving constants and expressions, are supported. For
example, F000:(BX+52) specifies an offset calculated from the contents of the BX CPU register
summed with the hexadecimal constant, 52h.

Physical addresses are specified by a 32-bit expression prefixed by a percent sign (%). The
following are examples of 32-bit physical addresses:

36 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

%00800000 (address of first byte at 8MB boundary)
%00100000 (address of first byte of extended memory)
%00000000 (address of first byte of low memory)
%FFFFFFFF (address of last byte in Pentium-class machine)

Flash media commands use a special form of addressing to indicate 32-bit physical addresses.
This form consists of two 16-bit expressions separated by a colon, as with real-mode addresses.
However, the two 16-bit expressions do not correspond to a segment:offset pair. Instead, the
first 16-bit expression becomes the high 16 bits of the 32-bit address, and the second 16-bit
expression becomes the low 16 bits of the 32-bit address. The following are examples of Flash
addresses:

0000:0000 (address of first byte of low memory)
0010:0000 (address of first byte of extended memory)
0080:0000 (address of first byte at 8MB boundary)
FFFF:FFFF (address of last byte in Pentium-class machine)

2.3 Command Reference

This section describes the individual debugger commands.

2.3.1 ? Command

The "?" command evaluates its operand as an expression and prints the resulting value.

Command Syntax:

? Expression

Parameters:

Expression - A required expression as specified earlier in this chapter.

Sample Output Display:

1234

2.3.2 + Command

The "+" command advances the instruction pointer (IP) by one byte. This command is useful
when skipping over instructions.

Command Syntax:

+

Parameters:

none.

Chapter 2 EMBEDDED BIOS User’s Manual 37

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

none.

2.3.3 - Command

The "-" command backs up the instruction pointer (IP) by one byte. This command is useful
when an instruction should be reexecuted.

Command Syntax:

-

Parameters:

none.

Sample Output Display:

none.

2.3.4 BC Command

The BC command allows the developer to clear an execution breakpoint.

Command Syntax:

BC BreakpointNumber

Parameters:

BreakpointNumber - A required expression parameter that specifies the number of the
breakpoint to be cleared. The number of a breakpoint can be displayed with the
BL command, and is displayed after the system processes a BP command.

Sample Output Display:

Breakpoint #0 cleared.

2.3.5 BIOSDATA Command

The BIOSDATA command allows the developer to inspect the major low-memory fields in the
system at segment 40H.

Command Syntax:

BIOSDATA

38 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

none.

Sample Output Display:

Different for different BIOS adaptations

2.3.6 BL Command

The BL command allows the developer to list the breakpoints that are currently active. If a
breakpoint has a command string associated with it, the command string is displayed. Those
breakpoints with no command string have no command string display.

Command Syntax:

BL

Parameters:

none.

Sample Output Display:

#0 - 0500:1d49 “U CS:IP;G”
#1 - 12d9:ef7c “CSW 32 1A;R AX 1234;T”
#2 - 12e9:459a

2.3.7 BP Command

The BP command allows the developer to set an execution breakpoint at a specified address.
Multiple breakpoints may be set at any given time. Please note that breakpoints work by storing
an INT 3 instruction at the specified location; this is impossible in read-only memory.
Breakpoints may only be set in RAM.

Command Syntax:

BP Address [“CommandString”]

Parameters:

Address - A required parameter that specifies the 16:16 real-mode address of a breakpoint
to be set.

CommandString - An optional parameter, enclosed in double quotes, that specifies a
sequence of commands separated by semicolons to be executed when the

Chapter 2 EMBEDDED BIOS User’s Manual 39

General Software EMBEDDED BIOS Adaptation Guide

breakpoint occurs. If this parameter is not specified, then the standard breakpoint
command is the R (register dump) command.

Sample Output Display:

Breakpoint #0 saved.

2.3.8 CIS Command

The CIS command allows the developer to display a portion of the memory address space with
the formatting of a Card Information Structure as found in the configuration space of PCMCIA
cards.

This command is intended for use in debugging embedded applications that have a dedicated
PCMCIA card that must be configured for use in the target without card or socket services.

Command Syntax:

CIS Address

Parameters:

Address - A required parameter that specifies the 16:16 real-mode address of memory
space to be formatted as a CIS.

Sample Output Display:

Dependent on PCMCIA Card Type.

2.3.9 CONSOLE Command

The CONSOLE command allows the developer to redirect the debugger's input and output to
another device. Available devices are:

CON - the system keyboard and video display monitor
COM1 - the first communications port at 3f8h
COM2 - the second communications port at 2f8h

Command Syntax:

CONSOLE Device

Parameters:

Device - A required parameter that specifies the new console to redirect debugger output
to, and to redirect debugger input from.

Sample Output Display:

40 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

none.

2.3.10 CSR Command

The CSR (“chip set read”) command allows the developer to display the value held in a chipset
register. If no chipset is configured for the BIOS adaptation, then this command cannot function
properly.

Note that some chipset registers are write-only, and some chipsets (or their equivalents on high-
integration CPUs such as the SC300) may have registers that read-out different values than the
values written to them (bits flip, and some may stay high or low.)

This command is very useful in conjunction with CSW to test chipset configuration values before
building a new BIOS with best-guess values.

Command Syntax:

CSR RegisterIndex

Parameters:

RegisterIndex - A required expression that specifies the index of the register in the chipset
to be read.

Sample Output Display:

1234h

2.3.11 CSW Command

The CSW (“chip set write”) command allows the developer to set a chipset register to a specific
value. If no chipset is configured for the BIOS adaptation, then this command cannot function
properly.

Note that some chipset registers are write-only, and some chipsets (or their equivalents on high-
integration CPUs such as the SC300) may have registers that read-out different values than the
values written to them (bits flip, and some may stay high or low.)

This command is very useful in conjunction with CSR to test chipset configuration values before
building a new BIOS with best-guess values.

Command Syntax:

CSW RegisterIndex RegisterValue

Parameters:

RegisterIndex - A required expression that specifies the index of the register in the chipset
to be read.

Chapter 2 EMBEDDED BIOS User’s Manual 41

General Software EMBEDDED BIOS Adaptation Guide

RegisterValue - A required expression that specifies the value to be stored in the chipset
register. Note that some chipsets use 8-bit values, and others use 16-bit values.
See your chipset’s programming documentation for details.

Sample Output Display:

None.

2.3.12 D Command

The D command allows the developer to display memory at the specified address, or at the
address immediately following the last byte displayed with the last D, DB, DW, or DD command.

Command Syntax:

D Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in the default format. If not specified, then the
address is assumed to be the address immediately following the last byte displayed
by the last D, DB, DW, or DD command.

Sample Output Display:

0040:0000 f8 03 00 00 00 00 00 00:bc 03 78 03 00 00 00 00 o.......L.x.....
0040:0010 7d 82 00 80 02 00 00 00:00 00 2c 00 2c 00 13 1f }e.C......,.,...
0040:0020 13 1f 3f 35 0d 1c 03 2e:64 20 0d 1c 6f 18 75 16 ..>5....d...o.u.
0040:0030 74 14 0d 1c 62 30 6c 26:0d 1c 3f 35 0d 1c 01 00 t...b0l&..?5....
0040:0040 24 00 04 00 00 00 01 06:02 07 50 00 00 40 00 00 #.........P..@..
0040:0050 0b 18 00 00 00 00 00 00:00 00 00 00 00 00 00 00 <...............
0040:0060 07 00 00 b4 03 29 30 03:00 00 c8 00 b1 93 01 00 )0......o..
0040:0070 00 00 00 00 00 01 81 00:14 14 14 14 01 01 01 01 u.........

2.3.13 DA20 Command

The DA20 command allows the developer disable the A20 gate using the method configured in
the BIOS adaptation.

Command Syntax:

DA20

Parameters:

none.

Sample Output Display:

A20 gate disabled.

42 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

2.3.14 DB Command

The DB command allows the developer to set the default memory display format to bytes, and
then to display memory at the specified address, or at the address immediately following the last
byte displayed with the last D, DB, DW, or DD command.

Command Syntax:

DB Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in bytes. If not specified, then the address is
assumed to be the address immediately following the last byte displayed by the last
D, DB, DW, or DD command.

Sample Output Display:

0040:0000 f8 03 00 00 00 00 00 00:bc 03 78 03 00 00 00 00 o.......L.x.....
0040:0010 7d 82 00 80 02 00 00 00:00 00 2c 00 2c 00 13 1f }e.C......,.,...
0040:0020 13 1f 3f 35 0d 1c 03 2e:64 20 0d 1c 6f 18 75 16 ..>5....d...o.u.
0040:0030 74 14 0d 1c 62 30 6c 26:0d 1c 3f 35 0d 1c 01 00 t...b0l&..?5....
0040:0040 24 00 04 00 00 00 01 06:02 07 50 00 00 40 00 00 #.........P..@..
0040:0050 0b 18 00 00 00 00 00 00:00 00 00 00 00 00 00 00 <...............
0040:0060 07 00 00 b4 03 29 30 03:00 00 c8 00 b1 93 01 00 )0......o..
0040:0070 00 00 00 00 00 01 81 00:14 14 14 14 01 01 01 01 u.........

2.3.15 DCACHE Command

The DCACHE command allows the developer disable CPU (L1) and chipset (L2) cache in the
system using the methods configured in the BIOS adaptation. This can be used to determine if
the cache is working properly.

Command Syntax:

DCACHE

Parameters:

none.

Sample Output Display:

Cache disabled.

2.3.16 DD Command

The DD command allows the developer to set the default memory display format to doublewords,
and then to display memory at the specified address, or at the address immediately following the

Chapter 2 EMBEDDED BIOS User’s Manual 43

General Software EMBEDDED BIOS Adaptation Guide

last byte displayed with the last D, DB, DW, or DD command. Data displayed in this format is in
big-endian format (the numbers are real hexadecimal numbers that have been formatted by the
debugger by swapping the low and high bytes of each word, and the low and high words of each
doubleword.)

Command Syntax:

DD Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in doublewords. If not specified, then the
address is assumed to be the address immediately following the last byte displayed
by the last D, DB, DW, or DD command.

Sample Output Display:

0090:0000 6483:b3ea 4300:0004 7279:706f 7468:6769
0090:0010 2943:2820 3839:3120 6547:2039 6172:656e
0090:0020 6f53:206c 6177:7466 2000:6572 2020:2020
0090:0030 2020:2020 2020:2020 2020:2020 2020:2020
0090:0040 454c:4946 4346:0053 4200:5342 4546:4655
0090:0050 4300:5352 544e:554f 4400:5952 434b:5349
0090:0060 4548:4341 4552:4200 5600:4b41 4649:5245
0090:0070 5346:0059 4544:0044 4543:4956 4d4f:4300

2.3.17 DW Command

The DW command allows the developer to set the default memory display format to words, and
then to display memory at the specified address, or at the address immediately following the last
byte displayed with the last D, DB, DW, or DD command. Data displayed in this format is in big-
endian format (the numbers are real hexadecimal numbers that have been formatted by the
debugger by swapping the low and high bytes of each word.)

Command Syntax:

DW Address

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of memory to be displayed in words. If not specified, then the address is
assumed to be the address immediately following the last byte displayed by the last
D, DB, DW, or DD command.

Sample Output Display:

0090:0000 b3ea 6483 0004 4300 706f 7279 6769 7468
0090:0010 2820 2943 3120 3839 2039 6547 656e 6172
0090:0020 206c 6f53 7466 6177 6572 2000 2020 2020
0090:0030 2020 2020 2020 2020 2020 2020 2020 2020
0090:0040 4946 454c 0053 4346 5342 4200 4655 4546
0090:0050 5352 4300 554f 544e 5952 4400 5349 434b
0090:0060 4341 4548 4200 4552 4b41 5600 5245 4649
0090:0070 0059 5346 0044 4544 4956 4543 4300 4d4f

44 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

2.3.18 E Command

The E command allows the developer to change a series of consecutive 8-bit storage locations in
memory.

Command Syntax:

E Address Value1 [Value2 [Value3...]]

Parameters:

Address - A required parameter that specifies the 16:16 real-mode or or 0:32 physical
address where the first byte in the sequence is to be stored. Subsequent bytes (if
specified) are stored in consecutively higher bytes in memory.

Value1, Value2, etc. - A required set of one or more expressions that specify the
hexadecimal 8-bit values to be stored at the specified address in memory.

Sample Output Display:

none.

2.3.19 EA20 Command

The EA20 command allows the developer enable the A20 gate using the method configured in the
BIOS adaptation.

Command Syntax:

EA20

Parameters:

none.

Sample Output Display:

A20 gate enabled.

2.3.20 ECACHE Command

The ECACHE command allows the developer enable CPU (L1) and chipset (L2) cache in the
system using the methods configured in the BIOS adaptation. This can be used to determine if
the cache is working properly.

Command Syntax:

Chapter 2 EMBEDDED BIOS User’s Manual 45

General Software EMBEDDED BIOS Adaptation Guide

ECACHE

Parameters:

none.

Sample Output Display:

Cache enabled.

2.3.21 EFL Command

The EFL command allows the developer to erase a block of sectored Flash supported by the Flash
device driver enabled in the core BIOS, if available.

This command uses the debugger's parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

Command Syntax:

EFL HighPhysAddr:LowPhysAddr

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first byte of
a Flash block to be erased.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first byte
of a Flash block to be erased.

Sample Output Display:

Flash block erased.

2.3.22 G Command

The G command allows the developer to resume execution from within the debugger.

Command Syntax:

G [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode address of a
breakpoint to be set before execution begins at the current CS:IP address. If not
specified, no breakpoint will be set.

46 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

none.

2.3.23 HELP Command

The HELP command allows the developer to display a summary of commands that are supported
by the debugger.

Command Syntax:

HELP

Parameters:

none.

Sample Output Display:

Short summary of available commands.

2.3.24 I Command

The I command allows the developer to issue a read to a byte-wide I/O port in the system. The
value read from the port is displayed on the console.

Command Syntax:

I IoAddress

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to read the 8-bit
quantity from.

Sample Output Display:

12

2.3.25 ID Command

The ID command allows the developer to issue a read to a dword-wide I/O port in the system.
The value read from the port is displayed on the console.

Command Syntax:

ID IoAddress

Chapter 2 EMBEDDED BIOS User’s Manual 47

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to read the 32-
bit quantity from.

Sample Output Display:

12345678

2.3.26 IW Command

The IW command allows the developer to issue a read to a word-wide I/O port in the system.
The value read from the port is displayed on the console.

Command Syntax:

IW IoAddress

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to read the 16-
bit quantity from.

Sample Output Display:

1234

2.3.27 LFL Command

The LFL command allows the developer to lock a block of sectored Flash supported by the Flash
device driver enabled in the core BIOS, if available.

This command uses the debugger's parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

Command Syntax:

LFL HighPhysAddr:LowPhysAddr

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first byte of
a Flash block to be locked.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first byte
of a Flash block to be locked.

48 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

Flash block locked.

2.3.28 MASK Command

The MASK command allows the developer to specify a bit mask, called the “enabled” bit mask,
that is used by Embedded DOS-ROM internal debugging macros (XPRINTF) at run-time, on
certain platforms.

XPRINTF statements in the Embedded DOS-ROM kernel specify a bit mask that is ORed with
the “enabled” bitmask. If any bits match, then the XPRINTF statement is executed.

This feature allows a developer to add or modify code to the Embedded DOS-ROM kernel and
place actual debugging code in the kernel, tied to developer-assigned bits in this bit mask. Then,
these bits can be selectively enabled or disabled using the Embedded BIOS debugger with this
command.

Command Syntax:

MASK BitMask

Parameters:

BitMask - A required expression that specifies a 16-bit value containing a bit pattern to be
used by the XPRINTF macros in debug-aware Embedded DOS-ROM kernel
builds.

Sample Output Display:

None.

2.3.29 MODE Command

The MODE command allows the developer to change the mode of the current video output
device. This works by issuing an INT 10h, function 00h, specifying the operand’s value as the
video mode.

Most commonly, this feature is used to reset the video mode after some graphics program has
run, so that debugger output is visible on the screen. For example, if a graphics program, such as
Windows, has painted the screen in some graphics mode, and CTRL-SHIFT has been used to
break into the debugger, then the debugger’s output won’t be visible as text, but as a dot spray on
the screen. Typing “MODE 7” would cause the debugger to reset the video card (and monitor)
to mode 7, which is the standard monochrome mode.

Command Syntax:

MODE VideoMode

Chapter 2 EMBEDDED BIOS User’s Manual 49

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

VideoMode - A required expression that specifies a new video mode to set on the current
video display.

Sample Output Display:

None.

2.3.30 O Command

The O command allows the developer to issue a write to a byte-wide I/O port in the system. The
value written to the port is specified as the second parameter.

Command Syntax:

O IoAddress Value [... Value]

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to write the 8-
bit quantity to.

Value - A required expression that specifies the hexadecimal 8-bit value to write to the I/O
port. If more than one Value is specified, then each value is written to the I/O port
in the specified order, with interrupts disabled and no intervening I/O cycles.

Sample Output Display:

none.

2.3.31 OD Command

The OD command allows the developer to issue a write to a dword-wide I/O port in the system.
The value written to the port is specified as the second parameter.

Command Syntax:

OD IoAddress Value [... Value]

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to write the 32-
bit quantity to.

Value - A required expression parameter that specifies the hexadecimal 32-bit value to
write to the I/O port. If more than one Value is specified, then each value is
written to the I/O port in the specified order, with interrupts disabled and no
intervening I/O cycles.

50 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

none.

2.3.32 OW Command

The OW command allows the developer to issue a write to a word-wide I/O port in the system.
The value written to the port is specified as the second parameter.

Command Syntax:

OW IoAddress Value [... Value]

Parameters:

IoAddress - A required expression that specifies the hexadecimal I/O port to write the 16-
bit quantity to.

Value - A required expression that specifies the hexadecimal 16-bit value to write to the
I/O port. If more than one Value is specified, then each value is written to the I/O
port in the specified order, with interrupts disabled and no intervening I/O cycles.

Sample Output Display:

none.

2.3.33 PCIR Command

The PCIR command allows the developer to read a 32-bit doubleword from the PCI configuration
space associated with a device and function specified by the user.

Command Syntax:

PCIR Index Device Function

Parameters:

Index - A required expression that specifies the index into the configuration space where
the 32-bit doubleword will be read from.

Device - A required expression parameter that specifies the number of the device from
which the data will be read.

Function - A required expression that specifies the device's function number associated
with the information to be read.

Sample Output Display:

Chapter 2 EMBEDDED BIOS User’s Manual 51

General Software EMBEDDED BIOS Adaptation Guide

12345678

2.3.34 PCIW Command

The PCIW command allows the developer to write a 32-bit doubleword to the PCI configuration
space associated with a device and function specified by the user.

Command Syntax:

PCIR Index Data Device Function

Parameters:

Index - A required expression that specifies the index into the configuration space where
the 32-bit doubleword will be written to.

Data - A required expression that specifies the 32-bit hexadecimal data to be written.

Device - A required expression parameter that specifies the number of the device to which
the data will be written.

Function - A required expression that specifies the device's function number associated
with the information to be written.

Sample Output Display:

none.

2.3.35 R Command

The R command allows the developer to display the contents of the general register set using the
display format last commanded with R32 or R16. If this is the first register display command,
then the initial register display format is selected based on whether 386 registers are available on
the target or not.

Command Syntax:

R

Parameters:

none.

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 1998 General Software
AX=0093 BX=007a CX=0001 DX=3d26 SI=001e DI=0000 BP=03b6
CS=f000 DS=0040 ES=157b SS=157b SP=037e IP=ebc3 NV UP EI NG NA PO ZR NC

52 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

f000:ebc3 cli

2.3.36 R16 Command

The R16 command allows the developer to display the contents of the general register set using
the 16-bit display format.

Command Syntax:

R16

Parameters:

none.

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 1998 General Software
AX=0093 BX=007a CX=0001 DX=3d26 SI=001e DI=0000 BP=03b6
CS=f000 DS=0040 ES=157b SS=157b SP=037e IP=ebc3 NV UP EI NG NA PO ZR NC
f000:ebc3 cli

2.3.37 R32 Command

The R32 command allows the developer to display the contents of the general register set using
the 32-bit display format.

Command Syntax:

R32

Parameters:

none.

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 1998 General Software
EAX = 12345678 CS:EIP = F000:00000149 EFL = 001c213A
EBX = 00000001 SS:ESP = 02C0:00007FFE EBP = 0000199C
ECX = 179D248E DS:ESI = 74AB:00000511 FS = 0000
EDX = 5555AAAA ES:EDI = F000:0000E000 GS = 0000
F000:00000149 cli

2.3.38 RC Command

The RC command allows the developer to read the contents of battery-backed CMOS memory.
Either one byte of CMOS may be displayed, or the entire CMOS contents may be displayed.

Command Syntax:

RC [CmosIndex]

Chapter 2 EMBEDDED BIOS User’s Manual 53

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

CmosIndex - An optional expression that specifies the CMOS address (actually, an index
into the part) of the CMOS memory to be displayed. If no index is supplied, then
the entire contents of CMOS are displayed.

Sample Output Display:

Addr CMOS memory contents...
0000: 00 00 00 00 00 00 01 01 : 01 80 00 00 00 80 00 00
0010: 40 00 00 00 31 80 02 00 : 04 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 : 00 00 00 00 00 00 00 f7
0030: 00 00 19 03

2.3.39 RD Command

The RD command allows the developer to issue an INT 13h read command so that hard drives,
floppy disks, and their emulators, may be tested in the debugger environment. Operands of the
RD command specify arguments that are normally passed in registers to INT 13h.

Command Syntax:

RD DriveNo SectorNo HeadNo TrackNo Address

Parameters:

DriveNo - An 8-bit expression that specifies the INT 13h unit number associated with the
device to be read. For example, 0 is the first floppy, 1 is the second floppy, 80 is
the first hard drive, and 81 (hexadecimal) is the second hard drive.

SectorNo - An 8-bit expression that specifies the sector number to be read. Sector
numbers start with 1 and continue to the last sector number per track. For
example, a 1.44MB diskette has sector numbers ranging from 1 to 18 (12
hexadecimal.)

HeadNo - An 8-bit expression that specifies the head number to be read. Head numbers
start with 0 and continue to the last head number. For example, a 1.44MB diskette
has head numbers ranging from 0 to 1.

TrackNo - A 16-bit expression that specifies the track number to be read. Track numbers
start with 0 and continue to the last track per cylinder. For example, a 1.44MB
diskette has track numbers ranging from 0 to 79 (4f hexadecimal.)

Address - A 16:16 real-mode address (physical addresses are not permitted) that specifies
the memory location where the 512 byte sector will be transferred.

Sample Output Display:

Drive 00h, Sector 01h, Head 01h, Track 0042h read, status=00h.

2.3.40 REBOOT Command

54 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The REBOOT command allows the developer to reboot the system without removing power to
the machine. This command causes the core BIOS to execute the OEM-defined reboot sequence,
which may involve only the CPU, port 92h, the Chipset Personality Module, or the CPU
Personality Module.

Note that the CPU restart vector on 286 and above processors is not F000:FFF0. These CPUs
actually execute out of the very top of their physical address space, which in some cases is
occupied by a boot loader such as the one provided by CyberQuest. Even though the CPU is
executing out of memory above the 1MB address mark, it is still executing in real mode, not
protected mode (really, real mode). Once the CS register is reloaded with any value, the CPU
disables the upper address lines, and typically, continues to execute at the 8086-compatible reboot
address, F000:FFF0.

On 286 and above CPUs, EMBEDDED BIOS enables the A20 line before rebooting the system.
This allows special boot loaders to execute.

Command Syntax:

REBOOT

Parameters:

none.

Sample Output Display:

none.

2.3.41 RFL Command

The RFL command allows the developer to read data from a block of sectored Flash supported by
the Flash device driver enabled in the core BIOS, if available. The data are displayed in words,
because some Flash arrays only support word accesses.

This command uses the debugger's parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

If the operand is not specified, then reading will continue where the last RFL command left off.

Command Syntax:

RFL [HighPhysAddr:LowPhysAddr]

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be read.

Chapter 2 EMBEDDED BIOS User’s Manual 55

General Software EMBEDDED BIOS Adaptation Guide

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be read.

Sample Output Display:

03a0:0000 b3ea 6483 0004 4300 706f 7279 6769 7468
03a0:0010 2820 2943 3120 3839 2039 6547 656e 6172
03a0:0020 206c 6f53 7466 6177 6572 2000 2020 2020
03a0:0030 2020 2020 2020 2020 2020 2020 2020 2020
03a0:0040 4946 454c 0053 4346 5342 4200 4655 4546
03a0:0050 5352 4300 554f 544e 5952 4400 5349 434b
03a0:0060 4341 4548 4200 4552 4b41 5600 5245 4649
03a0:0070 0059 5346 0044 4544 4956 4543 4300 4d4f

2.3.42 SFL Command

The SFL command allows the developer to write a 16-bit pattern to a specified number of words
in a Flash array. This is used in situations where a Flash block must be written with all zeroes
before erasing it.

Command Syntax:

SFL HighPhysAddr:LowPhysAddr Count Word

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be written.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be written.

Count - A required expression that specifies the number of words to write in hexadecimal.

Word - A required expression that specifies the 16-bit value to be stored in each word.

Sample Output Display:

Data written to Flash.

2.3.43 SO Command

The SO command allows the developer to redirect special debugging output from the XPRINTF
macro in Embedded DOS-ROM to its own output device, such as CON, or COM1-COM4. For
more information about XPRINTF debugging output see the section on the MASK command in this
chapter.

Command Syntax:

SO Device

56 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Parameters:

Device - A required parameter that specifies the new console to redirect Embedded DOS-
ROM’s XPRINTF output to. Supported device names are: CON, COM1, COM2,
COM3, and COM4.

Sample Output Display:

none.

2.3.44 T Command

The T command allows the developer to trace through the current instruction and stop execution
before the next one is executed. CALL and INT instructions are single-stepped by pushing into
the called code; this command does not "step over" the instruction.

Command Syntax:

T

Parameters:

none.

Sample Output Display:

EMBEDDED BIOS Debugger [IN BIOS] Copyright (C) 1998 General Software
AX=0093 BX=007a CX=0001 DX=3d26 SI=001e DI=0000 BP=03b6
CS=f000 DS=0040 ES=157b SS=157b SP=037e IP=ebc3 NV UP EI NG NA PO ZR NC
f000:ebc3 cli

2.3.45 TIME Command

The TIME command allows the developer to obtain a concrete CPU performance number
associated with the target running the BIOS. The TIME command uses its operand value as a
number of times to execute a lengthy loop of instructions that perform no useful work other than
cause a delay before the prompt comes back.

As the operand’s value increases, so does the time it takes for the TIME command to complete
and return to the prompt. The relationship between the operand value and the time to complete
the command is linear, making it possible to determine how much of a performance improvement
certain changes in chipset programming, etc. is incurred.

Here is a simple way of measuring performance improvements:

1. Start with a simple system before the modifications. Suppose, for the sake of argument, that
you are interested in how the CPU’s incoming clock divisor (manipulated through some chipset
register) affects CPU performance. Boot to the debugger, and type “TIME 10”. We’ve chosen
10 here because it is a good starting point. Measure how long this takes.

2. Probably, 10 turned out to be too short or too long. However, you’ll definitely know that,
because your measurement will be hard to make in the short case, or difficult to wait for, in the

Chapter 2 EMBEDDED BIOS User’s Manual 57

General Software EMBEDDED BIOS Adaptation Guide

long case. Come up with a better number (n) and run TIME on it. Use your stopwatch to
measure how much time it takes. For real accuracy, we recommend some interval on the order of
30 seconds or so, to account for delays in starting and stopping the watch. Record the number of
seconds it took to perform the TIME command. Call that x, here.

3. Now manipulate your chipset registers with the CSR and CSW commands.

4. Run the same TIME command with n as its parameter. Record the number of seconds it took
to perform this TIME command. Call that y, here.

5. Now compute the performance improvement as (y/x).

Command Syntax:

TIME DelayFactor

Parameters:

DelayFactor - A 16-bit expression specifying the amount of “work” to perform. There
are many factors which, combined with this factor, cause the TIME command to
delay a certain amount of time. DelayFactor is a linear parameter, which means
that time taken to perform the command increases linearly with an increase in
DelayFactor itself.

Sample Output Display:

none.

2.3.46 TORAM Command

The TORAM command copies the BIOS into low memory at CONFIG_FLASH_CODESEG
and transfers control to the BIOS there. This allows the BIOS to run from RAM during tests
involving reconfiguring chipset parameters that relate to the BIOS ROM.

Command Syntax:

TORAM

Parameters:

none.

Sample Output Display:

none.

2.3.47 U Command

58 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

The U command allows the developer to display the contents of memory as a series of
consecutive machine instructions. The instructions are formatted as 16-bit or 32-bit, depending
on the last unassembly command, whether U, U16, or U32.

By default, the U command unassembles at the current CS:IP address after a debugger break-in.
Subsequent U commands display the next few instructions, and so on. Specifying a new address
with the U command causes subsequent U commands to display the instructions following the last
U command.

Command Syntax:

U [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of the first instruction to be decoded and displayed. If not specified, the
display will start with the first instruction that follows the one last displayed in a U
command.

Sample Output Display:

033f:620b mov di, [0068]
033f:620f mov [di+06], ss
033f:6212 mov [di+04], sp
033f:6215 mov [di+02], fffd
033f:6219 call 61b7h
033f:621c bkpt
033f:621d retn
033f:621e push ds

2.3.48 U16 Command

The U16 command allows the developer to display the contents of memory as a series of
consecutive machine instructions. The instructions are displayed in 16-bit format (16 bit
instruction offsets, etc.)

By default, the U command unassembles at the current CS:IP address after a debugger break-in.
Subsequent U commands display the next few instructions, and so on. Specifying a new address
with the U command causes subsequent U commands to display the instructions following the last
U command.

Command Syntax:

U16 [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of the first instruction to be decoded and displayed. If not specified, the
display will start with the first instruction that follows the one last displayed in a U
command.

Chapter 2 EMBEDDED BIOS User’s Manual 59

General Software EMBEDDED BIOS Adaptation Guide

Sample Output Display:

033f:620b mov di, [0068]
033f:620f mov [di+06], ss
033f:6212 mov [di+04], sp
033f:6215 mov [di+02], fffd
033f:6219 call 61b7h
033f:621c bkpt
033f:621d retn
033f:621e push ds

2.3.49 U32 Command

The U32 command allows the developer to display the contents of memory as a series of
consecutive machine instructions. The instructions are displayed in 32-bit format (32 bit
instruction offsets, etc.)

By default, the U32 command unassembles at the current CS:IP address after a debugger break-
in. Subsequent U commands display the next few instructions, and so on. Specifying a new
address with the U-type command causes subsequent U commands to display the instructions
following the last U command.

Command Syntax:

U32 [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode or 0:32 physical
address of the first instruction to be decoded and displayed. If not specified, the
display will start with the first instruction that follows the one last displayed in a U
command.

Sample Output Display:

033f:0000620b mov di, [00000068]
033f:0000620f mov [di+0006], ss
033f:00006212 mov [di+0004], sp
033f:00006215 mov [di+0002], fffffffd
033f:00006219 call 61b7h
033f:0000621c bkpt
033f:0000621d retn
033f:0000621e push ds

2.3.50 UFL Command

The UFL command allows the developer to update an area of Flash from another area of memory
(such as the BIOS area at F000:0000).

This command copies the contents of memory specified by the 16:16 real mode address to the
physical address.

The Flash must be erased before the update will work, because this command does not
automatically erase the Flash before writing to it.

Command Syntax:

60 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

UFL HighPhysAddr:LowPhysAddr Count SourceAddress

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be written.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be written.

Count - A required expression that specifies the number of words to copy in hexadecimal.

SourceAddress - Specifies the 16:16 real-mode address of an area of memory to be copied
to the Flash.

Sample Output Display:

Flash Updated.

2.3.51 V Command

The V command allows the developer to display the contents of an interrupt vector by its number
and save the address for a U command so that the code pointed to by that interrupt vector can be
disassembled.

The V command is implemented solely to save the OEM time during debugging. The same
results can be achieved with the DD command to display the interrupt vector table.

Command Syntax:

V VectorNumber

Parameters:

VectorNumber - A 16-bit expression that specifies a vector number from 00h to ffh,
inclusive.

Sample Output Display:

Interrupt Vector 03h Contents:
033f: 620b mov di, [00000068]

2.3.52 WATCH Command

The WATCH command allows the developer to enable watchpoints inside the core BIOS flagged
with INTENTRY and INTEXIT macro instructions in the source code.

All of the major interrupt service handlers in the BIOS (such as those for INT 10h, INT 11h, and
so on) call these macros, one for entry and one for exit. Using the WATCH command, the

Chapter 2 EMBEDDED BIOS User’s Manual 61

General Software EMBEDDED BIOS Adaptation Guide

developer can cause these macros to invoke the debugger’s register dump facility to see the
general registers on entry and exit to those interrupt handlers. This allows debugging of new
BIOS code or analysis of requests made by higher-layer software such as DOS or Windows.

The WATCH command accepts one or more interrupt numbers as operands. If no operands are
specified, then the current list of interrupts being watched is displayed. If operands are specified,
then their watch status is toggled. So for example, to enable the watchpoint for the INT 10h
service, “WATCH 10” would be specified. To disable the same watchpoint, the same command
would be issued again.

Command Syntax:

WATCH [IntNo [...IntNo]]

Parameters:

IntNo - A 16-bit expression that specifies a BIOS service interrupt number to watch.
Several of these may be specified as arguments.

Sample Output Display:

Watchpoint list: 10 11 15 19

2.3.53 WC Command

The WC command allows the developer to write a byte to battery-backed CMOS memory at the
specified index.

Command Syntax:

WC CmosIndex Value

Parameters:

CmosIndex - A required expression that specifies the CMOS address (actually, an index
into the part) of the CMOS memory to write to.

Value - A required expression that specifies the value to be stored in the specified CMOS
location.

Sample Output Display:

none.

2.3.54 WCOMx Command

The WCOMx command allows the developer test a serial port by writing a hexadecimal value to a
specified COM port a specified number of times. With large repeat values, the same character can

62 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

be written out effectively continuously, so that serial ports can be tested with a logic analyzer,
remote terminal software, or logic probe.

A period is printed on the primary debugging console to show the progress of writing to the
UART, although the actual output goes out the specified device, which is typically not the debug
output device.

Command Syntax:

WCOMx ByteToWrite RepeatCount

Parameters:

x - 1 for COM1, or 2 for COM2.

ByteToWrite - A required 16-bit expression that specifies the value to be written to the
output data port of the UART.

RepeatCount - A required 16-bit expression that specifies the number of times to write the
value to the UART in succession.

Sample Output Display:

Writing to COM1..........

2.3.55 WD Command

The WD command allows the developer to issue an INT 13h write command so that hard drives,
floppy disks, and their emulators, may be tested in the debugger environment. Operands of the
WD command specify arguments that are normally passed in registers to INT 13h.

Command Syntax:

WD DriveNo SectorNo HeadNo TrackNo Address

Parameters:

DriveNo - An 8-bit expression that specifies the INT 13h unit number associated with the
device to be written. For example, 0 is the first floppy, 1 is the second floppy, 80
is the first hard drive, and 81 (hexadecimal) is the second hard drive.

SectorNo - An 8-bit expression that specifies the sector number to be written. Sector
numbers start with 1 and continue to the last sector number per track. For
example, a 1.44MB diskette has sector numbers ranging from 1 to 18 (12
hexadecimal.)

HeadNo - An 8-bit expression that specifies the head number to be written. Head
numbers start with 0 and continue to the last head number. For example, a
1.44MB diskette has head numbers ranging from 0 to 1.

Chapter 2 EMBEDDED BIOS User’s Manual 63

General Software EMBEDDED BIOS Adaptation Guide

TrackNo - A 16-bit expression that specifies the track number to be written. Track
numbers start with 0 and continue to the last track per cylinder. For example, a
1.44MB diskette has track numbers ranging from 0 to 79 (4f hexadecimal.)

Address - A 16:16 real-mode address (physical addresses are not permitted) that specifies
the memory location where the 512 byte sector will be copied from.

Sample Output Display:

Drive 00h, Sector 01h, Head 01h, Track 0042h written, status=00h.

2.3.56 WFL Command

The WFL command allows the developer to write words of data to a block of sectored Flash
supported by the Flash device driver enabled in the core BIOS, if available. The data are written
in words, because some Flash arrays only support word accesses.

This command uses the debugger's parsing routines that allow entry of 16:16 (real-mode)
addresses, although the address that is actually being entered is a 32-bit physical address. The
address is specified in two 16-bit parts, separated by a colon. This address format is purely for
convenience and has nothing to do with 16:16 segment:offset addressing.

Multiple data words may be specified on the command line, indicating that these words should be
written to consecutive word addresses.

Command Syntax:

WFL HighPhysAddr:LowPhysAddr Word1 [Word2] [Word3]...

Parameters:

HighPhysAddr - The top 16 bits of a 32-bit physical address that points to the first word
of a Flash block to be written.

LowPhysAddr - The bottom 16 bits of a 32-bit physical address that points to the first
word of a Flash block to be written.

Sample Output Display:

Data written to Flash.

2.3.57 WP Command

The WP command allows the developer to set a data watchpoint on a 16-bit storage area at the
specified address. While the watchpoint is set, the processor enters trace mode, allowing the
debugger to check the status of the storage area after the execution of each instruction to see if it
has changed.

While it slows execution considerably (10x or more), a watchpoint can be very useful for finding
instructions that are trashing memory.

64 EMBEDDED BIOS User’s Manual Chapter 9

General Software EMBEDDED BIOS Adaptation Guide

Command Syntax:

WP [Address]

Parameters:

Address - An optional parameter that specifies the 16:16 real-mode address of a 16-bit
storage location in memory to be monitored. If not specified, the active
watchpoint (if any) is cleared.

Sample Output Display:

Watchpoint saved.

Chapter 3 EMBEDDED BIOS User’s Manual 65

General Software EMBEDDED BIOS Adaptation Guide

Chapter 3

BIOS FUNCTION REFERENCE

This chapter defines the application programming interface (API) to the BIOS services supported
by Embedded BIOS.

It is not intended to document interrupts that strictly do not provide services; consult Chapter 3
for an architectural overview of EMBEDDED BIOS including BIOS up-calls and tables pointed
to by interrupt vectors.

3.1 INT 10h, Video BIOS Services

This section explains the video BIOS application program interface (API). The video BIOS is
called through software interrupt 10H. Many services are provided to modify or inspect the
contents of the video display.

3.1.1 Set Video Mode (00h)

The Set Video Mode video BIOS function is called to set the video mode registers on the video
controller for the specified mode of operation. It then clears the screen, positions the cursor at
the upper left hand corner of the screen (0,0) and resets the color palette to known values.

Input Parameters:

AH - 00h, indicating the Set Video Mode Function.
AL - Video mode byte.

00h - Text mode, 16 colors, 40x25, 320x200.
01h - Text mode, 16 colors, 40x25, 320x200.
02h - Text mode, 16 colors, 80x25, 640x200.
03h - Text mode, 16 colors, 80x25, 640x200.
04h - Graphics, 4 colors, 40x25, 320x200.
05h - Graphics, 4 colors, 40x25, 320x200.
06h - Graphics, 2 colors, 80x25, 640x200.

66 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

07h - Text mode, monochrome, 80x25.
0dh - Graphics, 16 colors, 40x25, 320x200.
0eh - Graphics, 16 colors, 80x25, 640x200.
0fh - Graphics, monochrome, 80x25.
10h - Graphics, 4/16 colors, 80x25, 640x350.

Output Parameters:

AL - Video mode as actually set.

3.1.2 Set Cursor Size (01h)

The Set Cursor Size video BIOS function is called to set the size of the cursor in text modes. The
parameters are simply the top and bottom scan lines, in the form of bit masks.

Input Parameters:

AH - 01h, indicating the Set Cursor Size Function.
CH - Top scan line, a complex field as follows:

zz000000b - Must be zero.
00100000b - Shut cursor off.
000xxxxxb - Top scan line.

CL - Bottom scan line, a complex field as follows:

zzz00000b - Must be zero.
000xxxxxb - Bottom scan line.

Output Parameters:

none.

3.1.3 Set Cursor Position (02h)

The Set Cursor Position video BIOS function is called to set the (X,Y) coordinates of the
hardware cursor on the screen. The X coordinate is expressed as a column number, beginning
with 0 equal to the left-most column on the screen. The Y coordinate is a row number, beginning
with 0 equal to the top-most row on the screen.

Input Parameters:

AH - 02h, indicating the Set Cursor Position Function.
BH - Video page number (0 for first page).
DH - Row number (0=top-most row).
DL - Column number (0=left-most column).

Output Parameters:

Chapter 3 EMBEDDED BIOS User’s Manual 67

General Software EMBEDDED BIOS Adaptation Guide

AX - 0000h.

3.1.4 Read Cursor Position (03h)

The Read Cursor Position video BIOS function is called to return the (X,Y) coordinates of the
hardware cursor on the screen. The X coordinate is expressed as a column number, beginning
with 0 equal to the left-most column on the screen. The Y coordinate is a row number, beginning
with 0 equal to the top-most row on the screen.

Input Parameters:

AH - 03h, indicating the Read Cursor Position Function.
BH - Video page number (0 for first page).

Output Parameters:

AX - 0000h.
CH - Starting cursor scan line.
CL - Ending cursor scan line.
DH - Row number (0=top-most row).
DL - Column number (0=left-most column).

3.1.5 Read Light Pen Position (04h)

The Read Light Pen video BIOS function is called to return the position status of a lightpen.
EMBEDDED BIOS does nothing when this function is called.

Input Parameters:

AH - 04h, indicating the Read Light Pen Position Function.

Output Parameters:

AH - Activity flag:

00h - Light pen is not active.
01h - Coordinates returned.

BX - Pixel column (0-319).
CH - Raster line (0-199).
CL - Raster line (0-...).
DH - Row number (0=top-most row).
DL - Column number (0=left-most column).

3.1.6 Select Video Page (05h)

68 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

The Select Video Page video BIOS function is called to change the page of the video buffer that
is displayed by the 6845 and mapped into its screen regen area (B000H for monochrome, or
B800H for color).

Input Parameters:

AH - 05h, indicating the Select Video Page Function.
AL - Page number, where 00h is the first page.

Output Parameters:

none.

3.1.7 Scroll Up Window (06h)

The Scroll Up Window video BIOS function is called to move the contents of a rectangular area
on the screen up by a specified number of lines. If the window is specified to cover the entire
screen, then the entire screen is scrolled.

Input Parameters:

AH - 06h, indicating the Scroll Up Window Function.
AL - Distance to scroll, in lines (0=blank window).
BH - Attribute byte to use on new lines.
CH - Top row of window.
CL - Left column of window.
DH - Bottom row of window.
DL - Right column of window.

Output Parameters:

none.

3.1.8 Scroll Down Window (07h)

The Scroll Down Window video BIOS function is called to move the contents of a rectangular
area on the screen down by a specified number of lines. If the window is specified to cover the
entire screen, then the entire screen is scrolled.

Input Parameters:

AH - 07h, indicating the Scroll Down Window Function.
AL - Distance to scroll, in lines (0=blank window).
BH - Attribute byte to use on new lines.
CH - Top row of window.
CL - Left column of window.
DH - Bottom row of window.
DL - Right column of window.

Output Parameters:

Chapter 3 EMBEDDED BIOS User’s Manual 69

General Software EMBEDDED BIOS Adaptation Guide

none.

3.1.9 Read Char/Attr From Screen (08h)

The Read Char/Attr Pair video BIOS function is called to return the character and attribute
located at the current cursor position for the specified page.

Input Parameters:

AH - 08h, indicating the Read Char/Attr Pair Function.
BH - Video page number (0=first page).

Output Parameters:

AH - Attribute byte.
AL - Character.

3.1.10 Write Char/Attr to Screen (09h)

The Write Char/Attr Pair video BIOS function is called to store a character and attribute at the
current cursor position for the specified page, without advancing the cursor. The function also
allows a repeat count to store multiple characters in sequential columns on the screen.

Input Parameters:

AH - 09h, indicating the Write Char/Attr Pair Function.
AL - Character to store.
BH - Video page number (0=first page).
BL - Attribute byte.
CX - Repeat count.

Output Parameters:

none.

3.1.11 Write Character to Screen (0ah)

The Write Character video BIOS function is called to store a character at the current cursor
position for the specified page, without advancing the cursor, using the attribute already defined
for that cursor position. The function also allows a repeat count to store multiple characters in
sequential columns on the screen.

Input Parameters:

AH - 0ah, indicating the Write Character Function.
AL - Character to store.
BH - Video page number (0=first page).
CX - Repeat count.

70 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

none.

3.1.12 Set Color Palette (0bh)

The Set Color Palette video BIOS function is called to initialize the 6845's video palette register
for graphics modes.

Input Parameters:

AH - 0bh, indicating the Set Color Palette Function.
BH - 00h to set the background color for 320x200 graphics modes, or the border color for

320x200 text modes, or foreground color for 640x200 graphics mode. Otherwise,
01h to set the palette register for 320x200 graphics mode.

BL - Value to set.

Output Parameters:

none.

3.1.13 Write Pixel (0ch)

The Write Pixel video BIOS function is called to store a color value in a pixel addressed by a
specified row and column number in graphics mode.

Input Parameters:

AH - 0ch, indicating the Write Pixel Function.
AL - Color to set (set bit 10000000b for XOR mode).
BH - Video page number.
CX - Pixel column number.
DX - Pixel row number.

Output Parameters:

none.

3.1.14 Read Pixel (0dh)

The Read Pixel video BIOS function is called to return a color value in a pixel addressed by a
specified row and column number in graphics mode.

Input Parameters:

AH - 0dh, indicating the Read Pixel Function.
BH - Video page number.
CX - Pixel column number.

Chapter 3 EMBEDDED BIOS User’s Manual 71

General Software EMBEDDED BIOS Adaptation Guide

DX - Pixel row number.

Output Parameters:

AL - Color of pixel.

3.1.15 Write Teletype Mode (0eh)

The Write Teletype video BIOS function is called to write a character to the display at the current
cursor location, advancing the cursor to the next column. If the column would extend off the
right edge of the screen, the column is reset to 0, and the row is incremented. If the row would
move off the end of the screen, then the entire screen is scrolled.

The carriage-return, line-feed, and bell characters perform the same functions that they do on a
real teletype.

Input Parameters:

AH - 0eh, indicating the Write Teletype Mode Function.
AL - Character to write.
BL - Foreground color, but only for graphics modes.
BH - Video page number.

Output Parameters:

none.

3.1.16 Return Video Status (0fh)

The Return Video Status video BIOS function is called to return the number of columns on the
screen, the current video mode, and the active page number.

Input Parameters:

AH - 0fh, indicating the Return Video Status Function.

Output Parameters:

AH - Columns on the screen.
AL - Current display mode.
BH - Video page number.

3.2 INT 11h, Equipment List Service

The Equipment Status Interrupt is invoked to return the device flags as defined in the BIOS Data
Area's DevFlags field.

Invocation:

72 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

INT 11H

Input Parameters:

none.

Output Parameters:

AX - Device flags.

3.3 INT 12h, Low Memory Size Service

The Low Memory Size Interrupt is invoked to return the size of low memory in kilobytes. This
function automatically decrements the returned size by the 1KB Extended BIOS Data Area,
located in the top 1KB of low memory.

To determine the amount of available extended memory, use INT 15h function 88h.

Invocation:

INT 12H

Input Parameters:

none.

Output Parameters:

AX - Kilobytes of low memory.

3.4 INT 13h, Disk Services

This section explains the disk BIOS application program interface (API). The disk BIOS is called
through software interrupt 13H. Services are provided to reset the disk system, read the status of
the last operation, read diskette sectors, write diskette sectors, verify diskette sectors, format disk
tracks, read drive parameters, read drive types, detect media changes, set the media type, and set
the media type for formatting.

Not all functions are available for all disk types. Note restrictions on each function that apply.
For example, the ROM disk does not support write-oriented operations such as Write Sectors,
Format Track, and so on.

The following error codes are returned by INT 13h services:

Status Description

00h No error
01h Invalid function
02h Address mark not found

Chapter 3 EMBEDDED BIOS User’s Manual 73

General Software EMBEDDED BIOS Adaptation Guide

03h Media write-protected
04h Sector not found
05h Reset failed
06h Media changed
07h Hard drive parameter is invalid
08h DMA overflow occurred
09h DMA operation crossed 64KB boundary
0ah Hard drive bad sector
0bh Hard drive bad track
0ch Invalid floppy disk media type
0dh Invalid number of sectors
0eh Control data address mark found
0fh DMA arbitration out of range
10h Unrecoverable read error
11h Recoverable data area (ECC corrected)
20h Floppy disk controller failure
40h Seek to invalid track
80h Timeout
aah Hard drive not ready
bbh Unknown hard disk drive error
cch Hard drive write error
e0h Hard drive status register error
ffh Hard drive sense operation failed

Most disk operations are sector, track, and head-based. When specifying these parameters in INT
13h functions, the sector number is usually specified in the CL CPU register, and the low eight
bits of the cylinder number is specified in the CH CPU register. An additional two high bits of
cylinder number are stored in the top two bits of the CL CPU register, limiting the sector number
stored in the CL CPU register to six bits (values 0-63).

3.4.1 Reset (00h)

The Reset disk BIOS function is called to reset the disk subsystem (ROM, RAM, RFD, floppy,
and IDE). This function is used during POST and also whenever an error occurs as a result of a
disk operation.

Input Parameters:

AH - 00h, indicating the Reset Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Status code if failure (00h if success).

3.4.2 Read Status (01h)

The Read Status disk BIOS function is called to return the status of the last operation on the
specified drive. This status is invalidated when an intervening INT 13h function is invoked
(except for this function).

74 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 01h, indicating the Read Status Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - 00h.
AL - Disk status code of last operation (00h if success).

3.4.3 Read Sectors (02h)

The Read Sectors disk BIOS function is called to read a sector run from the specified drive into a
user-defined buffer. The read must not span a track or head boundary, and the buffer must not
cross a 64KB DMA boundary in the physical address space.

Input Parameters:

AH - 02h, indicating the Read Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually read.

3.4.4 Write Sectors (03h)

The Write Sectors disk BIOS function is called to write a sector run to the specified drive from a
user-defined buffer. The write must not span a track or head boundary, and the buffer must not
cross a 64KB DMA boundary in the physical address space.

This function returns an error when accessing the ROM disk.

Input Parameters:

AH - 03h, indicating the Write Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

Chapter 3 EMBEDDED BIOS User’s Manual 75

General Software EMBEDDED BIOS Adaptation Guide

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually written.

3.4.5 Verify Sectors (04h)

The Verify Sectors disk BIOS function is called to verify that the address marks on a specified
track can be read. It does not verify data integrity.

Input Parameters:

AH - 04h, indicating the Verify Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of buffer containing field data.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.6 Format Track (05h)

The Format Track disk BIOS function is called to format the specified track of a drive with
specific address marks.

This function returns an error when accessing the ROM disk.

Input Parameters:

AH - 05h, indicating the Format Sectors Function.
AL - Number of sectors/this track.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).

76 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

DL - Drive number.
ES:BX - Address of buffer containing field data.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.7 Read Drive Parameters (08h)

The Read Drive Parameters disk BIOS function is called to return the geometry and disk type
information for the specified drive. Additionally, the number of drives like the one specified is
returned; i.e., if a floppy drive number is supplied, then the number of floppy drives is returned in
the DL CPU register, and so on for hard drives. The ROM, RAM, and RFD drives count as
floppy drives.

Input Parameters:

AH - 08h, indicating the Read Drive Parameters Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
BH - 00h (floppy drives only).
BL - Drive type, as follows (floppy drives only):

01h - 5.25", 360KB, 40 tracks.
02h - 5.25", 1.2MB, 80 tracks.
03h - 3.5", 720KB, 80 tracks.
04h - 3.5", 1.44MB, 80 tracks.

CH - Bottom 8 bits of maximum track number.
CL - ttssssss, as follows:

tt = top two bits of 10-bit maximum track number,
ssssss = 6-bit maximum sector number.

DH - Maximum head number.
DL - Number of drives installed.
ES:DI - Pointer to the diskette parameter table entry for a floppy drive.

3.4.8 Initialize Hard Disk Controller (09h)

The Initialize Hard Disk Controller disk BIOS function is called to initialize the disk controller
with the values in the BIOS hard disk parameter tables pointed to by IVT entries 41h and 46h.
See Chapter 3 for a description of the data structures pointed to by these tables.

This function returns an error when accessing a floppy disk or its emulator.

Chapter 3 EMBEDDED BIOS User’s Manual 77

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 09h, indicating the Initialize Hard Disk Controller Function.
DL - Drive number (80h=C:, 81h=D:).

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.9 Read Long Sectors (0ah)

The Read Long Sectors disk BIOS function is called to read a sector run from the specified drive
into a user-defined buffer with a 4-byte error correction code (ECC) for each sector. The read
must not span a track or head boundary, and the buffer must not cross a 64KB DMA boundary in
the physical address space.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0ah, indicating the Read Long Sectors Function.
AL - Number of sectors.
CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually read.

3.4.10 Write Long Sectors (0bh)

The Write Long Sectors disk BIOS function is called to write a sector run from the specified drive
from a user-defined buffer with a 4-byte error correction code (ECC) for each sector. The write
must not span a track or head boundary, and the buffer must not cross a 64KB DMA boundary in
the physical address space.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0bh, indicating the Write Long Sectors Function.
AL - Number of sectors.

78 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

CH - Bottom 8 bits of track number (0-based).
CL - ttssssss, as follows:

tt = top two bits of 10-bit track number,
ssssss = 6-bit sector number (1-based).

DH - Head number (0-based).
DL - Drive number.
ES:BX - Address of user buffer.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).
AL - Number of sectors actually written.

3.4.11 Seek to Cylinder (0ch)

The Seek to Cylinder disk BIOS function is called to position a read/write head on a hard drive
over a specified track. No data is transferred during this request.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0ch, indicating the Seek to Cylinder Function.
CH - Bottom 8 bits of track number (0-based).
CL - tt000000, as follows:

tt = top two bits of 10-bit track number.
DH - Head number (0-based).
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.12 Reset Hard Disk Controller (0dh)

The Reset Hard Disk Controller disk BIOS function is called to initialize the IDE controller.
While function 00h resets both the floppy and hard disk controllers, this function only resets the
hard drive controller.

This function is only valid for hard disk drives.

Input Parameters:

AH - 0dh, indicating the Reset Hard Disk Controller Function.
DL - Drive number.

Output Parameters:

Chapter 3 EMBEDDED BIOS User’s Manual 79

General Software EMBEDDED BIOS Adaptation Guide

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.13 Test Drive Ready (10h)

The Test Drive Ready disk BIOS function is called to verify that the hard drive specified in the
DL CPU register is ready to perform additional functions.

This function is only valid for hard disk drives.

Input Parameters:

AH - 10h, indicating the Test Drive Ready Function.
DL - Drive number.

Output Parameters:

CY - Set if failure (not ready), else clear if success (ready).
AH - Disk status code (00h if success).

3.4.14 Recalibrate Drive (11h)

The Recalibrate Drive disk BIOS function is called to recalibrate a hard drive. Externally, this
involves restoring all of the read/write heads to the track 0 position. Internally, this also involves
rezeroing the feedback loop that determines the head position inside the drive. If read and write
requests start encountering frequent correctable errors, this function should be called to
recalibrate the heads.

This function is only valid for hard disk drives.

Input Parameters:

AH - 11h, indicating the Recalibrate Drive Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.15 Controller Diagnostic (14h)

The Controller Diagnostic disk BIOS function is called to initiate a diagnostic routine on the hard
disk controller. The outcome of this diagnostic is returned in the status code.

This function is only valid for hard disk drives.

Input Parameters:

80 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

AH - 14h, indicating the Controller Diagnostic Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.16 Read Drive Type (15h)

The Read Drive Type disk BIOS function is called to return the disk type information for a disk
unit.

Input Parameters:

AH - 15h, indicating the Read Drive Type Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Drive type, as follows:

00h - Drive number is invalid.
01h - Diskette drive with no change line.
02h - Diskette drive with a change line.
03h - Fixed disk.

CX:DX - for fixed disks, a 32-bit number of 512-byte sectors.

3.4.17 Detect Media Change (16h)

The Detect Media Change disk BIOS function is called to return the status of the disk change line
for a disk unit.

Input Parameters:

AH - 16h, indicating the Detect Media Change Function.
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Change information, as follows:

00h - Diskette change line signal not active.
01h - Invalid drive number.
06h - Change may have occurred.
80h - Drive not ready, or invalid drive.

Chapter 3 EMBEDDED BIOS User’s Manual 81

General Software EMBEDDED BIOS Adaptation Guide

3.4.18 Set Diskette Type (17h)

The Set Diskette Type disk BIOS function is called to set the data transfer rate for the specified
drive.

This function returns an error when accessing a fixed disk.

Input Parameters:

AH - 17h, indicating the Set Diskette Type Function.
AL - Diskette type, as follows:

00h - Reserved.
01h - 360KB diskette in 360KB drive.
02h - 360KB diskette in 1.2MB drive.
03h - 1.2MB diskette in 1.2MB drive.
04h - 720KB diskette in 720KB drive.

DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Disk status code (00h if success).

3.4.19 Set Media Type for Format (18h)

The Set Media Type for Format disk BIOS function is called to set the media type for the
specified drive in order for a FORMAT operation to proceed.

This function returns an error when accessing a fixed disk.

Input Parameters:

AH - 18h, indicating the Set Media Type Function.
CH - Maximum track number (0-based).
CL - Maximum sectors per track (0-based).
DL - Drive number.

Output Parameters:

CY - Set if failure, else clear if success.
AH - Status code, as follows:

00h - Track/sector type supported.
0ch - Media type unknown.
80h - No diskette in drive.
xxh - Disk status code.

82 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

ES:DI - Address of diskette parameter table for specified track/sector combination.

3.5 INT 14h, Serial I/O Services

This section explains the serial BIOS application program interface (API). The serial BIOS is
called through software interrupt 14H. Services are provided to initialize the serial ports, send
characters, receive characters, and read the serial port status.

3.5.1 Initialize Serial Port (00h)

The Initialize Serial Port serial BIOS function is called to initialize the communications parameters
for a specific serial port. For greater control over serial port initialization, use the extended serial
port initialization function (04h).

Input Parameters:

AH - 00h, indicating the Initialize Serial Port Function.
AL - Serial port initialization parameters:

bbb00000b - Baud rate, as follows:

000b - 110 baud.
001b - 150 baud.
010b - 300 baud.
011b - 600 baud.
100b - 1200 baud.
101b - 2400 baud.
110b - 4800 baud.
111b - 9600 baud.

000pp000b - Parity, as follows:

00b - No parity.
01b - Odd parity.
10b - No parity.
11b - Even parity.

00000s00b - Stop bits, as follows:

0b - One stop bit.
1b - Two stop bits.

00000011b - Data bits, as follows:

10b - 7 data bits.
11b - 8 data bits.

DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Chapter 3 EMBEDDED BIOS User’s Manual 83

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Modem status register, as follows:

10000000b - Data carrier detect.
01000000b - Ring indicator.
00100000b - Data set ready.
00010000b - Clear to send.
00001000b - Delta data carrier select.
00000100b - Trailing edge ring indicator.
00000010b - Delta data set ready.
00000001b - Delta clear to send.

3.5.2 Send Character (01h)

The Send Character serial BIOS function is called to send a byte over the specified serial
communications channel.

Input Parameters:

AH - 01h, indicating the Send Character Function.
AL - Character to send.
DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Character sent.

84 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

3.5.3 Receive Character (02h)

The Receive Character serial BIOS function is called to receive a byte over the specified serial
communications channel.

Input Parameters:

AH - 02h, indicating the Receive Character Function.
DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Character received.

3.5.4 Read Serial Port Status (03h)

The Read Serial Port Status serial BIOS function is called to read the modem status register and
the line status register for the specified serial port.

Input Parameters:

AH - 03h, indicating the Read Serial Port Status Function.
DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Modem status register, as follows:

Chapter 3 EMBEDDED BIOS User’s Manual 85

General Software EMBEDDED BIOS Adaptation Guide

10000000b - Data carrier detect.
01000000b - Ring indicator.
00100000b - Data set ready.
00010000b - Clear to send.
00001000b - Delta data carrier select.
00000100b - Trailing edge ring indicator.
00000010b - Delta data set ready.
00000001b - Delta clear to send.

3.5.5 Extended Initialize Serial Port (04h)

The Extended Initialize Serial Port serial BIOS function is called to initialize the communications
parameters for a specific serial port, with more architectural room for handling faster ports, up to
115 kbaud.

Note that not all serial ports can be programmed to accommodate all baud rates or protocols. See
the CPU Personality Module for your target's CPU class to determine if there are restrictions
when initializing on-board CPU serial ports.

Input Parameters:

AH - 04h, indicating the Extended Initialize Serial Port Function.
AL - 00h if no break signal, 01h if break signal.
BH - Parity, as follows:

00h - no parity.
01h - odd parity.
02h - even parity.
03h - stick parity odd.
04h - stick parity even.

BL - Stop bits, as follows:

00h - 1 stop bit.
01h - 2 stop bits if data length is 6, 7, or 8 bits.
02h - 1.5 stop bits if data length is 5 bits.

CH - Data length, as follows:

00h - 5 bits.
01h - 6 bits.
02h - 7 bits.
03h - 8 bits.

CL - Baud rate, as follows:

00h - 110 baud.
01h - 150 baud.
02h - 300 baud.
03h - 600 baud.

86 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

04h - 1200 baud.
05h - 2400 baud.
06h - 4800 baud.
07h - 9600 baud.
08h - 19.2 kbaud.
09h - 38.4 kbaud.
0ah - 56 kbaud.
0bh - 115 kbaud.

DX - Serial port number (0=COM1, 1=COM2, 2=COM3, 3=COM4).

Output Parameters:

AH - Line status register, as follows:

10000000b - Timeout error occurred.
01000000b - Transmitter shift & holding register empty.
00100000b - Transmitter holding register empty.
00010000b - Break interrupt occurred.
00001000b - Framing error occurred.
00000100b - Parity error occurred.
00000010b - Data overrun error occurred.
00000001b - Data ready.

AL - Modem status register, as follows:

10000000b - Data carrier detect.
01000000b - Ring indicator.
00100000b - Data set ready.
00010000b - Clear to send.
00001000b - Delta data carrier select.
00000100b - Trailing edge ring indicator.
00000010b - Delta data set ready.
00000001b - Delta clear to send.

3.6 INT 15h, General Services

This section explains the general services BIOS application program interface (API). The general
services BIOS is called through software interrupt 15H. Services are provided to support
multitasking for device waits, protected mode functions, access to system configuration
information, and access the Advanced Power Management services.

Additional services are supported to handle CMOS RAM reading and writing, setting the BIOS
CurrIo variable to affect console redirection, Flash programming, and returning the
EMBEDDED BIOS version number.

3.6.1 Query Port 92h A20 Gate Capability (24h)

The Query Port 92h A20 Gate Capability BIOS function provides information to the caller about
whether the application or operating system can switch the A20 gate with port 92h. This is a
legacy function used by HIMEM.SYS.

Chapter 3 EMBEDDED BIOS User’s Manual 87

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 24h, indicating Query Port 92h A20 Gate Capability Function.
AL - subfunction, as follows:

01h - Enable A20 gate.
02h - Disable A20 gate.
03h - Determine if port 92h support is available.

Output Parameters:

CY - set if failure (no port 92h support), else clear if success.
AH - if failure, 86h.

BX - if subfunction 03h, returns the value 2, indicating support available.

3.6.2 Keyboard Intercept Up-Call (4fh)

The Keyboard Intercept system services BIOS up-call is called by the keyboard BIOS interrupt
service routine to allow the operating system or application (client) to receive notice of incoming
scan codes (both make and break). If no client is available, then the default handler for this
routine returns with the CY flag set.

If the client desires to process the incoming scan code, then it must clear the CY flag after
processing the data passed in the AL CPU register. This causes the keyboard BIOS to abort
further processing of the scan code other than issuing an EOI to the interrupt controller.

If the client does not wish to process the incoming scan code, then it must set the CY flag before
returning. At the client's option, it may elect to modify the scan code passed in the AL CPU
register so that the keyboard BIOS processes the input differently. The client is cautioned that
this technique can lead to keyboard BIOS failure if non-scan codes are processed; other data, such
as status codes, are also passed to this routine.

Input Parameters:

AH - 4fh, indicating the Keyboard Intercept Up-Call.
AL - scan code.

Output Parameters:

CY - set if keyboard BIOS should process scan code in AL, else clear if keyboard BIOS
should discard the scan code.

AL - scan code as updated by client.

3.6.3 APM Installation Check (5300h)

The Advanced Power Management Installation Check BIOS function is called to determine if
Advanced Power Management services are enabled, and if so, which version of the specification it
supports.

88 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 00h, indicating Installation Check Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - if failure, 86h.
AH - if success, major version number in BCD.
AL - minor version number in BCD.
BH - ASCII "P" character.
BL - ASCII "M" character.
CX - capabilities flags, as follows:

bit 0 = 1 if 16-bit protected mode interface supported.
bit 1 = 1 if 32-bit protected mode interface supported.
bit 2 = 1 if CPU Idle call slows processor clock speed.
bit 3 = 1 if BIOS Power Management is disabled.

3.6.4 APM Interface Connect (5301h)

The Advanced Power Management Interface Connect BIOS function is called to establish the
cooperative interface between the caller and the system BIOS. Before the interface is established,
the system BIOS will provide its own power management functionality as implemented by the
OEM. Once the interface is established (connected), the system BIOS and the caller will
coordinate power management activities together.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 01h, indicating Interface Connect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

02h - interface connection already in effect.
09h - unrecognized device ID.
86h - APM not supported.

3.6.5 APM Protected Mode 16-Bit Interface Connect (5302h)

The Advanced Power Management Protected Mode 16-Bit Interface Connect BIOS function is
called to initialize an optional 16-bit protected mode interface between the caller and the system
BIOS. This interface allows a protected mode caller to invoke the system BIOS functions

Chapter 3 EMBEDDED BIOS User’s Manual 89

General Software EMBEDDED BIOS Adaptation Guide

without the need to first switch into real or virtual-86 mode. A caller that does not operate in
protected mode may not need to use this call. This function establishes a 16-bit protected mode
interface, but this function must be invoked in either real or virtual-86 mode using the INT 15h
interface.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 02h, indicating 16-Bit P/M Interface Connect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

02h - interface connection already in effect.
05h - 16-bit protected mode interface already established.
06h - 16-bit protected mode interface not supported.
09h - unrecognized device ID.
86h - APM not supported.

AX:BX - if success, 16:16 protected mode entrypoint supporting APM requests for the
system BIOS.

CX - if success, 16-bit data selector used by APM entrypoint.

3.6.6 APM Protected Mode 32-Bit Interface Connect (5303h)

The Advanced Power Management Protected Mode 32-Bit Interface Connect BIOS function is
called to initialize an optional 32-bit protected mode interface between the caller and the system
BIOS. This interface allows a protected mode caller to invoke the system BIOS functions
without the need to first switch into real or virtual-86 mode. A caller that does not operate in
protected mode may not need to use this call. This function establishes a 32-bit protected mode
interface, but this function must be invoked in either real or virtual-86 mode using the INT 15h
interface.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 03h, indicating 32-Bit P/M Interface Connect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

02h - interface connection already in effect.
07h - 32-bit protected mode interface already established.
08h - 32-bit protected mode interface not supported.
09h - unrecognized device ID.

90 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

86h - APM not supported.

AX:EBX - if success, 16:32 protected mode entrypoint supporting APM requests for the
system BIOS.

CX - if success, 16-bit code segment selector used by APM entrypoint.
DX - if success, 16-bit data selector used by APM entrypoint.

3.6.7 APM Interface Disconnect (5304h)

The Advanced Power Management Interface Disconnect BIOS function is called to break the
cooperative interaction between the system BIOS and the caller, and in the process restores the
system BIOS default functionality. Any protected mode connection set-up by the protected mode
interface connection functions are invalidated by this call.

Even though this call returns control of power management to the system BIOS, the parameter
values (timer values, enable/disable settings, etc.) in effect at the time of the disconnect will
remain in effect.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 04h, indicating Interface Disconnect Subfunction.
BX - 0000h, indicating system BIOS.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

03h - interface not connected.
09h - unrecognized device ID.
86h - APM not supported.

3.6.8 APM CPU Idle (5305h)

The Advanced Power Management CPU Idle BIOS function is called to inform the system BIOS
that the system is currently idle, and that processing should be suspended until the next system
event (typically an interrupt) occurs. This function allows the system BIOS to take some
implementation specific power saving action, such as a CPU HLT instruction or stopping the
CPU clock.

In cases where an interrupt causes the system to leave the idle state, the interrupt may or may not
have been serviced when the BIOS returns from the CPU Idle request.

if interrupts are serviced from within the CPU Idle function, the interrupt handler must return to
the BIOS when the interrupt processing is completed. The caller cannot use its knowledge of
being in the idle state to retain control from an interrupt handler. For example, some system
implementations may slow the processor CPU clock rate before waiting on an interrupt, and
restore the normal clock rate after the interrupt is serviced but before returning from the idle call.

Chapter 3 EMBEDDED BIOS User’s Manual 91

General Software EMBEDDED BIOS Adaptation Guide

When the caller regains control from the system BIOS idle routine, it should determine if there is
actually any processing to be performed, and reissue the CPU idle call if not. If the caller is a
multitasking supervisor, it may be necessary for it to dispatch its applications, allowing them to
check for activity that they should then perform.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 05h, indicating CPU Idle Subfunction.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

86h - APM not supported.

3.6.9 APM CPU Busy (5306h)

The Advanced Power Management CPU Busy BIOS function is called to inform the system BIOS
that the system is now busy and processing should continue at full speed. Some system
implementations may only be able to slow the CPU clock rate and return in response to the CPU
Idle request (see function 5305h). It is expected that the system BIOS will restore the CPU clock
reate to its normal rate when it recognizes increased system activity (typically interrupt-driven),
but it may be unable to do so when interrupts are hooked by external software that does not
invoke BIOS routines.

In cases where this is possible, the caller can ensure the system is running at full speed by invoking
the CPU Busy function. Upon return from the APM Installation Check call, bit 2 of the CX CPU
register indicates that the system BIOS slows the CPU clock rate during the CPU Idle call. The
caller can use this bit to determine if it wishes to call CPU Busy before executing code that it
wants to run at full speed.

Calling CPU Busy when the systme is already operating at full speed is discouraged due to the
unnecessary call overhead, but the operation is allowed and iwll have no unexpected side effects.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 06h, indicating CPU Busy Subfunction.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

86h - APM not supported.

3.6.10 APM Set Power State (5307h)

92 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

The Advanced Power Management Set Power State BIOS function is called to place the system
in the requested state. The system BIOS only responds to power device ID = 0001h (system
BIOS).

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 07h, indicating Set Power State Subfunction.
BX - 0001h, indicating system BIOS.
CX - System State ID, as follows:

0000h - Ready (not supported for device ID 0001h).
0001h - Standby.
0002h - Suspend.
0003h - Off (not supported for device ID 0001h).

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

01h - power management functionality disabled.
09h - unrecognized device ID.
0ah - parameter valud in CX out of range.
60h - cannot enter requested state.
86h - APM not supported.

3.6.11 APM Enable/Disable APM Functionality (5308h)

The Advanced Power Management Enable/Disable APM Functionality BIOS function is called to
enable or disable all APM automatic power down functionality. When disabled, the system BIOS
will not automatically power down devices, enter the standby state, enter the suspended state, or
take power saving steps in response to CPU Idle calls. In addition, many system BIOS functions
will be disabled and will return error 01h, power management functionality disabled.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 08h, indicating Enable/Disable APM Functionality Subfunction.
BX - ffffh, "enable/disable all power management".
CX - 0 to disable, 1 to enable.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

01h - power management functionality disabled.
09h - unrecognized device ID.
0ah - parameter valud in CX out of range.
86h - APM not supported.

Chapter 3 EMBEDDED BIOS User’s Manual 93

General Software EMBEDDED BIOS Adaptation Guide

3.6.12 APM Restore APM Power-On Defaults (5309h)

The Advanced Power Management Restore APM Power-On Defaults BIOS function is called to
instruct the BIOS to reinitialize all of its power-on APM defaults.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 09h, indicating Restore APM Power-On Defaults Subfunction.
BX - ffffh, "all power management".

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

09h - unrecognized device ID.
86h - APM not supported.

3.6.13 APM Get Power Status (530ah)

The Advanced Power Management Get Power Status BIOS function is called to return the system
BIOS's current power management status.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 0ah, indicating Get Power Status Subfunction.
BX - 0001h.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

09h - unrecognized device ID.
86h - APM not supported.

BH - if success, A/C line status as follows:

00h - off-line.
01h - on-line.
ffh - unknown.

BL - if success, battery status as follows:

00h - high.
01h - low.

94 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

02h - critical.
03h - charging.
ffh - unknown.

CL - if success, remaining battery life, as follows:

0 - 100% = # of full charge
ffh - unknown.

3.6.14 APM Get APM Event (530bh)

The Advanced Power Management Get APM Event BIOS function is called to return the next
pending PM event, or indicates if no PM events are pending.

Input Parameters:

AH - 53h, indicating an Advanced Power Management Function.
AL - 0bh, indicating Get APM Event Subfunction.

Output Parameters:

CY - set if failure, else clear if success.
AH - error code, as follows:

03h - interface connection not established.
86h - APM not supported.

BX - if success, PM event code, as follows:

01h - system standby request notification
02h - system suspend request notification
03h - normal resume system notification
04h - critical resume system notification
05h - battery low notification

3.6.15 System Request Key (58h)

The System Request Key BIOS Up-Call is called by the keyboard BIOS interrupt service routine
to allow the operating system or application (client) to receive notice that the SysReq key has
been pressed or released.

If no client intercepts the up-call, then it will be handled by the default system BIOS handler,
which clears the CY flag and sets the AH CPU register to 00h.

Input Parameters:

AH - 85h, indicating a System Request Key Up-Call.
AL - 00h if key pressed, else 01h if key released.

Output Parameters:

Chapter 3 EMBEDDED BIOS User’s Manual 95

General Software EMBEDDED BIOS Adaptation Guide

CY - clear.
AH - 00h.

3.6.16 Wait Function (86h)

The Wait Function BIOS function is called to delay for a specified number of microseconds so
that applications can perform fine timing.

This function must be carefully tuned by the OEM during the adaptation process; it should not be
assumed to be accurate until the OEM has done this tuning. The tuning is handled in BPM
routine BoardDelayUsec.

Input Parameters:

AH - 86h, indicating the Wait Function.
CX:DX - 32-bit number of microseconds to wait.

Output Parameters:

CY - set if failure, else clear if success.

3.6.17 Move Extended Memory Block (87h)

The Move Extended Memory Block BIOS function is called to perform a memory copy using the
protected mode capabilities of targets that support protected mode operation.

The memory transfer is specified in the form of a GDT whose real-mode address is passed to the
function. Also passed to the function is a number of 16-bit words to copy (beware, this function
cannot transfer an odd number of bytes).

Input Parameters:

AH - 87h, indicating the Move Extended Memory Block Function.
CX - number of 16-bit words to copy.
ES:SI - 16:16 real-mode address of GDT describing source and destination addresses for

the copy process, formatted as follows:

GDT entry #0 - dummy entry, should be all zeroes.
GDT entry #1 - pointer to GDT.
GDT entry #2 - source buffer.
GDT entry #3 - destination buffer.
GDT entry #4 - reserved by BIOS, do not initialize.
GDT entry #5 - reserved by BIOS, do not initialize.

The format of a GDT and its entries is specified in Intel documentation and is
beyond the scope of this manual.

Output Parameters:

96 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

CY - set if failure, else clear if success.
AH - status code, as follows:

00h - no error.
01h - RAM parity error occurred during copy.
02h - CPU exception occurred during copy.
03h - gate A20 operation failed.
86h - protected mode services not available.

3.6.18 Extended Memory Size (88h)

The Extended Memory Size BIOS function is called to return the amount of extended memory
(that RAM available to the application above the 1MB physical address boundary).

Input Parameters:

AH - 88h, indicating the Extended Memory Size Function.

Output Parameters:

CY - set if failure, else clear if success.
AH - status code, as follows:

86h - protected mode services not available.

AX - if success, extended memory size in 1KB units.

3.6.19 Switch To Protected Mode (89h)

The Switch To Protected Mode BIOS function is called to switch the mode of the processor and
establish a GDT for addressability for the remainder of the system’s operation.

Input Parameters:

AH - 89h, indicating the Switch To Protected Mode Function.
BH - index into the IDT specifying the base of the first 8 hardware interrupts.
BL - index into the IDT specifying the base of the second 8 hardware interrupts.
ES:SI - 16:16 real-mode address of GDT built by caller, as follows:

GDT entry #0 - dummy entry, should be all zeroes.
GDT entry #1 - pointer to GDT.
GDT entry #2 - pointer to IDT.
GDT entry #3 - pointer to data segment.
GDT entry #4 - pointer to extra segment.
GDT entry #5 - pointer to stack segment.
GDT entry #6 - pointer to code segment.
GDT entry #7 - additional descriptor for BIOS scratch.

Chapter 3 EMBEDDED BIOS User’s Manual 97

General Software EMBEDDED BIOS Adaptation Guide

The format of a GDT and its entries is specified in Intel documentation and is
beyond the scope of this manual.

Output Parameters:

CY - set if failure, else clear if success.
AH - status code, as follows:

00h - no error.
01h - RAM parity error occurred during copy.
02h - CPU exception occurred during copy.
03h - gate A20 operation failed.
86h - protected mode services not available.

3.6.20 Device Busy Up-Call (90h)

The Device Busy BIOS up-call is called by various device management modules within the system
BIOS to allow the operating system or application (client) to receive notice of an impending spin-
loop within the BIOS to wait for a device to perform a mechanical function. If no client is
available, then the default handler for this routine returns with the CY flag set.

If a client is available, it can decide to perform other activities and return when the Device
Interrupt up-call is received. When it takes this option, it returns from the Device Busy BIOS up-
call with the CY flag cleared. When the BIOS detects that the CY flag is cleared, it does not
enter the anticipated spinloop, but instead assumes that the operation has completed or has timed-
out.

If the client decides to ignore the Devicy Busy notification and let the BIOS enter its spin-loop,
then it returns from the Device Busy BIOS up-call with the CY flag set. This causes the BIOS to
continue as though the client had never hooked the INT 15h service in the first place.

Input Parameters:

AH - 90h, indicating a Device Busy Up-Call.
AL - Device type code, as follows:

00h - hard disk drive.
01h - floppy disk drive.
02h - keyboard.
03h - PS/2 mouse.
80h - network.
fch - hard disk reset.
fdh - floppy disk drive motor.
feh - printer.

ES:BX - if AL=80h-ffh, then this register pair points to a request block that is device-
dependent.

Output Parameters:

98 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

CY - set if caller should enter spinloop, else clear if caller should avoid spinloop and
assume device operation has completed or has timed-out.

3.6.21 Device Interrupt Up-Call (91h)

The Device Interrupt BIOS up-call is called by various device management modules within the
system BIOS to allow the operating system or application (client) to receive notice of a peripheral
device's completion of some event, such as a seek of a disk drive. This allows the client to return
control to the BIOS if it transferred control to another task in response to the Device Busy up-call
associated with this Device Interrupt up-call. If no client is available, then the default handler for
this routine returns with the CY flag set.

If a client is available, it can decide to reschedule the task that was blocked waiting for the
completion of the device operation associated with the previous Device Busy up-call. Regardless
of the client's decision to perform this action, the BIOS will continue execution of its code upon
return from this function without inspecting the CY flag.

Input Parameters:

AH - 91h, indicating a Device Interrupt Up-Call.
AL - Device type code, as follows:

00h - hard disk drive.
01h - floppy disk drive.
02h - keyboard.
03h - PS/2 mouse.
80h - network.
fch - hard disk reset.
fdh - floppy disk drive motor.
feh - printer.

ES:BX - if AL=80h-ffh, then this register pair points to a request block that is device-
dependent.

Output Parameters:

none.

3.6.22 Read/Write CMOS RAM Cell (A0h)

The Read/Write CMOS RAM Cell BIOS function is called by application software to access
CMOS RAM cells in a hardware-independent manner. This is useful when the application must
run on hardware that may not use the ISA-standard ports 70h and 71h for accessing this
hardware.

Input Parameters:

AH - A0h, indicating the Read/Write CMOS RAM Cell Function.
AL - 00h for a read operation, or 01h for a write operation.
BL - specifies the CMOS RAM index to read or write.

Chapter 3 EMBEDDED BIOS User’s Manual 99

General Software EMBEDDED BIOS Adaptation Guide

BH - for writes only, specifies the value to be written.

Output Parameters:

CY - clear if success, else set if failure.
AL - for reads only, contains the value that was read.
AH - status code, as follows:

00h - no error.
86h - not supported by BIOS configuration.

3.6.23 Set Console I/O Redirection (A1h)

The Set Console I/O Redirection BIOS function is called by application software to specify the
device that will be used by the BIOS to redirect console input (INT 16h) and console output (INT
10h). This feature is only available in BIOS adaptations that provide for console redirection.

Console I/O can be redirected to the standard keyboard and screen with the device value, 0.
Other values, such as 1, 2, 3, and so on, specify a COM port number that specifies the serial port
that will be used. For example, the value 2 specifies that output will be redirected over the serial
line attached to COM2.

Input Parameters:

AH - A1h, indicating the Set Console I/O Redirection Function.
BX - specifies the new console device. The value 0 indicates the standard keyboard and

screen, and nonzero values indicate the COM port number (starting with 1 for
COM1) to be used as a console redirection device.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - not supported by BIOS configuration.

3.6.24 Get Embedded BIOS Version (A3h)

The Get Embedded BIOS Version BIOS function is called by application software to return the
major and minor version codes of the underlying implementation of Embedded BIOS. This allows
application software to determine if it can use specific features supported by the BIOS.

Input Parameters:

AH - A3h, indicating the Get Embedded BIOS Version Function.

Output Parameters:

CY - clear if success, else set if failure.
AL - for successful returns, the minor BIOS version (i.e., 0 for version 4.1).

100 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

AH - for successful returns, the major BIOS version (i.e., 4 for version 4.1).
AH - if failure, status code, as follows:

86h - not supported by BIOS configuration.

3.6.25 Get RFD Drive Information (A400h)

The Get RFD Drive Information BIOS function is called by Embedded DOS-ROM 6.22 to
determine which INT 13h drive unit number is assigned to the RFD, and to obtain information
about the size and shape of the RFD’s underlying Flash array.

Input Parameters:

AX - A400h, indicating the Get RFD Drive Information Function.

Output Parameters:

CY - clear if success, else set if failure.
AX - if success, magic signature: ebfdh.
BX - size of Flash array in kilobytes.
CX - size of Flash block in kilobytes.
DI:SI - 32-bit media address of Flash array.
DL - RFD BIOS unit number.

AH - if failure, status code, as follows:

86h - not supported by BIOS configuration.

3.6.26 RFD Broadcast (A401h)

The RFD Broadcast BIOS function is called by Embedded DOS-ROM 6.22 to notify the RFD
that specific sectors have been deallocated to free space and are no longer used to store user data.
This allows the RFD software in the core BIOS to reclaim the area for storage of other data.

The RFD normally does not become aware of sectors previously written that have since become
marked in the DOS file system FAT tables as being deallocated. This is because MS-DOS does
not provide for such a notification method. Normally, programs such as Undelete can actually
recover this lost data because it is not actually erased when a file is deleted on other media, such
as hard drives or floppies; however, these media types do not incur performance penalties when
the media retains the data.

In the case of the Resident Flash Disk, freeing up deallocated space can significantly improve file
system performance; by as much as a factor of 10.

Input Parameters:

AX - A401h, indicating the RFD Broadcast Function.
CX - number of sectors to deallocate starting with the specified sector.
DX - starting sector number to deallocate.

Output Parameters:

Chapter 3 EMBEDDED BIOS User’s Manual 101

General Software EMBEDDED BIOS Adaptation Guide

CY - clear if success, else set if failure.
AH - if failure, status code, as follows:

86h - not supported by BIOS configuration.

3.6.27 Return System Configuration (C0h)

The Return System Configuration BIOS function is called to return the address of the System
Configuration Table (SCT), as defined in Chapter 3. This table reveals the BIOS's support for
various hardware features.

Input Parameters:

AH - C0h, indicating the Return System Configuration Function.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - SCT not supported by BIOS configuration.

ES:BX - if success, 16:16 address of SCT data structure.

3.6.28 Return Extended BIOS Data Area (C1h)

The Return Extended BIOS Data Area BIOS function is called to return the 16-bit segment
address of the EMBEDDED BIOS Extended BIOS Data Area, located in the top 1KB of low
memory. The format of this area is General Software-proprietary.

Input Parameters:

AH - C1h, indicating the Return Extended BIOS Data Area Function.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - function not supported.

ES - if success, segment address of Extended BIOS Data Area.

3.6.29 PS/2 Mouse Request (C2h)

102 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

The PS/2 Mouse Request BIOS function is called to process an application or operating system
request to read the status of, or control the operation of, the PS/2 mouse.

Input Parameters:

AH - C2h, indicating the PS/2 Mouse Request Function.
AL - subfunction, as follows:

00h - Enable/Disable mouse.
01h - Reset mouse.
02h - Set sample rate.
03h - Set resolution.
04h - Get mouse type.
05h - Initialize mouse interface.
06h - Get mouse status/set scaling factor.
07h - Register callout address.

BH - sub-subfunction code or parameter for subfunction.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
01h - invalid subfunction code (code in AL.)
02h - invalid input value (value in BH.)
03h - I/O communications error.
04h - resend status received from mouse.
05h - no callout address registered.
86h - function not supported (if OPTION_SUPPORT_PS2MOUSE disabled.)

3.6.30 Watchdog Timer Control (C3h)

The Watchdog Timer Control BIOS function is called to enable or disable the watchdog timer, if
available. When the watchdog timer is enabled by this function, the value passed in the BX CPU
register is used as a countdown value for the timer. When the timer reaches 0, it resets the system
with a warm boot.

If the timer is running and the disable subfunction is called, then the timer stops without resetting
the system.

If the timer is running and the enable subfunction is called, the then the timer restarts with the
specified value without resetting the system.

If the timer is stopped and the disable function is called, no operation is performed.

If the timer is stopped and the enable function is called, then the timer restarts with the specified
value without resetting the system.

Input Parameters:

Chapter 3 EMBEDDED BIOS User’s Manual 103

General Software EMBEDDED BIOS Adaptation Guide

AH - C3h, indicating the Watchdog Timer Control Function.
AL - 00h to disable timer, 01h to enable timer.
BX - if enabling, fail-safe timer value (units unspecified).

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - function not supported.

3.6.31 Checksum Region (C4h)

The Checksum Region BIOS function is called to perform a BIOS checksum over a specified
address range in low memory.

Input Parameters:

AH - C4h, indicating the Checksum Region Function.
DS:SI - 16:16 real-mode pointer to region to be checksummed.
CX - size of region in words.

Output Parameters:

CY - clear if success, else set if failure.
DX:AX - if successful, 32-bit checksum.

AH - if failure, status code, as follows:

86h - function not supported.

3.6.32 Debugger Breakpoint (D0h)

The Debugger Breakpoint BIOS function is called to perform a breakpoint into the debugger on
systems where an operating system is loaded, and that operating system has revectored INT 3 to
its own private dummy routine, otherwise making the BIOS debugger inaccessible.

Input Parameters:

AH - D0h, indicating the Debugger Breakpoint Function.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code (if error), as follows:

86h - function not supported.

104 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

3.6.33 Flash Programming (E0h)

The Flash Programming BIOS function is called to perform any of a number of operations on the
Flash array supported by the underlying BIOS. This function is General Software-proprietary.

There are four subfunctions, all of which require that the (DI:SI) register pair contain the 32-bit
media address of Flash memory being manipulated. If the operation is lock or unlock, then
(DI:SI) can point to any byte within the block to be locked or unlocked.
If the operation is a read or write, then this register pair points to the first byte in a contiguous
area of Flash to be read or written.

For read and write operations, the (ES:BX) register pair points to a user buffer where the data
read from Flash will be stored for read operations, or that will contain data to be written to Flash
for write operations. The (CX) register is used to specify the number of bytes to transfer.

This function requires that Flash programming support (OPTION_SUPPORT_MCL) be enabled
by the OEM adaptation. If this support is not enabled, this function will return CY set and
AH=86h.

Input Parameters:

AH - E0h, indicating the Flash Programming Function.
AL - Subfunction, as follows:

00h - Lock block function.
01h - Erase block function.
02h - Read block function.
03h - Write block function.

DI:SI - 32-bit media address of Flash memory area.
CX - bytes to read or write (unused for lock or erase).

ES:BX - 16:16 real-mode address of a user buffer where information is transferred from
on a write operation, or where it is transferred to on a read operation.

Output Parameters:

CY - clear if success, else set if failure.
AH - status code, as follows:

00h - no error.
86h - function not supported.

3.7 INT 16h, Keyboard Services

This section explains the keyboard BIOS application program interface (API). The keyboard
BIOS is called through software interrupt 16H. Services are provided to read keystrokes from
the keyboard typeahead buffer, peek at the next keystroke in the typeahead buffer, and get the
status of the shift keys on the keyboard.

Chapter 3 EMBEDDED BIOS User’s Manual 105

General Software EMBEDDED BIOS Adaptation Guide

Additional services are provided by the INT 16h service module to set the CPU speed and
manipulate the system's cache. These services are historically bound to the INT 16h service
because they were first managed by the 8042 keyboard controller.

3.7.1 Read Keyboard Input (00h)

The Read Keyboard Input keyboard BIOS function is called to read a keystroke from the
keyboard device, waiting until a keystroke arrives if one is not present. The scan code of the
keystroke is returned in (AH), and the ASCII code is returned in (AL). An exception exists for
function keys and ALT keys; in this case, the ASCII code returned is zero, and the scan code in
(AH) is used to determine which function or ALT key was read from the keyboard.

Input Parameters:

AH - 00h, indicating the Read Keyboard Input Function.

Output Parameters:

AH - Scan code of the returned keystroke.
AL - ASCII code for the returned keystroke.

3.7.2 Return Keyboard Status (01h)

The Return Keyboard Status keyboard BIOS function is called to peek at the status of the
typeahead buffer, to determine if a keystroke is waiting to be read. If not, the zero flag (ZF) is
cleared, so that a JZ instruction after the INT 16H instruction would not be taken. If a keystroke
is waiting to be read, then ZF is set, so that a JZ instruction after the INT 16H instruction would
be taken. In the latter case, the scan code and character code are returned in (AH) and (AL),
respectively. If a character is found, this function returns a copy of it but does not remove it from
the typeahead buffer. The application can call function 00H to remove the character from the
typeahead buffer properly.

Input Parameters:

AH - 01h, indicating the Return Keyboard Status Function.

Output Parameters:

ZF - Clear if character ready, else set if not.
AH - Scan code of the returned keystroke.
AL - ASCII code for the returned keystroke.

3.7.3 Return Shift Flag Status (02h)

The Return Shift Flag Status keyboard BIOS function is called to return the status of the shift
keys, including the INS key, CAPS LOCK key, NUM LOCK key, SCROLL LOCK key, ALT
key, CTRL key, and LEFT and RIGHT SHIFT keys.

106 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 02h, indicating the Return Shift Flag Status.

Output Parameters:

AL - Current shift status, in the form of a bit mask, one bit per shift key.

10000000b - INS key is active.
01000000b - CAPS LOCK key is active.
00100000b - NUM LOCK key is active.
00010000b - SCROLL LOCK key is active.
00001000b - ALT key is pressed down.
00000100b - CTRL key is pressed down.
00000010b - LEFT SHIFT key is pressed down.
00000001b - RIGHT SHIFT key is pressed down.

3.7.4 Set Typematic Rate (03h)

The Set Typematic Rate keyboard BIOS function is called to program the typematic delay and
rate associated with holding down a key on the keyboard. This keyboard service is not
redirectable over serial links.

Input Parameters:

AH - 03h, indicating the Set Typematic Rate Function.
AL - 05h
BH - typematic delay before repeat starts, as follows:

00h - 250 milliseconds.
01h - 500 milliseconds.
02h - 750 milliseconds.
03h - 1,000 milliseconds (1 second).

BL - typematic rate in characters per second, as follows:

00h - 30.0 CPS. 01h - 26.7 CPS.
02h - 24.0 CPS. 03h - 21.8 CPS.
04h - 20.0 CPS. 05h - 18.5 CPS.
06h - 17.1 CPS. 07h - 16.0 CPS.
08h - 23.1 CPS. 09h - 13.3 CPS.
0ah - 12.0 CPS. 0bh - 10.9 CPS.
0ch - 10.0 CPS. 0dh - 9.2 CPS.
0eh - 8.6 CPS. 0fh - 8.0 CPS.
10h - 7.5 CPS. 11h - 6.7 CPS.
12h - 6.0 CPS. 13h - 5.5 CPS.
14h - 5.0 CPS. 15h - 4.6 CPS.
16h - 4.3 CPS. 17h - 4.0 CPS.
18h - 3.7 CPS. 19h - 3.3 CPS.
1ah - 3.1 CPS. 1bh - 2.7 CPS.

Chapter 3 EMBEDDED BIOS User’s Manual 107

General Software EMBEDDED BIOS Adaptation Guide

1ch - 2.5 CPS. 1dh - 2.3 CPS.
1eh - 2.1 CPS. 1fh - 2.0 CPS.

Output Parameters:

none.

3.7.5 Push Data to Keyboard (05h)

The Push Data to Keyboard keyboard BIOS function is called to push data (a character and a
scan code) into the keyboard typeahead buffer.

Input Parameters:

AH - 05h, indicating the Push Data to Keyboard Function.
CH - scan code to be pushed.
CL - character to be pushed.

Output Parameters:

CY - set if failure, else clear if success.
AL - error code, as follows:

00h - no error.
01h - keyboard buffer full.

3.7.6 Enhanced Read Keyboard (10h)

The Enhanced Read Keyboard keyboard BIOS function is called to read a character and scan
code from the keyboard buffer when the BIOS supports an enhanced (101-key) keyboard. There
is no advantage to calling this routine over the standard read function; it is provided for
compatibility with some versions of DOS that call it.

Input Parameters:

AH - 10h, indicating the Enhanced Read Keyboard Function.

Output Parameters:

AH - 00h scan code or character ID if special character.
AL - ASCII code.

3.7.7 Enhanced Read Keyboard Status (11h)

The Enhanced Read Keyboard Status keyboard BIOS function is called to determine if an
enhanced keyboard has a character waiting in its buffer. There is no advantage to calling this
routine over the standard read function; it is provided for compatibility with some versions of
DOS that call it. This routine does not remove the data from the keyboard buffer; it is a "peek"
operation.

108 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

Input Parameters:

AH - 11h, indicating the Enhanced Read Keyboard Status Function.

Output Parameters:

ZF - set if no character, else clear if character waiting.

Then, if a character is waiting:

AH - 00h scan code or character ID if special character.
AL - ASCII code.

3.7.8 Enhanced Read Keyboard Flags (12h)

The Enhanced Read Keyboard Flags keyboard BIOS function is called to return the state of the
enhanced shift flags maintained by 101-key keyboards. There is limited advantage to calling this
routine over the standard read function; it is provided for compatibility with some versions of
DOS that call it.

Input Parameters:

AH - 12h, indicating the Enhanced Read Keyboard Flags Function.

Output Parameters:

AX - 16-bit bitmask containing keyboard flags, as follows:

00000000.00000001 - right shift key pressed.
00000000.00000010 - left shift key pressed.
00000000.00000100 - ctrl key pressed.
00000000.00001000 - alt key pressed.
00000000.00010000 - scroll lock is on.
00000000.00100000 - num lock is on.
00000000.01000000 - caps lock is on.
00000000.10000000 - insert mode is on.
00000001.00000000 - left ctrl key is pressed.
00000010.00000000 - left alt key is pressed.
00000100.00000000 - right ctrl key is pressed.
00001000.00000000 - right alt key is pressed.
00010000.00000000 - scroll lock key is pressed.
00100000.00000000 - num lock key is pressed.
01000000.00000000 - caps lock key is pressed.
10000000.00000000 - sysreq key is pressed.

3.7.9 Set CPU Speed (F0h)

The Set CPU Speed BIOS function is called to change the CPU's clocking to either the low or
high states.

Chapter 3 EMBEDDED BIOS User’s Manual 109

General Software EMBEDDED BIOS Adaptation Guide

Not all BIOS adaptations can switch speeds; this is largely a function of the BPM, CPM, and
CSPM implementations.

Input Parameters:

AH - F0h, indicating the Set CPU Speed Function.
AL - speed to set, as follows:

00h - slow.
01h - medium.
02h - fast.

Output Parameters:

none.

3.7.10 Get CPU Speed (F1h)

The Get CPU Speed BIOS function is called to read the CPU's speed as set with the Set CPU
Speed function.

Not all BIOS adaptations can switch speeds; this is largely a function of the BPM, CPM, and
CSPM implementations.

Input Parameters:

AH - F1h, indicating the Get CPU Speed Function.

Output Parameters:

AL - current CPU speed, as follows:

00h - slow.
01h - medium.
02h - fast.

3.7.11 Read Cache Status (F400h)

The Read Cache Status BIOS function is called to request the status of the external cache as
supported by the BIOS.

Not all BIOS adaptations can manipulate the cache; this is largely a function of the BPM, CPM,
and CSPM implementations.

Input Parameters:

AH - F4h, indicating the Cache Control Function.
AL - 00h, indicating the Read Cache Status Subfunction.

110 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

Output Parameters:

AH - cache status, as follows:

not modified - no cache status is available.
E2h - successful, information returned.

AL - cache controller status, as follows:

00h - cache controller not present.
01h - cache memory enabled.
02h - cache memory disabled.

CX - cache memory size, as follows:

Bit 15 - 1 if information invalid, else 0 if valid.
Bits 14 through 0 - cache memory size in KB.

DH - cache write strategy, as follows:

Bit 7 - 1 if information invalid, else 0 if valid.
Bits 6 through 1 - set to 0's.
Bit 0 - 0 if write-through, else 1 if write-back.

DL - cache type, as follows:

Bit 7 - 1 if information invalid, else 0 if valid.
Bits 6 through 1 - set to 0's.
Bit 0 - 0 if direct-mapped else 1 if two-way set associative.

3.7.12 Enable Cache (F401h)

The Enable Cache BIOS function is called to enable the external cache controller as supported by
the BIOS.

Not all BIOS adaptations can manipulate the cache; this is largely a function of the BPM, CPM,
and CSPM implementations.

Input Parameters:

AH - F4h, indicating the Cache Control Function.
AL - 01h, indicating the Enable Cache Subfunction.

Output Parameters:

AH - cache status, as follows:

not modified - no cache status is available.
E2h - successful, operation performed.

Chapter 3 EMBEDDED BIOS User’s Manual 111

General Software EMBEDDED BIOS Adaptation Guide

3.7.13 Disable Cache (F402h)

The Disable Cache BIOS function is called to disable the external cache controller as supported
by the BIOS.

Not all BIOS adaptations can manipulate the cache; this is largely a function of the BPM, CPM,
and CSPM implementations.

Input Parameters:

AH - F4h, indicating the Cache Control Function.
AL - 02h, indicating the Disable Cache Subfunction.

Output Parameters:

AH - cache status, as follows:

not modified - no cache status is available.
E2h - successful, operation performed.

3.8 INT 17h, Parallel I/O Services

This section explains the parallel BIOS application program interface (API). The parallel BIOS is
called through software interrupt 17H. Services are provided to write a character to the parallel
port, initialize the printer attached to a parallel port, and read the status of a printer attached to a
parallel port.

3.8.1 Write Character (00h)

The Write Character parallel BIOS function is called to write a character over the parallel port to
a printer or other parallel device.

Input Parameters:

AH - 00h, indicating the Write Character Function.
AL - Character to print.
DX - Parallel port number (0=LPT1, 1=LPT2, 2=LPT3).

Output Parameters:

AH - Printer status, as follows:

10000000b - Printer not busy.
01000000b - Acknowledgement.
00100000b - Out of paper.
00010000b - Printer selected.
00001000b - I/O error occurred.
00000100b - Reserved.

112 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

00000010b - Reserved.
00000001b - Timeout error occurred.

3.8.2 Initialize Printer (01h)

The Initialize Printer parallel BIOS function is called to initialize an attached print device. It does
this by pulsing the reset line on the parallel interface.

Input Parameters:

AH - 01h, indicating the Initialize Printer Function.
DX - Parallel port number (0=LPT1, 1=LPT2, 2=LPT3).

Output Parameters:

AH - Printer status, as follows:

10000000b - Printer not busy.
01000000b - Acknowledgement.
00100000b - Out of paper.
00010000b - Printer selected.
00001000b - I/O error occurred.
00000100b - Reserved.
00000010b - Reserved.
00000001b - Timeout error occurred.

3.8.3 Read Printer Status (02h)

The Read Printer Status parallel BIOS function is called to read the status lines attached driven by
a parallel-mode printer attached to the parallel port.

Input Parameters:

AH - 02h, indicating the Read Printer Status Function.
DX - Parallel port number (0=LPT1, 1=LPT2, 2=LPT3).

Output Parameters:

AH - Printer status, as follows:

10000000b - Printer not busy.
01000000b - Acknowledgement.
00100000b - Out of paper.
00010000b - Printer selected.
00001000b - I/O error occurred.
00000100b - Reserved.
00000010b - Reserved.
00000001b - Timeout error occurred.

Chapter 3 EMBEDDED BIOS User’s Manual 113

General Software EMBEDDED BIOS Adaptation Guide

3.9 INT 1ah, Time Services

This section explains the date/time BIOS application program interface (API). The date/time
BIOS is called through software interrupt 1aH. Services are provided to read the system time
counter, write the system time counter, read the real time clock, write the read time clock, read
the real time clock date, and write the real time clock date.

3.9.1 Read System Timer Count (00h)

The Read System Timer Count date/time BIOS function is called to return the 32-bit number of
ticks since last midnight as stored in the BIOS data area.

Input Parameters:

AH - 00h, indicating the Read System Timer Count Function.

Output Parameters:

CY - set if failure, else clear if success.
AH - 00h.
AL - Timer overflow flag:

00h - Time has not overflowed the field.
01h - Time has overflowed the field.

CX:DX - 32-bit number of ticks elapsed since midnight.

3.9.2 Write System Timer Count (01h)

The Write System Timer Count date/time BIOS function is called to store the 32-bit number of
ticks since last midnight into the BIOS data area.

Input Parameters:

AH - 01h, indicating the Write System Timer Count Function.
CX:DX - 32-bit number of ticks elapsed since midnight.

Output Parameters:

CY - set if failure, else clear if success.
AH - 00h.

3.9.3 Read Real Time Clock Time (02h)

The Read Real Time Clock Time date/time BIOS function is called to return the time information
from the battery-backed real time clock.

Input Parameters:

114 EMBEDDED BIOS User’s Manual Appendix A

General Software EMBEDDED BIOS Adaptation Guide

AH - 02h, indicating the Read RTC Time Function.

Output Parameters:

AH - 00h.
CY - set if RTC update in progress, else clear if success.
CH - Hours in BCD.
CL - Minutes in BCD.
DH - Seconds in BCD.
DL - Daylight savings option:

00h - No daylight savings supported.
01h - Daylight savings supported.

3.9.4 Write Real Time Clock Time (03h)

The Write Real Time Clock Time date/time BIOS function is called to store the time information
into the battery-backed real time clock.

Input Parameters:

AH - 03h, indicating the Write RTC Time Function.
CH - Hours in BCD.
CL - Minutes in BCD.
DH - Seconds in BCD.
DL - Daylight savings option:

00h - No daylight savings supported.
01h - Daylight savings supported.

Output Parameters:

AH - 00h.
AL - Value written to CMOS 0bh register.
CY - set if RTC update in progress, else clear if success.

3.9.5 Read Real Time Clock Date (04h)

The Read Real Time Clock Date date/time BIOS function is called to return the date information
from the battery-backed real time clock.

Input Parameters:

AH - 04h, indicating the Read RTC Date Function.

Output Parameters:

AH - 00h.
CY - set if RTC update in progress, else clear if success.
CH - Century in BCD (19h or 20h).
CL - Year in BCD.

Chapter 3 EMBEDDED BIOS User’s Manual 115

General Software EMBEDDED BIOS Adaptation Guide

DH - Month in BCD.
DL - Day in BCD.

3.9.6 Write Real Time Clock Date (05h)

The Write Real Time Clock Date date/time BIOS function is called to store the date information
into the battery-backed real time clock.

Input Parameters:

AH - 05h, indicating the Write RTC Date Function.
CH - Century in BCD (19h or 20h).
CL - Year in BCD.
DH - Month in BCD.
DL - Day in BCD.

Output Parameters:

AH - 00h.
AL - Value written to CMOS 0bh register.
CY - set if RTC update in progress, else clear if success.

3.9.7 PCI Services (B1h)

The PCI Services BIOS function is called to make a PCI function request. The PCI API is well-
documented by the PCI Consortium and its operation is beyond the scope of this section.

Input Parameters:

AH - b1h, indicating the PCI Services function.
Others - as defined by PCI Specification.

Output Parameters:

All - as defined by PCI Specification

